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Abstract  
Mercury (Hg) contamination poses a critical threat to environmental and human health due to its toxicity, 
persistence, and bioaccumulative nature. Understanding microbial mechanisms for mercury detoxification is 
essential for developing sustainable bioremediation strategies. This review highlights key mechanisms employed 
by fungi to mitigate mercury toxicity, including resistance, bioaccumulation, and biosorption. Resistance 
mechanisms are primarily mediated by the mer operon, with enzymes like MerA and MerB facilitating mercury 
reduction and detoxification. Fungi also bioaccumulate mercury through passive and active transport systems, 
binding it to intracellular proteins such as metallothioneins. Additionally, fungal biomass live or dead—can 
effectively adsorb mercury via cell wall functional groups through biosorption. Fungal metabolites, particularly 
low molecular mass organic acids, further influence mercury mobility and sequestration in the environment. The 
effectiveness of bioremediation is influenced by numerous factors, including environmental conditions such as 
pH, oxygen, and water availability, microbial community characteristics, and nutrient availability. Fungi 
demonstrate notable advantages in bioremediation due to their tolerance to harsh conditions, extensive hyphal 
growth, and secretion of extracellular enzymes. In Nigeria, multiple studies have demonstrated the 
bioremediation potential of fungi and other microbes for petroleum hydrocarbons and heavy metals, including 
mercury, in contaminated environments. The findings underscore the promising role of fungal-based 
biotechnologies in addressing environmental pollution, particularly in regions heavily impacted by industrial 
activities. 
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Introduction 
Mercury (Hg) contamination is a important environmental issue, posing severe risks to both human health and 
ecosystems worldwide (Charkiewicz et al., 2025). This heavy metal is released into the environment through 
industrial activities such as mining, agriculture, and the manufacturing of various goods (Mae et al., 2025). Due 
to its toxicity, persistence, and bioaccumulative properties, mercury contamination can cause long-lasting 
environmental damage and severe health complications, including neurological disorders and kidney damage in 
humans. The management of mercury pollution has become increasingly urgent, prompting the search for 
sustainable, cost-effective methods of removing mercury from contaminated environments (Thakur et al., 2025). 
One of the promising solutions lies in the field of mycoremediation, where fungi are harnessed to detoxify 
harmful substances (Periakaruppan et al., 2025). Fungi are highly adaptable organisms capable of thriving in a 
variety of harsh environmental conditions, making them particularly suitable for bioremediation (Venâncio, 
2025). These microorganisms employ diverse mechanisms to combat mercury toxicity, including resistance 
through the mer operon, bioaccumulation, and biosorption (Sarkar and Bhattacharjee, 2025). These processes 
enable fungi to either transform mercury into less harmful forms, concentrate it within their cells, or bind it to 
their biomass, thus removing it from contaminated environments (Periakaruppan et al., 2025). Furthermore, the 
production of organic acids and other metabolites by fungi can enhance mercury mobility, providing additional 
means for its detoxification (Anas et al., 2025). 
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Understanding these mechanisms and their usefulness for extensive environmental cleanup has become a more 
prominent area of research in recent years. The ability of fungi to clean up contaminated areas is greatly enhanced 
by their large hyphal growth, high biomass production, and extracellular enzyme secretion (Parida, 2025). The 
success of fungal bioremediation initiatives is also greatly influenced by variables like microbial community 
characteristics, nutrient availability, and environmental conditions (Kebede et al., 2021). 
This paper analyzes the potential of fungus in the detoxification of mercury, highlighting the important processes 
of resistance, bioaccumulation, and biosorption that fungi exploit to minimize mercury toxicity. It also examines 
the factors that influence the efficiency of mycoremediation and discusses the promising role of fungal-based 
biotechnologies in addressing mercury contamination, particularly in regions such as Nigeria, where industrial 
activities have exacerbated environmental pollution. By optimizing these processes, mycoremediation can 
become an effective, sustainable solution for reducing mercury contamination and its harmful effects on both the 
environment and human health. 
 
Mechanisms Of Mercury Detoxification 
One hazardous heavy metal that seriously endangers both human health and the environment is mercury (Hg)  
(Kim et al., 2016). Due to its persistence and ability to bioaccumulate, understanding the mechanisms of mercury 
detoxification is crucial for developing effective bioremediation strategies (Kumar et al., 2023). Various 
microorganisms, particularly fungi, have evolved diverse mechanisms to cope with mercury toxicity, which can 
be broadly categorized into resistance, bioaccumulation, and biosorption (Durand et al., 2020). 
 
