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Abstract

Mathematical models like the Susceptible-Exposed-Infectious-Recovered (SEIR) framework are vital for
epidemic control but are often limited by static parameters in dynamic settings. This study develops a hybrid
framework that integrates Pontryagin's Maximum Principle for optimal control with artificial intelligence (Al)
components—including Long Short-Term Memory (LSTM) networks for forecasting and a Genetic Algorithm
(GA) for real-time parameter adaptation—to transform a traditional SEIR model into an adaptive decision-
support system. Applied to diphtheria outbreak management as a case study in Delta State, Nigeria, the Al-
augmented model was evaluated using synthetic data derived from Nigeria Centre for Disease Control
parameters. It reduced forecast error by 80% (MAPE: 4.6% vs. 22.8%), peak infections by 66.5%, and improved
intervention cost-efficiency compared to the optimized control-only model. The findings suggest that Al-
mechanistic modelling provides a scalable methodological framework for precision public health, especially in
resource-limited settings, through improvements in predictive performance, resiliency, and cost-effectiveness.

Keywords: Artificial Intelligence, Hybrid Epidemiological Modelling, Optimal Control, Diphtheria, SEIR
Model

Introduction

Infectious diseases continue to present challenges for public health systems, especially in low-resource
contexts, such as Nigeria. In Delta State, there have been a number of repeated outbreaks of diphtheria, cholera
and Lassa fever (NCDC, 2023). While mathematical modelling has provided a basis of research to describe
the epidemic dynamics, evaluate the impact of options for intervention and assist with guidance on policy,
they have been used for some time. Compartmental models have become a common approach, such as the
Susceptible— Exposed-Infectious—Recovered (SEIR) model, due to interpretations and biological rationale
(Brauer, 2017). The basic reproduction number Rq serves as a critical threshold parameter in such models,
determining whether a disease will spread or die out in a population (Van den Driessche & Watmough, 2002).
Traditional methods of applying SEIR present significant limitations, primarily for two reasons: parameters
are often fixed or estimated from historical data; and optimal control strategies derived from Pontryagin’s
Maximum Principle act as open-loop systems. Therefore, when abrupt changes occur in the real world, such
as during population mobility, intervention fatigue, or pathogen change, the models have no way of adjusting.
Al methods, including machine and deep learning, offer new opportunities to overcome these shortcomings.
Al methods are inductive and data-driven, capable of detecting nonlinear relationships across diverse variables
such as clinical, demographic, and mobility data (Alotaibi et al., 2023). Recurrent neural networks, notably
Long Short-Term Memory (LSTM) architectures, have achieved strong performance in epidemic forecasting
(Chae et al., 2021). Likewise, heuristic optimization techniques, like Genetic Algorithms (GA), have been used
in epidemiology to estimate parameters and optimize nonlinearity (Arduino, 2021). While the potential of such
methods is novel, data-driven models generally provide a "black box" for interpreting processes in public
health.

Recent work also showcases the possibilities of hybrid models that combine mechanistic approaches with Al
approaches, offering the interpretability of compartmental models and utilizing Al for adaptive parameter
estimation to improve forecast accuracy (Willcox et al., 2021; Lu et al., 2023; Kumar & Susan, 2024). Despite
promising research, nearly all studies have assumed sufficient strong datasets and surveillance systems which
are uncommon in low- and middle-income countries. In addition, there have been few attempts to statistically
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quantify the degree to which predictive accuracy, adaptability, and cost-effectiveness improve by using Al-
optimized parameters within the control-optimized SEIR model, while working under resource constraints.
This study addresses these gaps by developing and evaluating a hybrid SEIR-AI framework for modelling
diphtheria outbreaks in Delta State, Nigeria. Delta State is a particularly relevant case study based on its
recurring history of diphtheria outbreaks, a formal setting which captures its diverse urban and rural
populations, and health system components which are common in heavily resource-constrained environments
across Nigeria and Sudan. The knowledge obtained in this context will provide evidence of an expandable
framework applicable to like regions. Specifically, our contributions are threefold:
= We formulate a control-extended SEIR model with vaccination and treatment strategies optimized
using Pontryagin’s Maximum Principle.
= We design an Al augmentation layer consisting of (i) an LSTM network for short-term forecasting,
(ii) a GA for real-time, time-varying parameter estimation, and (iii) neural network—based sensitivity
analysis for policy prioritization.
= We provide a comparative evaluation against baseline and control-only SEIR model, demonstrating
significant improvements in forecast accuracy, outbreak mitigation, and intervention cost-efficiency.

