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Abstract  

In this paper, we introduce a new flexible two-parameter unit interval univariate probability distribution called 

the "hybrid-Epanechnikov transformed Kumaraswamy distribution (HTKD)”. The HTKD distribution, a 

flexible and robust version of the Kumaraswamy distribution, was created with the hybrid Epanechnikov 

kernel. We performed an in-depth analysis of its statistical characteristics and determined the parameters using 

the maximum likelihood estimation technique. The HTKD distribution's applicability was demonstrated using 

three datasets: the COVID-19 survival rate of Spain, the COVID-19 death rates of Canada, and the COVID-19 

mortality rates of the UK. The HTKD distribution consistently offered the best fit when compared to other 

distributions, including the Beta, Kumaraswamy, BurrXII, and Weibull distributions, as seen by the lowest 

AIC and BIC values. These findings demonstrate the promise of the HTKD distribution as a flexible and useful 

tool for statistical analysis in epidemiological research. The uniformity of its performance across several 

datasets highlights its capacity to offer precise and dependable modelling of epidemiological data. 

 

 

Keywords: Hybrid-Epanechnikov kernel, Kumaraswamy Distribution, HTKD Distribution, Maximum 

Likelihood Estimation,  

 

Introduction 

Numerous fields, including statistics, machine learning, probability theory, and economics, rely heavily on unit 

interval distributions. The distributions encompass the range [0, 1]. These distributions are essential for 

modelling ratios, rates, probabilities, and other naturally bounded values inside this interval.  

 

Karl Pearson first introduced the beta distribution in the early 1900s, and it is among the most well -known and 

ancient unit interval distributions. The two shape parameters α and β constitute the beta distribution, which is 

versatile and may be used to model a wide range of phenomena (Pearson, 1905). The investigation of 

continuous probability distributions was made possible by this fundamental study. Kumaraswamy (1980) 

presented the Kumaraswamy distribution, a different distribution on the unit interval. In some applications, it is 

more user-friendly than the Beta distribution because of its simpler algebraic feature. Another notable 

distribution is the triangular distribution (Okoro et al., 2023), which has a minimum, maximum, and mode. Its 

adaptability to a variety of settings and practicality led to its popularity.  

 

The Dirichlet distribution, a multivariate variant of the Beta distribution, has gained traction in the domains of 

machine learning and Bayesian statistics, particularly for modelling compositional data and proportions 

(Aitchison, 1982). Recently, more flexible versions of the beta distribution have been created to better capture 

complex data patterns on the unit interval (Ferrari & Cribari-Neto, 2004). Generalised versions such as the 

generalised Beta distribution and the Beta-Kumaraswamy distribution are proposed (Jones, 2009; Carrasco et 

al., 2010) to improve fit and flexibility for real-world data.  

 

In probabilistic programming, neural networks, and Bayesian inference in machine learning, unit interval 

distributions are frequently utilised (Kucukelbir et al., 2017). New models address data with excess zeros or 

ones, which are common in ecology and economics (Ospina & Ferrari, 2010). Software packages and 

improved computational approaches have made working with unit interval distributions in complicated 

modelling settings easier (Stan Development Team, 2022).   

 

Since its debut, there have been substantial changes in the research and application of unit interval 

distributions. From Pearson’s seminal Beta distribution to the most recent advances in flexible distributions 
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and computational approaches, these distributions remain crucial for statistical modelling and data analysis. 

Because they are effective at defining bounding quantities and proportions, they are frequently used in a 

variety of industries. Research and development on unit interval distributions has increased dramatically in the 

last two decades. Scholars have developed several adaptations to the Beta distribution to address more 

complex data structures, including skewness and kurtosis (Jones, 2009; Carrasco et al., 2010). Generalised 

variants of unit interval distributions provide more flexibility and a better match for real-world data (Gupta & 

Kundu, 1999). Copulas are increasingly used to model dependency between random variables in joint 

distributions of proportions (Nelsen, 2006). Particularly in hierarchical models, the application of Bayesian 

inference has risen dramatically (Gelman et al., 2013).  

 

Unit interval distributions are widely used in finance and economics to characterise probabilities, rates, and 

limited outcomes (Romano, 2002). Their integration into machine learning frameworks has enabled more 

sophisticated models and inference techniques (Kucukelbir et al., 2017). Specialised models that handle excess 

zeros or ones have a better fit for such data (Ospina & Ferrari, 2010). Improved algorithms and computational 

tools have made it easier to use unit interval distributions in complex and high-dimensional scenarios (Stan 

Development Team, 2022; Carpenter et al., 2017). In recent studies, Osatohanmwen et al. (2020) introduced a 

new class of generalised unit interval distributions with emphasis on the T-Kumaraswamy family of 

distributions; Demick and Liu (2022) explored copula modelling to analyse financial data; and Congdon 

(2019) developed unit interval-based Bayesian hierarchical models with applications in R.  