Mercury Resistance Mechanisms in Microorganisms 
Microbial resistance to mercury often involves enzymatic detoxification processes, most notably the mer operon 
(Nascimento et al., 2003). This genetic system, which genes for proteins that change poisonous ionic mercury 
(Hg²⁺) into less hazardous elemental mercury (Hg⁰), which is volatile and can exit the cell, is found in many 
bacteria and certain fungi. Important enzymes in this system include mercuric reductase (MerA), which catalyzes 
the NADPH-dependent reduction of Hg²⁺, and organomercurial lyase (MerB), which breaks down carbon-
mercury bonds in organomercury compounds, releasing Hg²⁺ for MerA to reduce. Studies that have isolated 
mercury-resistant fungi from contaminated soils provide evidence for the presence and activity of such resistance 
mechanisms (Nascimento et al., 2003). A novel Hg-volatilizing Lecythophora sp. fungus (DC-F1) has the ability 
to bioremediate mercury-contaminated soil (Chang et al., 2019). A novel species of the fungus Penicillium is 
also present. According to Chang et al. (2020), DC-F11 that was isolated from contaminated soil also showed 
mechanisms resistant to mercury (II). 
 
Bioaccumulation of Mercury by Microorganisms: 
Bioaccumulation refers to the uptake and accumulation of substances, such as mercury, within an organism. 
Fungi can accumulate mercury through both energy-dependent active transport systems and passive uptake 
mechanisms. In order to counteract the harmful consequences of the accumulating mercury, it can be sequestered 
inside the fungal cells and frequently bound to cellular components such metallothioneins and other metal-
binding proteins (Davidova et al., 2024). There are differences in the ability of different fungus species to 
bioaccumulate mercury. According to Kapoor et al. (1999), Aspergillus niger has demonstrated the ability to 
bioremove heavy metals. From cold sulfidic spring water biofilms, a novel strain of Mucor hiemalis (EH8) that 
accumulates mercury was also identified (Hoque and Fritscher, 2016). 
 
Biosorption of Mercury by Fungal Biomass 
Mercury and other contaminants attach to the surface of microbial cells or their constituents by a process known 
as biosorption, which is metabolism-independent (Priya et al., 2022). Fungal cell walls, which are composed of 
chitin, glucans, and other polysaccharides, contain functional groups that effectively bind metal ions through 
processes such as ion exchange, complexation, and adsorption. Using both live and dead fungal biomass, 
biosorption is a useful and affordable technique for removing mercury from contaminated soil and water (Ayele 
et al., 2021). It has been investigated how mercury (II) biosorbs onto fungal biomass from various species. The 
process by which Aspergillus versicolor biomass adsorbs mercury has been investigated. Additionally, 
immobilized fungal residues have demonstrated mercury (II) adsorption properties (Li et al, 2018). 
 
Role of Fungal Metabolites: 
The dynamics of mercury in the environment can be influenced by the many organic acids and other metabolites 
that fungi can create (Liu et al., 2018). The leaching and mobilization of mercury from solid matrices may be 
aided by the fungus's synthesis of low molecular mass organic acids (LMMOAs). Conversely, fungal exudates 
might also play a role in complexing or immobilizing mercury, thereby reducing its bioavailability (Ash et al., 
2016). 
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Factors Affecting Bioremediation Efficiency 
A complex interaction of different factors determines the effectiveness of bioremediation, a vital technology for 
the breakdown or conversion of pollutants into less hazardous substances. These elements can be broadly divided 
into three categories: the microbial community's characteristics, environmental conditions, and the accessibility 
of necessary nutrients and amendments. 
Environmental Conditions 
A contaminated site's physical and chemical conditions have a big impact on how well bioremediation works 
(Kebede et al., 2021). Water availability is a fundamental requirement for microbial metabolic activities involved 
in pollutant breakdown. Similarly, oxygen availability is critical for aerobic bioremediation processes, where it 
acts as an electron acceptor (Fragkou et al., 2021). However, anaerobic bioremediation occurs under oxygen-
limited conditions (Domingues et al., 2017). pH is another crucial factor affecting microbial activity and enzyme 
function. Studies have indicated that slightly acidic conditions can be favourable for bioremediation. For 
instance, a bioremediation study of refinery effluent observed a pH range of 6.56 – 6.903 (Kumar et al., 2022). 
Similarly, Govarthanan et al. (2016) reported that an optimized pH of 6.0 – 7.0 greatly influenced bioremediation 
efficiency. This study also found correlations between pH and parameters such as CO2 evolution (positive), oil 
and grease (negative), lead (negative), and nickel (negative) (Yusuf et al., 2024). In contrast to bacteria, fungi 
are notably better able to flourish in environmentally stressful situations such as low pH and inadequate 
nutritional status.  
 