Compartmental models have long provided the foundation for mathematical epidemiology. Frameworks such
as the Susceptible—Exposed—Infectious—Recovered (SEIR) model, which first developed as modelling
approaches by Kermack and McKendrick, remain popular for their intuitive appeal and ability to recover
important features of transmission dynamics (Brauer, 2017). SEIR-type compartments have been used in
Nigeria to consider diphtheria and provide evidence for outbreak readiness and intervention preparation
(Ayansiji & Ejinkonye, 2025). While these modelling approaches may be useful, they usually rely on fixed
values of parameters based on past data and do not incorporate important factors in a changing environment
such as mobility or changing effectiveness of intervention, or responses by the pathogens.

To address these limitations, optimal control theory offers a method of extending compartmental models, by
incorporating vaccination, treatment, or isolation into dynamic models. Pontryagin’s Maximum Principle, in
particular, provides a rigorous mathematical method for balancing infection reduction with economic costs
(Naidu, 2003). Matrajt et al. (2021) showed that vaccine allocation strategies significantly affect epidemic
outcomes, while Bliman et al. (2021) demonstrated how control theory can optimize epidemic suppression
through social distancing. However, most existing solutions remain open-loop, optimized at the start of an
outbreak and applied unchanged throughout its course.

Simultaneously, Artificial Intelligence (Al) has surfaced as a revolutionary instrument for epidemiology.
Methods in machine learning and deep learning inductively acquire knowledge from data rather than pre-
specified hypotheses, successfully detecting nonlinear associations across multiple domains (e.g., clinical
records, mobility data, environmental parameters) (Jiang et al., 2017). Models such as recurrent neural
networks - including Long ShortTerm Memory (LSTM) architectures - have reached state-of-the-art
accuracies for forecasting epidemics such as influenza and COVID-19 (Chae et al., 2021). Evolutionary
algorithms (such as Genetic Algorithms [GAs]) have become functional methods for estimating parameters
and nonlinear optimization and estimation in epidemiological models (Arduino, 2021). Recent advances in
metaheuristic optimization, such as the Enhanced Grey Wolf Optimizer with chaotic initialization and adaptive
control (Ayansiji et al., 2025), have demonstrated improved convergence and robustness in complex search
spaces, suggesting potential utility in epidemiological parameter calibration. Yet, these purely data-driven
models are often criticized as opaque “black boxes,” which limits their acceptance in policymaking contexts
where interpretability is essential.

An emerging frontier is the integration of mechanistic and Al-driven approaches into hybrid frameworks.
These models aim to combine the interpretability of compartmental structures with the adaptability of Al
techniques. For instance, Lu et al. (2023) incorporated regression and heuristic methods into an SEIR model
to capture wave-specific dynamics during COVID-19 in Italy, obtaining more accurate predictions. Kumar
and Susan (2024) developed a time varying SIRD model enhanced with Particle Swarm Optimization and
stacked LSTM networks to generate robust forecasts for multiple waves. Other studies have advanced graph-
based approaches, such as Metapopulation Graph Neural Networks, which incorporate mobility data into
mechanistic models while preserving biological meaning.