 

The study of unit interval distributions has expanded from the fundamental Beta distribution to encompass a 

wide variety of adaptive, flexible, and computationally tractable models. Numerous fields, including machine 

learning, environmental statistics, finance, and economics, can benefit from these advancements. Their 

motivation stems from the need for accurate modelling of intricate data structures. To advance our 

understanding and proficiency in modelling data in the unit interval, this research is also being conducted.  We 

introduce a novel unit interval distribution in this study, named the Hybrid-Epanechnikov Transformed 

Kumaraswamy Distribution (HTKD), analyse its statistical properties, and apply it to COVID-19 mortality rate 

data from the UK and Canada and COVID-19 survival rate data from Spain. Combining the popular 

Kumaraswamy distribution with the hybrid-Epanechnikov kernel (Afere, 2021; 2024) gives an opportunity to 

create the HTKD distribution. As developed in Section 2, this distribution leverages the benefits of both 

components to offer improved approximation, computational effectiveness, and adaptability to diverse unit 

interval data structures.  

 

This work’s subsequent sections are structured as follows: We examine some statistical characteristics of the 

HTKD distribution in Section 3, laying the groundwork for additional investigation. The technique for figuring 

out the parameters of the HTKD distribution is covered in full in Section 4, which dives into the maximum 

likelihood estimate approach. The HTKD distribution is then applied to real-world data, such as the COVID-

19 survival rate data from Spain and the COVID-19 mortality rate data from the UK and Canada, in Section 5. 

Section 6's discussion of the results of these applications offers insights and interpretations of the findings. The 

final conclusion is given in Section 7. 

 

Formulation of the New Distribution 

The distribution function (CDF) and the density function (PDF) of the K umaraswamy distribution are 

given as: 

 

 

and 

𝐹𝑌(𝑦; 𝑎, 𝑏) = 1 − (1 − 𝑦𝑎)𝑏,    𝑦 ∈ [0,1]. (1) 

 

𝑓
𝑌

(𝑦; 𝑎, 𝑏) = 𝑎𝑏 ⋅ 𝑦𝑎−1 ⋅ (1 − 𝑦𝑎)𝑏−1,    𝑦 ∈ [0,1],   (2) 

where a > 0 and b > 0 are the shape parameters. The PDF of the hybrid Epanechnikov    kernel (Afere, 

2021) is given as: 

                                              𝑓
𝑋

(𝑥) =
1

8
(5 − 3𝑥2),    𝑥 ∈ [−1,1].                             (3) 

The CDF of (3) is achieved by evaluating the antiderivative of (3) from -1 to a  r a n d o m  v a r i a b l e  

u. Hence, we have: 

                                          𝐹𝑈(𝑢) =
1

8
(5𝑢 − 𝑢3 + 4),    𝑢 ∈ [−1,1]                                                                      (4) 

Equation (4) can be substituted into Equation (1) to obtain the CDF of the newly developed two-parameter HTKD  

distribution as follows 

:                            𝐹𝑌(𝑢; 𝑎, 𝑏) = 1 − (1 − (
1

8
(5𝑢 − 𝑢3 + 4))

𝑎

)
𝑏

, 𝑢 ∈ [0,1]. (5) 
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 Consequently, after replacing Equation (4) with Equation (2), the new HTKD distribution’s PDF takes on the 

following form:  

 𝑓
𝑌

(𝑢; 𝑎, 𝑏) = 𝑎𝑏 ⋅ (
1

8
(5𝑢 − 𝑢3 + 4))

𝑎−1

⋅ (1 − (
1

8
(5𝑢 − 𝑢3 + 4))

𝑎

)
𝑏−1

, 𝑢 ∈ [0,1], (6) 

 where 𝑎 > 0 and 𝑏 > 0 are the shape parameters 

Statistical Properties 

We will discuss the statistical characteristics of the HTKD distribution in this section. Moments, entropy, mode, 

quantiles, survival function, hazard function, cumulative hazard function, reversed hazard function, and other 

attributes will all be covered.  

 

Survival Function 

In survival analysis and reliability theory, the survival function, often represented as 𝑆(𝑡), is an essential notion. It 

provides the likelihood that a subject or system will endure after a specific amount of time (t). The survival function 

can be expressed mathematically as the complement of the time-to-event variable 𝑇’s cumulative distribution 

function: 

 

 𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡), (7) 

 

where 𝐹(𝑡) is the cumulative distribution function of 𝑇, which represents the probability that the event has occurred 

at time 𝑡. 𝑇 is the random variable that represents the time of the event of interest. Accordingly, the survival function 

of the HTKD distribution is given by:   

 𝑆(𝑡; 𝑎, 𝑏) = (1 − (
1

8
(5𝑡 − 𝑡3 + 4))

𝑎

)
𝑏

. (8) 

 

 
Figure 2: Survival function of HTKD distribute 

 