Characteristics of the Microbial Community 
Effective bioremediation depends on the existence and activity of microorganisms that can break down the 
particular pollutants (Ahmad et al., 2023). The outcomes of bioremediation may be better when several bacterial 
strains are employed rather than simply one. Because of their rapid development, increased biomass output, and 
extensive hyphal reach in the environment, fungi have also shown increased efficacy in bioremediation (Pande 
et al., 2020).  
Filamentous fungi's high surface-to-cell ratio makes them great degraders in certain environments. A crucial 
component of bioremediation is the local microflora's capacity to generate extra enzymes that aid in the 
breakdown of contaminants in a contaminated environment (Bhandari et al., 2021). The capacity of fungi to 
produce a range of extracellular enzymes that are necessary for bioremediation—a process that is accelerated in 
the absence of nourishment—makes them special. Another element affecting the procedure's speed and 
efficiency is the microorganisms' rate of growth.  
Methods like bioaugmentation, which introduces cultured microorganisms to the contaminated area, can increase 
the catabolic potential of the local microbial community. Biological agents such as termites, algae, fungi, 
bacteria, and plants are necessary for bioremediation. In particular, Mycoremediation uses technology based on 
fungi to disinfect. 
 
Nutrient Availability and Amendments 
Essential nutrients are necessary for microorganisms' development and metabolic processes. A competent 
bacterium must have access to sources of nitrogen and phosphorus in order to degrade a polluted carbon source 
(Singh et al., 2022). If these nutrients are lacking, the remediation process can be rendered ineffective. Strategies 
such as biostimulation, which involves modifying environmental conditions to stimulate existing 
microorganisms, often include the addition of nutrients to enhance microbial activity (Goswami et al., 2018). 
Certain nutrients and seeded cultures can increase the effectiveness of pollutant decomposition. Enhancing the 
indigenous microflora's capacity to proliferate by providing them with more food is the basic objective of 
bioremediation (Abatenh et al., 2017). 
 
Previous Studies On Bioremediation In Nigeria 
Nigeria has faced significant environmental pollution challenges due to industrial activities, particularly in the 
petroleum sector and other industries. Consequently, numerous studies have investigated the potential and 
application of bioremediation techniques to address these issues. This review highlights some of the previous 
studies on bioremediation conducted in Nigeria, drawing on the provided sources (Mafiana et al., 2021; Ite et al., 
2016). 
 
Many studies have focused on the bioremediation of petroleum hydrocarbon-contaminated soil and water. 
Offiong et al. (2019) looked into the use of particular organic wastes for the bioremediation of hydrocarbon-
contaminated soil. Ubogu et al. (2019) investigated the rhizoremediation of a swamp contaminated by crude oil 
using Phragmites australis and Eichhornia crassipes, and they found that the quantities of total petroleum 
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hydrocarbons (TPH) in the rhizospheres of these species decreased. Obire et al. (2008) looked for saprophytic 
and crude oil-degrading fungi in cow dung and chicken droppings as potential bioremediating agents. 
 
Furthermore, Ekundayo et al. (2012) looked at the biodegradation of Bonny light crude oil by locally isolated 
fungus from oil-contaminated soils in Akure, Ondo State. The application of bioaugmentation in the 
bioremediation of gasoline-contaminated agricultural soil was examined by Nwankwegu and Onwosi (2017). 
Smith et al. (2015) evaluated bioslurry and biopiling techniques for hydrocarbon-contaminated soils in dry 
environments. Vanishree et al. (2014) investigated the biodegradation of gasoline using Aspergillus species. The 
effects of Penicillium Sp. and Mortierella Sp., which were isolated from oil-contaminated soil in car repair shops, 
biodegraded crude oil, refinery effluent, and specific petroleum components, were examined by Okougbo et al. 
(2016). Ariyo and Obire (2016) investigated the microbial community and hydrocarbon-using microorganisms 
from abattoir soils in the Niger Delta. 
 