Taken together, the literature reveals two largely parallel traditions: mechanistic SEIR model that are
interpretable but static, and Al-driven approaches that are adaptive but less transparent. Although hybrid
models have begun to bridge these traditions, most existing work assumes abundant high-quality data and
robust surveillance systems. Few studies rigorously quantify the benefits of Al integration when embedded
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within optimal control models under resource constrained conditions. This gap leaves policymakers with either
static tools that quickly lose relevance or adaptive systems that lack interpretability. The present study
addresses this challenge by proposing and evaluating a hybrid AI-SEIR framework tailored to diphtheria
outbreak control in Delta State, Nigeria, with the aim of transforming static modelling tools into adaptive,
predictive, and prescriptive decision-support systems.

Aim and Objectives
The primary aim of this study is to develop and validate a hybrid Al-mechanistic framework for the adaptive
control of diphtheria outbreaks in resource-limited settings. To achieve this aim, the following specific
objectives were pursued to:
1. formulate a control-extended SEIR model with vaccination and treatment strategies optimized using
Pontryagin's Maximum Principle.
2. design an Al augmentation layer consisting of an LSTM network for forecasting, a GA for real-time
parameter estimation, and a neural network for sensitivity analysis.
3. conduct a comparative evaluation of the proposed Al-augmented model against baseline and control-
only models, assessing improvements in forecast accuracy, outbreak mitigation, and cost-efficiency.

Materials and Methods
We design and evaluate a hybrid modelling framework to simulate diphtheria dynamics within the population
of Delta State, Nigeria, under three scenarios:
1. Scenario A (Baseline): classical SEIR model with static parameters.
2. Scenario B (Optimized Control): SEIR model with vaccination and treatment controls derived from
Pontryagin’s Maximum Principle.
Scenario C (Al-Augmented): control-optimized SEIR model enhanced with Al modules for forecasting,
parameter adaptation, and sensitivity analysis.

Model Formulation
Let the total population be
N({@)=S({t)+E(@)+1(t)+R(t) 1)

where S(¢t), E(t), I(t), and R(t) denote susceptible, exposed, infectious, and recovered/removed individuals,
respectively.
The controlled SEIR dynamics are:
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where A is the recruitment rate, u the natural mortality, o the incubation rate, y the recovery rate, and § the
disease-induced mortality. Control functions u, (t), u,(t) € [0, 1] represent vaccination and treatment.

Optimal Control Problem Formulation (Scenario B)
To derive the optimal intervention strategies for Scenario B, we define an objective functional J to be
minimized. This functional balances the cost of the infected population against the costs of implementing
vaccination and treatment programs over a fixed time period [0, T]:

@)

d B, B,
Joa ) = [ |41+ S + Fus ] ae
where: ’
1 AI(t): Cost associated with the burden of disease (e.g., healthcare costs, productivity loss).
2 %u% (t): Cost of vaccination implementation, assumed to be non-linear to model diminishing returns
and logistical challenges.
3 %u% (t): Cost of treatment implementation.

4 A, B;, B,: Positive weighting constants that translate health and economic outcomes into a common
cost framework.
The goal is to find optimal control functions u; (t) and w;(t) such that:
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J(ui,uz) = min J(ug,uy), 4
Uq,Up €U

subject to the state equations above, where U is the set of admissible measurable controls. The admissible
control set is defined as
U = {(ulruZ): ui: [0! T] - [01 1])l = 11 2} (5)

Theorem 1. (Existence of Optimal Control)

Given the bounded, Lipschitz continuous state system (2) and the convex, compact admissible control set U
defined in (5), there exists an optimal control pair u,,u, € U minimizing the cost functional J(u,, u,) in (3)
over the time interval [0, T].

The proof follows standard results in optimal control theory (Fleming & Rishel, 1975).

Hamiltonian and Adjoint System
We apply Pontryagin's Maximum Principle to solve this. The Hamiltonian H is formed:

H=A1+%uf+%u§+as(A—%—ys—uls)+ (6)
Ag (E(Itv)ls — (o +,u)E) + L, (6E — (y + u+ 6)I—u,I) +

Ar(YI+u  (£)S + u, (£)I — uR).
The adjoint variables A; (for i = S, E, I R) satisfy the following costate equations:
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with terminal conditions Ag(T) = Ag(T) = A;(T) = Ax(T) = 0.