Hazard Function 

The failure rate, or force of mortality, is another name for the hazard function, which is an essential idea in 

reliability theory and survival analysis. It measures the immediate failure rate at a specific time t, assuming 

survival through that point. The hazard function h(t) 

has the following mathematical definition:  

 ℎ(𝑡) = lim
Δ𝑡→0

𝑃(𝑡≤𝑇<𝑡+Δ𝑡|𝑇≥𝑡)

Δ𝑡
. (9) 

 As an alternative, Equation (9) can be stated as follows in terms of the survival function 𝑆(𝑡) and the probability 

density function 𝑓(𝑡):  

 ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
. (10) 

             

Figure 1: Plots of the PDFs (left) and CDFs (right) of HTKD distribution 
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Where 𝑓(𝑡) is the probability density function of 𝑇, which describes the likelihood of the event occurring at an exact 

time 𝑡, 𝑆(𝑡) is the survival function, which represents the probability that the subject or system survives beyond time 

𝑡, and 𝑇 is as defined in Equation (8). The hazard function ℎ(𝑡) for the HTKD distribution is given as follows:  

 

ℎ(𝑡) =

𝑎𝑏 (
1
8

(5𝑡 − 𝑡3 + 4))

𝑎−1

(1 − (
1
8

(5𝑡 − 𝑡3 + 4))

𝑎

)

𝑏−1

(1 − (
1
8

(5𝑡 − 𝑡3 + 4))

𝑎

)

𝑏  

                                                 = 𝑎𝑏 (
1

8
(5𝑡 − 𝑡3 + 4))

𝑎−1

(1 − (
1

8
(5𝑡 − 𝑡3 + 4))

𝑎

)
−1

 (11) 

 

 
Figure 3: Hazard function of HTKD distribution 

 

Reversed Hazard Function 

Reliability theory and survival analysis both make use of the reverse hazard function, sometimes referred to as 

the reversed hazard rate. If the event hasn’t happened in the present, it gives the instantaneous rate of 

occurrence of an event in the past. In essence, it measures the probability that, in the absence of an event, it 

would have happened shortly before a certain period.   

The reverse hazard function  h̃(t)  has  the  following  mathematical definition:  

 ℎ̃(𝑡) = lim
Δ𝑡→0

𝑃(𝑡−Δ𝑡≤𝑇<𝑡|𝑇≥𝑡)

Δ𝑡
. (12) 

 As an alternative, the probability density function 𝑓(𝑡) and the cumulative distribution function 𝐹(𝑡) can be used to 

represent Equation (12) as follows:  

 ℎ̃(𝑡) =
𝑓(𝑡)

1−𝐹(𝑡)
. (13) 

where 𝑇 is defined by Equation (7). 𝐹(𝑡) is the cumulative distribution function of 𝑇, providing the probability that t 

he event has occurred by time 𝑡. 𝑓(𝑡) is the probability density function of 𝑇, describing the likelihood of the event 

occurring at an exact time 𝑡. The HTKD distribution’s ℎ̃(𝑡) can be determined as follows:  

ℎ̃(𝑡) =
𝑎𝑏(

1

8
(5𝑡−𝑡3+4))

𝑎−1
(1−(

1

8
(5𝑡−𝑡3+4))

𝑎
)

𝑏−1

1−(1−(
1

8
(5𝑡−𝑡3+4))

𝑎
)

𝑏 . (14) 

.  

 
Figure 4. Reversed hazard function of HTKD distribution 

 

Cumulative Hazard Function 

A fundamental idea in reliability theory and survival analysis is the cumulative hazard function. It shows the overall 

amount of risk that has built up at that point 𝑡. This feature is helpful in determining the likelihood that an event (like 

failure or death) will occur over time. The integral of the hazard function ℎ(𝑡) from time 0 to time 𝑡 is the 

mathematical definition of the cumulative hazard function 𝐻(𝑡):  
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 𝐻(𝑡) = ∫
𝑡

0
ℎ(𝑢) 𝑑𝑢. (15) 

 

The hazard function, denoted as ℎ(𝑡) in Equation (15), provides the instantaneous rate of occurrence of the event at 

time 𝑡, provided that it has not happened before time 𝑡. As an alternative, the survival function S(t) can be used to 

express the cumulative hazard function as follows:  

 

 𝐻(𝑡) = −ln𝑆(𝑡). (16) 

 

 The cumulative hazard function for the HTKD distribution function is provided by:  

𝐻(𝑡) = ∫
𝑡

0

𝑎𝑏 (
1
8

(5𝑢 − 𝑢3 + 4))
𝑎−1

(1 − (
1
8

(5𝑢 − 𝑢3 + 4))
𝑎

)
𝑏−1

1 − (1 − (
1
8

(5𝑢 − 𝑢3 + 4))
𝑎

)
𝑏 𝑑𝑢 

                                           = −ln [1 − (1 − (
1

8
(5𝑡 − 𝑡3 + 4))