The bioremediation of heavy metal contamination has also been the subject of research in Nigeria. When Mshelia 
et al. (2022) bioremediated soil contaminated with zinc and cadmium using microflora from abattoir effluent, 
they discovered that both metals were considerably reduced over the course of three weeks. Their study revealed 
that these heavy metals might be extracted from polluted soil by the microorganisms present in abattoir 
wastewater. Alori et al. (2018) looked at the bioremediation potential of sunflower and Pseudomonas species in 
soil contaminated with lead and zinc. Nwagwu et al. (2017) identified, characterized, and assessed the 
bioremediation capability of heavy metal-tolerant bacteria from the Panteka stream in Kaduna, Nigeria. 
 
A study in Kaduna that also screened fungus isolates from refinery effluent and the Romi River for 
bioremediation potential found that Chrysosporium tropicum, Aspergillus flavus, Aspergillus niger, and 
Rhizopus oryzae were viable possibilities. The amounts of lead, phenol, cadmium, nickel, and oil and grease in 
refinery effluent were successfully reduced by a combination of these fungi (Obukohwo et al., 2020).        
Ezeonuegbu et al. (2016) assessed the capacity of fungal species isolated from refinery effluent to extract and 
bioaccumulate lead, nickel, and cadmium from refinery waste. Doku and Belford (2012) looked on the capacity 
of Aspergillus niger and Aspergillus flavus to bioaccumulate heavy metals from wastewater from paper mills. 
Atikpo and Michael (2018) assessed six microorganisms' efficacy in treating agricultural soil tainted with lead. 
Phytoremediation, which uses plants to clean up contaminated regions, is also being studied. Ubogu et al. (2019) 
demonstrated the rhizoremediation of crude oil using Phragmites australis and Eichhornia crassipes. Ugya et al. 
(2015) examined the efficacy of Pistia stratiotes in phytoremediation after the Kaduna Refinery and 
Petrochemical Company contaminated Romi Stream. Ajibade et al. (2013) evaluated the efficacy of water 
hyacinth phytoremediation in removing heavy metals from domestic sewage. Akinbile et al. (2019) assessed the 
efficacy of Azolla pinnata in a variety of wastewater treatment procedures for agricultural reuse. Akinbile et al. 
(2016) studied the phytoremediation of domestic wastewaters in wetlands formed on the surface of free water 
using Azolla pinnata. 
 
Research has also been done on the effects of abattoir effluents and associated contaminants; the results may 
influence bioremediation strategies. Adesemoye et al. (2006) examined the microbial makeup of the 
contaminated soil and abattoir wastewater in Lagos, Nigeria. Adesina et al. (2018) assessed the impact of Kara 
Abattoir effluent on the Ogun River's water quality in Nigeria. Atuanya et al. (2018) examined the antibiotic 
resistance and plasmid profiles of bacteria isolated from abattoir effluents along the Ikpoba River in Benin City, 
Nigeria. Joseph et al. carried out a microbiological evaluation of the effluents from particular slaughterhouses in 
adjacent water bodies in Kaduna Metropolis in 2021. These earlier studies demonstrate a keen interest in 
exploring different bioremediation methods for Nigerian pollution types that use indigenous plant and microbial 
species. The findings of these studies offer crucial information for developing cost-effective and ecologically 
friendly bioremediation methods for Nigerian environmental management. 
 
Conclusion 
Mercury detoxification by fungi offers great potential for bioremediation, leveraging mechanisms like enzymatic 
resistance, bioaccumulation, biosorption, and metabolite production, with effectiveness influenced by 
environmental conditions and nutrient availability. 
 
Recommendation 
To enhance mercury bioremediation, it is recommended to utilize mercury-resistant fungal species, optimize 
environmental conditions, integrate fungal methods with other techniques, develop sustainable strategies, expand 
research on fungal metabolites, and implement supportive policies and regulations for effective environmental 
management. 
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