Characterization of Optimal Controls
The optimal controls are derived by solving ;TH = 0and :TH =0:
1 2

4 () = max <0, min (u;nax' w))\ .

i (’11 B AR)I
uy(t) = max <0, min <u§"“",37)))

This system of state and costate equations, with boundary conditions (initial states and terminal time conditions
for adjoints), was solved numerically using a forward-backward sweep algorithm in MATLAB. The iteration
process continued until the relative error between successive iterations for all state and control variables was
less than a tolerance of 103, ensuring convergence.

Al-Augmentation Framework (Scenario C)

While the optimal control model (Scenario B) provides a theoretically powerful framework, its effectiveness in
a real-world outbreak is limited by its reliance on a fixed transmission rate 5. LSTM was selected due to its
proven ability to handle long-term temporal dependencies in epidemic data. GA was chosen for parameter
estimation given its robustness in handling noisy, non-convex optimization problems typical of epidemiological
datasets. To create a responsive and adaptive model, we integrated an Al engine designed to dynamically
calibrate this critical parameter in real-time.

1. LSTM Forecasting Module: A Long Short-Term Memory (LSTM) recurrent neural network was
implemented in Python using TensorFlow/Keras. The network, comprising two LSTM layers (50 units
each followed by a Dropout layer of 0.2) and a dense output layer, was trained on the historical time
series of infectious individuals 1(t). Using ReLU activation and the Adam optimizer, it was designed
to predict future values I(t + p) with a 4-week prediction horizon (p = 28), providing a probabilistic
early warning signal.

2. Genetic Algorithm for Dynamic Parameterization: A Genetic Algorithm (GA) was designed to solve
the inverse problem of finding the optimal time-varying transmission rate 8(t). The GA
represented B(t)as a chromosome of discretized daily values. Its fitness function minimized a weighted
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sum of the Mean Squared Error (MSE) between the model output I,,,,4.;(t) and the empirical
data I, (t), and the MSE between the model projection and the LSTM forecast values I(t + p), That
is,

min F(B) = aMSE (Inoaet (1), laata(©)) + (1 = @MSE (Inoger(6), I(t + 1)) ©

We employed a population size of 100, tournament selection, two-point crossover, and an adaptive
mutation rate, running for 200 generations to ensure convergence.

3. Al-Powered Sensitivity Analysis: A feedforward neural network surrogate model was trained to
emulate the input-output relationship of the full SEIR model. This computationally efficient surrogate
enabled a rapid global sensitivity analysis using the variance-based Sobol method, quantifying the
contribution of each parameter (e.g., 8, 0, u,) to the variance in key outputs (e.g., peak I, total cost),
thereby identifying the most critical and influential intervention levers for policymakers.

Hybrid Solver
Algorithm 1: Al-Augmented Optimal Control Solver
Input: Initial states (Sy, Ey, Iy, Ro), parameters, NCDC/synthetic data
Initialize 5 (t), controls ul(t), u2(t)
Repeat until convergence:

1. Solve SEIR forward in time (Runge—Kutta 4).

2. Solve adjoint system backward in time.

3. Update controls using characterization formulas.

4, LSTM forecasts incidence I(t + p).