𝑎

)
𝑏

] (17) 

 

 
Figure 5: Cumulative hazard function of HTKD distribution 

 

Quantile Function 

The following is the derivation of the quantile function 𝑢𝑞 of the HTKD distribution: Let U be a random variable and 

let 𝐹𝑈(𝑢) be its CDF. 𝑄(𝑞), the 𝑞-th quantile, is defined as follows:  

 𝑄(𝑞) = inf{𝑢 ∈ ℝ: 𝐹𝑈(𝑢) ≥ 𝑞}. (18) 

For the HTKD distribution, we set 𝐹𝑌(𝑢) = 𝑞 and solve for 𝑢 in terms of 𝑞 to obtain the quantile function 𝑄(𝑞). 

Therefore,  

 𝑞 = 1 − (1 − [
1

8
(5𝑢 − 𝑢3 + 4)]

𝑎

)
𝑏

, (19) 

But 𝐹𝑈(𝑢) =
1

8
(5𝑢 − 𝑢3 + 4). Hence, the CDF 𝐹𝑌(𝑢) becomes:  

 𝑞 = 1 − (1 − [𝐹𝑈(𝑢)]𝑎)𝑏 . (20) 

 On solving for 𝐹𝑈(𝑢), we have:  

 𝐹𝑈(𝑢) = (1 − (1 − 𝑞)1/𝑏)
1/𝑎

. (21) 

 This implies that:  

 
1

8
(5𝑢 − 𝑢3 + 4) = (1 − (1 − 𝑞)1/𝑏)

1/𝑎
. 

Solving for 𝑢, we have:  

 𝑢3 − 5𝑢 + (4 − 8(1 − (1 − 𝑞)1/𝑏)
1/𝑎

) = 0. (22) 

 Thus, using Cardano’s formula (Cardano, 1993), which provides solutions for the roots of a cubic equation , 

Equation (22) becomes 

𝑢𝑞 = inf ||√−
4−8(1−(1−𝑞)1/𝑏)

1/𝑎

2
+ √(

4−8(1−(1−𝑞)1/𝑏)
1/𝑎

2
)

2

− (
5

3
)

3
3

    + √−
4−8(1−(1−𝑞)1/𝑏)

1/𝑎

2
− √(

4−8(1−(1−𝑞)1/𝑏)
1/𝑎

2
)

2

− (
5

3
)

3
3

|| .

 (23) 
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Quantile Approach for Skewness and Kurtosis for HTKD Distribution 

Alternative measurements of a distribution’s form based on quantiles (percentiles) as opposed to moments are offered 

by the quantile approach to skewness and kurtosis computation. When the distribution is given in closed form or 

within a straightforward analytical framework, this method is especially helpful. However, programs such as R can 

handle the distribution if it is not in a closed form. A quantile-based method for skewness was presented by Kenney 

and Keeping (1962), and a similar approach for kurtosis was offered by Moore (1988). 

For the HTKD distribution, we can use the quantile function in Equation (23) to get Moor’s kurtosis and Bowley’s 

skewness (Bowley, 1920) using the following formula: 

 Bowley′sSkewness =
𝑄1

4
+𝑄3

4

−2×𝑄1
2

𝑄3
4

−𝑄1
4

. (24) 

: and  

 Moor′sKurtosis =
(𝑄7

8
−𝑄5

8

)+(𝑄3
4

−𝑄1
4

)

𝑄3
4

−𝑄1
4

. (25) 

 where, 𝑄1

8

, 𝑄1

4

, 𝑄3

8

, 𝑄5

8

, 𝑄3

4

, 𝑄7

8

 are specific quantiles at 12.5%, 25%, 37.5%, 62.5%, 75%, and 87.5% respectively. 

The first quartile 𝑄1

4

 and the third quartile 𝑄3

4

 in a symmetric distribution are equally spaced from the median 𝑄1

2

, 

leading to skewness that is almost zero. A longer right tail is indicated by positive skewness when 𝑄3

4

 is farther from 

𝑄1

2

; a longer left tail is indicated by negative skewness when 𝑄1

4

 is farther from 𝑄1

2

. On the other hand, kurtosis 

quantifies how heavy or light the tails are in relation to a normal distribution. Negative kurtosis (platykurtic) indicates 

lighter tails and fewer extreme values, whereas positive kurtosis (leptokurtic) indicates heavier tails and more 

extreme values. 

 

Table 1: Descriptive statistics for HTKD distribution 

A B Median LQ UQ Bowley’s 

Skewness 

Moor’s Kurtosis IQR 

4 4.5 0.1847 6.6107e-05 0.3572 -0.0341 0.8350 0.3572 

5 3.0 0.3776 1.9307e-01 0.5436 -0.0528 1.2150 0.3506 

6 2.0 0.5344 3.5336e-01 0.6916 -0.0705 1.2067 0.3382 

7 1.5 0.6408 4.6726e-01 0.7854 -0.0908 1.1967 0.3182 

4 2.5 0.3295 1.1903e-01 0.5206 -0.0484 1.1167 0.4016 

2 1.5 0.1744 6.6107e-05 0.4624 0.2460 0.7625 0.4623 

 

  
Figure 6: 3D Plots of Bowley's Skewness (Left), Moor’s Kurtosis (Right) of HTKD 

distribution 

 

Table 1 and Figure 6 provide a thorough grasp of the properties of the HTKD distribution for different combinations 

of parameters. Several important insights about the behaviour of the distribution and its sensitivity to variations in 

parameters a and b are revealed by evaluating these data.  

 

First off, there is a general symmetry or mild left skewness in the distributions. The Bowley's skewness values, 

which are either slightly negative or hang around zero for the majority of parameter combinations, demonstrate this. 

The parameter pair (2, 1.5) stands out as an example, exhibiting a positive skewness that suggests a little right skew.  

 

Second, larger median and quartile values are the result of greater values of a and lower values of b. In Table 1, the 

median, upper quartile (UQ), and lower quartile (LQ) numbers all clearly show this pattern. An increase in a 

indicates a higher concentration of data around the median since it causes the distribution's central tendency to shift 

upward and the gap between the quartiles to widen.  
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Thirdly, for all parameter combinations, the distributions show prominent tails, a feature called leptokurtosis. 

According to Moor, the distributions have larger tails than a normal distribution because their kurtosis values are 

constantly greater than 0. Significantly, smaller b values are associated with higher kurtosis values, indicating that 

lower b may be a contributing factor to more severe values in the tails.  

 

Lastly, when increases, the interquartile range (IQR), which represents the spread of the centre 50% of the data, 

tends to get smaller. With increasing value, this suggests that the data become more concentrated around the median, 

indicating a decrease in variability within the central section of the distribution. 

 

These observations are helpful in comprehending how the HTKD distribution behaves and how sensitive it is to 

variations in parameters a and b. Through a thorough examination of the descriptive statistics and graphical displays, 

the subtle impacts of these parameters on the form, central tendency, and variability of the distribution can be 

identified. 

 

Mode 

To find the mode of the PDF of the HTKD distribution, we need to determine the value of 𝑢 that maximizes 𝑓
𝑌

(𝑢). 

Thus, differentiating 𝑓
𝑌

(𝑢) and solving for 𝑢, we obtain the expression:  

 (
𝑎−1

𝑎
) (1 − (

1

8
(5𝑢 − 𝑢3 + 4))

𝑎

) = (
1

8
(5𝑢 − 𝑢3 + 4))

𝑎−1

. (26) 

 Due to the complexity of (26), numerical solutions are typically needed. Various root-finding techniques, such as 

Newton-Raphson, are employed to determine the value of 𝑢 that maximizes 𝑓
𝑌

(𝑢). R can be used to accomplish these 

techniques. The value of 𝑢 that fulfills Equation (26) is the mode of the HTKD distribution. 

 

Series Expansion of the PDF and CDF of HTKD Distribution 

The compact version of the density function of the HTKD distribution can be expressed by power series expansion, 

as detailed as follows:  

𝑓
𝑌

(𝑢) = 𝑎𝑏 (
1

8
(5𝑢 − 𝑢3 + 4))

𝑎−1

(1 − (
1

8
(5𝑢 − 𝑢3 + 4))

𝑎

)
𝑏−1

 

                                 = 𝑎𝑏
1

2𝑎𝑖1+𝑎−1
∑∞

𝑖1=0 (−1)𝑖1 (
𝑏 − 1
𝑖1

) (1 + (−
1

4
𝑢3 +

5

4
𝑢))

𝑎𝑖1+𝑎−1

 (27) 

Let 𝑚 = 𝑎𝑖1 + 𝑎 − 1, then we have:  

𝑓
𝑌

(𝑢) = 𝑎𝑏 ∑

∞

𝑖1=0

∑

∞

𝑗1=0

∑

∞

𝑘=0

(−1)𝑖1+𝑗1−𝑘 (
𝑏 − 1

𝑖1
) (

𝑚

𝑗
1
) (

𝑗
1

𝑘
)

5𝑘

2𝑚+2𝑗1
𝑢3𝑗1−2𝑘 

 

                                            =  ∑∞
𝑖1=0 𝐶𝑖1,𝑗1,𝑘𝑢3𝑗1−2𝑘                                                                                                                                                 (28)      

where 𝐶𝑖1,𝑗1,𝑘 = 𝑎𝑏 ∑∞
𝑗1=0 ∑∞

𝑘=0 (−1)𝑖1+𝑗1−𝑘 (
𝑏 − 1

𝑖1
) (

𝑚

𝑗
1
) (

𝑗
1

𝑘
)