5. GA updates £(t) using fitness function F(p).

6. Surrogate N performs sensitivity analysis.
Output: Optimal controls uj(t), us(t), state trajectories

Numerical Simulation and Performance Evaluation
Model parameters were primarily calibrated using demographic data from the National Bureau of Statistics
(2022) for Delta State and epidemiological data from NCDC surveillance reports specific to the region. To
compensate for gaps in high-resolution, real-time data—a common challenge in such settings—synthetic datasets
were generated based on these established parameters and ranges reported in the literature for similar diphtheria
outbreaks. This approach allows for the robust validation of the modelling framework's functionality, with the
primary objective being a comparative analysis of the scenarios rather than precise real-world prediction at this
stage.
The coupled system of ODEs was solved numerically using a fourth-order Runge-Kutta method. The
performance of Scenarios A, B, and C was evaluated and compared based on the following metrics:

1.0 Predictive Accuracy: Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE).

2.0 Epidemic Control: Peak infection rate, total cases averted, total deaths averted.

3.0 Economic Efficiency: Total cost of intervention strategies J(u,, u,).

4.0 Adaptability: Model response time and accuracy after a simulated sudden increase in transmission rate

(B).

Results

This section presents the outcomes of the three scenarios outlined in Section 3. Numerical experiments were
conducted in MATLAB using the forward—backward sweep algorithm for the optimal control system and the Al
modules for adaptive forecasting and parameter adjustment. A fourth-order Runge—Kutta solver with step size
0.01 was used. Model parameters were calibrated from demographic data and NCDC surveillance reports,
supplemented with synthetic data where necessary.

Baseline Dynamics (Scenario A)

The baseline SEIR model reproduces the natural progression of diphtheria in a closed population. Infections rise
sharply, peaking earlier and at higher magnitude than observed NCDC reports. This deviation illustrates the
limitations of static-parameter models in situations of dynamism such as Delta State, where heterogeneous
contact rates vary as a result of seasonal effects, movement, and localized disruption from interventions. The
uncontrolled epidemic estimated a peak prevalence of 18.5% of the population, leading to cumulative incidence
and mortality figures that vastly exceed historically observed outbreaks, highlighting its lack of real-world
applicability without intervention.
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Optimal Control Dynamics (Scenario B)
Introducing vaccination and treatment controls significantly alters epidemic trajectories. The forward—backward

sweep algorithm converged within 30 iterations, achieving a tolerance 107>, Vaccination control u, (t) is high
during the early phase, suppressing initial spread, while treatment control u, (t) peaks around the infection apex,
reflecting the need for targeted therapeutic interventions.

Table 1 :Comparative epidemic outcomes for the baseline SEIR model (Scenario A) and the model with
optimal control interventions (Scenario B). The percentage reduction demonstrates the significant impact
of optimizing vaccination and treatment strategies.

Indicator Scenario A (Baseline) Scenario B (Control) % Reduction

Peak infection proportion (%) 185 9.7 47.6
Total cases per 100,000 2,450 1,230 49.8
Total deaths per 100,000 375 195 48.0
Control cost index (B+C) - 1.0 (normalized) -

Note: Normalized costs combine vaccination and treatment efforts.
Optimal control reduced total cases and deaths by nearly 50%, consistent with the theoretical predictions of

Pontryagin’s Maximum Principle.

Al-Augmented Dynamics (Scenario C)

The Al-enhanced model further improved accuracy, robustness, and adaptability. The LSTM provided short-
horizon forecasts of incidence, the GA updated transmission rates B(t), and the sensitivity-analysis surrogate
identified 8, g, and y as the most influential parameters.

Table 2: Quantitative performance evaluation of all three scenarios. Metrics include forecast accuracy
(RMSE, MAPE), epidemic control (peak infection, cases averted), and system robustness (recovery time
after a simulated shock to the transmission rate).

Metric Scenario A ScenarioB  Scenario C
RMSE (forecast vs. observed) 185 92 41

MAPE (%) 22.8 11.5 4.6

Peak infection (%) 18.5 9.7 6.2

Cases averted (%) - 49.8 66.4

Metric Scenario A Scenario B Scenario C
Deaths averted (%) - 48.0 65.1
Robustness (recovery days after shock) Unstable 19 8

Note: Robustness measures recovery to < 10% forecast error after a 50% increase in .