5𝑘

2𝑚+2𝑗1
. Similarly, the power series expansion can be 

used to lower the distribution function of the HTKD distribution as follows: 

𝐹𝑌(𝑢) = 1 − ∑

∞

𝑖2=0

∑

∞

𝑗2=0

(−1)𝑖2+𝑎𝑖2−𝑗2 (
𝑏

𝑖2
) (

𝑎𝑖2

𝑗
2

)
5𝑗2

23𝑎𝑖2
𝑢3𝑎𝑖2−2𝑗2  

                                                              = 1 − ∑𝑏
𝑖2=0 𝐷𝑖2,𝑗2

𝑢3𝑎𝑖2−2𝑗2 (29) 

 where, 𝐷𝑖2,𝑗2
= ∑∞

𝑗2=0 (−1)𝑖2+𝑎𝑖2−𝑗2 (
𝑏

𝑖2
) (

𝑎𝑖2

𝑗
2

)
5𝑗2

23𝑎𝑖2
. 

 

Moments and Moments Generating Function 

A probability distribution’s moments are numerical measurements that characterise the distribution’s form, 

centre, spread, and other features. Particular distributional information is given each time. The expected value of a 

random variable 𝑈’s 𝑛-th power is its 𝑛-th moment. The 𝑛-th moment has the following mathematical definition: 

 E(𝑈𝑛) = ∫
∞

−∞
𝑢𝑛 ⋅ 𝑓𝑌(𝑢) 𝑑𝑢. (30) 

where 𝑛 is a non-negative integer, and 𝑓
𝑌

(𝑢) is the PDF of the HTKD distribution. Equation (28) can be substituted 

into Equation (30) to yield the following:  

𝐸(𝑢𝑛) = ∫
1

0

𝑢𝑛 ∑

∞

𝑖1=0

𝐶𝑖1,𝑗1,𝑘𝑢3𝑗1−2𝑘 
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                 = ∑

∞

𝑖1=0

𝐶𝑖1,𝑗1,𝑘 ∫
1

0

𝑢𝑛𝑢3𝑗1−2𝑘𝑑𝑢 

                 = ∑

∞

𝑖1=0

𝐶𝑖1,𝑗1,𝑘 ∫
1

0

𝑢𝑛+3𝑗1−2𝑘𝑑𝑢 

=
∑∞

𝑖1=0 𝐶𝑖1,𝑗1,𝑘

𝑛 + 3𝑗1 − 2𝑘 + 1
 

As a result, the HTKD distribution’s 𝑛-th moments are provided by:  

 𝐸(𝑢𝑛) =
∑∞

𝑖1=0 𝐶𝑖1,𝑗1,𝑘

𝑛+3𝑗1−2𝑘+1
. (31) 

 Equally, the MGF 𝑚(𝑡) is defined by:  

 𝑚(𝑡) = 𝐸(𝑒𝑡𝑈) = ∑∞
𝑛=0

𝑡𝑛

𝑛!
𝐸(𝑢𝑛). (32) 

Therefore, the MGF of the HTKD distribution can be obtained by substituting Equation (31) into Equation (32) and 

having:  

𝑚(𝑡) = ∑

∞

𝑛=0

𝑡𝑛

𝑛!
(

∑∞
𝑖1=0 𝐶𝑖1,𝑗1,𝑘

𝑛 + 3𝑗1 − 2𝑘 + 1
) 

                                                                             = ∑

∞

𝑛=0

∑

∞

𝑖1=0

𝐶𝑖1,𝑗1,𝑘

𝑡𝑛

𝑛! (𝑛 + 3𝑗1 − 2𝑘 + 1)
                                     (33) 

 

Rényi Entropy 

A term from information theory and statistics called Rényi entropy measures the uncertainty or randomness of a 

probability distribution or random variable. It quantifies the average level of surprise, unpredictability, or information                                                                    

present in a random variable’s results (Rényi, 1961). In the event where 𝑈 is a random variable with a PDF 𝑓
𝑈

(𝑢), 

the following formula provides the Rényi entropy:  

 𝐼𝑦(𝑢) =
1

1−𝜆
log ∫

∞

−∞
(𝑓

𝑌
(𝑢))

𝜆
𝑑𝑢. (34) 

 Substituting Equation (28) into Equation (34), the entropy of the HTKD distribution is given as:  

𝐼𝑦(𝑢) =
1

1 − 𝜆
log ∫

1

0

(∑

∞

𝑖1=0

𝐶𝑖1,𝑗1,𝑘𝑢3𝑗1−2𝑘)

𝜆

𝑑𝑢 

                                                                       =
1

1 − 𝜆
( ∑

∞

𝑖1=0

𝐶𝑖1,𝑗1,𝑘𝑢3𝑗1−2𝑘)

𝜆

log ∫
1

0

𝑢𝜆(3𝑗1−2𝑘)𝑑𝑢                                (35) 

  

 Hence, Equation (35) becomes:  

 𝐼𝑦(𝑢) =
1

1−𝜆
(∑∞

𝑖1=0 𝐶𝑖1,𝑗1,𝑘𝑢3𝑗1−2𝑘)
𝜆

log
1

𝜆(3𝑗1−2𝑘)
 

  

Order Statistics of the PDF 

The formula for the order statistics of a random sample is utilized to get the PDF of the 𝑘-th order statistics 𝑈(𝑘):  

 𝑓
𝑈(𝑘)

(𝑢) =
𝑛!

(𝑘−1)!(𝑛−𝑘)!
(𝐹𝑌(𝑢))𝑘−1(1 − 𝐹𝑌(𝑢))𝑛−𝑘𝑓

𝑌
(𝑢). (36) 

where, 𝐹𝑌(𝑢) and 𝑓
𝑌

(𝑢) are respectively the CDF and PDF of the HTKD distribution. Now, on substituting the series 

form of 𝐹𝑌(𝑢) and 𝑓
𝑌

(𝑢) given in Equations (28) and (29) respectively into Equation (34), we have:  

 𝑓
𝑈(𝑘)

(𝑢) =
𝑛!

(𝑘−1)!(𝑛−𝑘)!
∑∞

𝑟=0 ∑∞
𝑖1=0 ∑∞

𝑖2=0 (−1)𝑟 (
𝑘 − 1

𝑟
) 𝐶𝑖1,𝑗1,𝑘(𝐷𝑖2,𝑗2

)
𝑟+𝑛−𝑘

𝑢𝜏. (37) 

 where, 𝜏 = 2𝑟(𝑎𝑖2 − 𝑗2) + 2(𝑛 − 𝑘)(𝑎𝑖2 − 𝑗2) + 3𝑗1 − 2𝑘, 𝐶𝑖1,𝑗1,𝑘 and 𝐷𝑖2,𝑗2
 are as previously defined. 

 

Maximum Likelihood Estimation of the Parameters 

For an entire random independent sample 𝑢1, 𝑢2, . . . , 𝑢𝑛, the HTKD distribution’s log-likelihood function can be 

found as follows:  

ℓ(𝑎, 𝑏) = ∑𝑛
𝑖=1 [ln𝑏 + ln𝑎 + (𝑎 − 1)ln (

1

8
(5𝑢𝑖 − 𝑢𝑖

3 + 4)) + (𝑏 − 1)ln (1 − (
1

8
(5𝑢𝑖 − 𝑢𝑖

3 + 4))
𝑎

)].  (38) 

 The score vector 𝐒(𝑎, 𝑏) of the parameters 𝑎 and 𝑏 of the log-likelihood function ℓ(𝑎, 𝑏) is given by:  



Hybrid-Epanechnikov Transformed Kumaraswamy Distribution: Applications to COVID-19 Mortality and Survival Analysis 

 
 

57 Cite this article as:   

Afere, B. A. E.  (2024). Hybrid-Epanechnikov Transformed Kumaraswamy Distribution: Applications to COVID-19 Mortality 

and Survival Analysis. FNAS Journal of Applied Biological Sciences. 2(1), 49-63 
 

 𝐒(𝑎, 𝑏) = (

𝜕ℓ(𝑎,𝑏)

𝜕𝑎
𝜕ℓ(𝑎,𝑏)

𝜕𝑏
.
) (39) 

 where:  

 
𝜕ℓ(𝑎,𝑏)

𝜕𝑎
= ∑𝑛

𝑖=1 [
1

𝑎
+ ln (

1

8
(5𝑢𝑖 − 𝑢𝑖

3 + 4)) − (𝑏 − 1) ⋅
(

1

8
(5𝑢𝑖−𝑢𝑖

3+4))
𝑎

ln(
1

8
(5𝑢𝑖−𝑢𝑖

3+4))

1−(
1

8
(5𝑢𝑖−𝑢𝑖

3+4))
𝑎 ], (40) 

 

 
𝜕ℓ(𝑎,𝑏)

𝜕𝑏
= ∑𝑛

𝑖=1 [
1

𝑏
+ ln (1 − (

1

8
(5𝑢𝑖 − 𝑢𝑖

3 + 4))
𝑎

)]. (41) 

Setting the components of 𝐒(𝑎, 𝑏) to zero results in a system of linear equations. These equations can be solved 

numerically to find the maximum likelihood estimates �̂� and �̂�.  Methods like Newton-Raphson or other iterative 

algorithms can be employed for this purpose, using software such as R.      