The reduction in forecast uncertainty indicates that policymakers can have significantly more confidence in
decisions related to vaccine stockpiling and allocating resources in hospitals. Figure 1 illustrates epidemic
trajectories across scenarios. At day 60, a 50% increase in 8 simulated an intervention disruption. Scenario A
was unstable, with infections diverging. Scenario B partially recovered within 19 days. Scenario C recovered
within 8 days, showing strong adaptability to shocks.
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Figure 1: Simulated infection trajectories for the diphtheria outbreak under three modelling scenarios.
Scenario A (Baseline) shows an uncontrolled epidemic. Scenario B (Optimal Control) shows suppressed
infection rates via pre-computed controls. Scenario C (Al Augmented) demonstrates adaptive resilience,
rapidly recovering from a simulated 50% increase in transmission rate (4) at day 60 (indicated by the dashed
vertical line).

Discussion

The findings from this Delta State case study offer several important lessons for public health planning in
contexts of limited resources, illustrating how an Al-augmented framework can be executed. Although the
particular numeric findings of this study are context-dependent, the recommendations below will be generally
relevant to policymakers working in comparable contexts:

1.0 Cost-effectiveness: Control measures reduced infections substantially at manageable intervention
cost. The quadratic penalty ensured realistic deployment intensity, balancing health benefits and
resources.

2.0 Timely response: Vaccination early and treatment during infection peaks reflect optimal resource
allocation. This insight is critical for designing campaigns in resource-limited settings.

3.0 Al-enhanced resilience: Scenario C’s adaptability is particularly valuable in low-resource
environments prone to shocks (e.g., delayed vaccine delivery, mass gatherings). Policymakers benefit
from a system that can self-correct forecasts and adapt intervention intensity.

4.0 Decision support: Outputs from Scenario C were structured into a decision-support dashboard,
enabling visualization of epidemic projections, optimal controls, and sensitivity rankings for real-time
policy guidance.

From a mathematical perspective, the results illustrate the power of integrating Pontryagin’s Maximum
Principle with Al-driven adaptation. The existence theorem guarantees optimal solutions, while numerical
implementation confirms convergence. At the same time, Al methods improve flexibility, compensating for
model misspecification and parameter uncertainty. This dual-layer approach shows that Al should augment
rather than replace mathematical models. It creates frameworks that remain rigorous, interpretable, and
adaptive to real-world complexity. For Delta State, this implies that vaccination drives should be intensified
early, while treatment capacity should be scaled strategically around projected peaks. With Al augmentation,
the system can also adjust dynamically if vaccine deliveries are delayed or new clusters emerge. Thus, the
framework provides not only forecasts but also real-time policy guidance.

Conclusion

This study introduced a hybrid Al-mechanistic framework that combines optimal control theory with artificial
intelligence to model and manage diphtheria outbreaks in Delta State, Nigeria. The controlled SEIR system,
optimized via Pontryagin's Maximum Principle, provided rigorous vaccination and treatment strategies that
significantly reduced infections and deaths. The Al augmentation layer, comprising LSTM forecasting, GA-
based parameter adaptation, and neural network sensitivity analysis, further improved predictive accuracy and
robustness under sudden shocks in transmission rates. Our comparative evaluation demonstrated that the Al-
augmented model (Scenario C) achieved an 80% reduction in forecast error and reduced the peak infection
burden by 66.5% compared to the baseline, significantly outperforming the static optimal control approach.
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By uniting mechanistic rigor with Al adaptability, this work contributes to the emerging field of adaptive
epidemic intelligence for precision public health in low-resource environments.

Future work will focus on extending the framework in several directions. First, applications will be evaluated
on multiple pathogens and across multiple regions as a test of scalability and generalizability. Second, we will
integrate real-time data streams--such as mobility data, vaccination coverage rates, and contact tracing results-
-to enhance situational awareness and model accuracy. Third, we will explore more advanced artificial
intelligence approaches, such as reinforcement learning and hybrid evolutionary algorithms, for dynamic
intervention adjustment. Finally, a fully operational decision-support dashboard will be developed and
integrated with health system infrastructure to enable real-world deployment and evaluation.
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