 

The Fisher Information Matrix (FIM) 𝐈(𝑎, 𝑏) is computed to evaluate the accuracy of the parameter estimations 

[(Lauritzen, 1996)]. The variance-covariance matrix, which explains the standard errors and correlations between the 

parameter estimations, is obtained by taking the inverse of the FIM. The following are the elements of the Fisher 

Information Matrix 𝐈(𝑎, 𝑏):  

 𝐈(𝑎, 𝑏) = (
−𝜃11 −𝜃12

−𝜃21 −𝜃22
) (42) 

 where,  

 𝜃11 = ∑𝑛
𝑖=1 (−

1

𝑎2
−

(𝑏−1)(
1

8
(5𝑢𝑖−𝑢𝑖

3+4))
𝑎

(ln(
1

8
(5𝑢𝑖−𝑢𝑖

3+4)))
2

(1−(
1

8
(5𝑢𝑖−𝑢𝑖

3+4))
𝑎

)
2 ), (43) 

  

 𝜃12 = 𝜃21 = ∑𝑛
𝑖=1 (−

(
1

8
(5𝑢𝑖−𝑢𝑖

3+4))
𝑎

ln(
1

8
(5𝑢𝑖−𝑢𝑖

3+4))

1−(
1

8
(5𝑢𝑖−𝑢𝑖

3+4))
𝑎 ), (44) 

  

 𝜃22 = ∑𝑛
𝑖=1 (−

1

𝑏2). (45) 

 The inverse of the Fisher Information Matrix provides the variance-covariance matrix:  

 𝐈−1(�̂�, �̂�) = (
Var(�̂�) Cov(�̂�, �̂�)

Cov(�̂�, �̂�) Var(�̂�)
). (46) 

 We generate a random variable 𝑈 from a Beta distribution with 𝑛 = 50, specifically Beta(2,2), and compute the 

Fisher Information Matrix (FIM) and its inverse in order to evaluate the accuracy of HTKD parameter estimates:  

 𝐈 = (
50.00000 −44.00334
−44.00334 50.00000

) 

and  

 𝐈−1 = (
0.08869873 0.07806081

0.07806081 0.08869873
) 

 

The Fisher Information Matrix (𝐈) offers valuable insights on the correlation and degree of uncertainty associated 

with the parameter underestimation. In the case of that specific parameter, a bigger diagonal value (50.00000) denotes 

reduced uncertainty and higher precision in the estimation process. The estimations of the two parameters appear to 

have an inverse connection, as indicated by the negative off-diagonal value (−44.00334).  Conversely, the 

covariance matrix of the parameter estimates, which shows the correlations and uncertainties following estimation, is 

given by 𝐈−1. The variance of the parameter estimations is represented by the diagonal elements (0.08869873), where 

smaller numbers denote greater precision. A positive correlation between the estimations of the parameters of the 

HTKD distribution is indicated by the positive off-diagonal elements (0.07806081). 

 

Monte Carlo Experiments 

In order to evaluate the efficiency and efficacy of the maximum likelihood estimators of the parameters of the HTKD 

distribution, we run Monte Carlo experiments in this section. These tests are carried out using various parameter 

mixes and sample sizes. The experiments are repeated for 𝑟 = 10000 runs, with mixtures of parameters 𝑎 = 5, 𝑏 =
2, 𝑎 = 2, 𝑏 = 1.5, 𝑎 = 4, 𝑏 = 4.5, and 𝑎 = 4, 𝑏 = 2.5, and sample sizes 𝑛 = 25, 𝑛 = 60, 𝑛 = 200, 𝑛 = 500, and 

𝑛 = 3000. 

 

If ℓ̂ represents the maximum likelihood estimate of ℓ, then the following evaluation metrics are used to compare the 

efficiency and performance of the parameters of the HTKD distribution: 

    1.  The maximum likelihood estimator's mean estimates (ME) are provided by:  
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 𝑀𝐸 =
1

𝑁
∑𝑁

𝑖=1 ℓ̂𝑖 

 

    2.  The maximum likelihood estimator's average bias (AVB) is provided by:  

 𝐴𝑉𝐵 =
1

𝑁
∑𝑁

𝑖=1 (ℓ̂𝑖 − ℓ𝑖) 

    3.  The maximum likelihood estimator's root mean squared error (RMSE) is given by:  

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑𝑁

𝑖=1 (ℓ̂𝑖 − ℓ𝑖)
2 

    4.  Average width (AW) of the parameter ℓ 's 95% confidence intervals. 

    5.  The 95% confidence intervals of the parameters' ℓ coverage probability (CP).  

The Monte Carlo experiment results for four parameter combinations 𝑎 = 5, 𝑏 = 2, 𝑎 = 2, 𝑏 = 1.5, 𝑎 = 4, 𝑏 = 4.5, 

and 𝑎 = 4, 𝑏 = 2.5 are shown in Tables 2, 3, 4, and 5 respectively.  

 

Table 2:  Monte Carlo experiment for parameter a = 5, b = 2 for different values of n 

Parameter Sample 

Size 

ME AVB RMSE AW CP 

a 25 5.3893 4.9408 4.9487 4.6149 0.9443 

 60 5.1765 4.7289 4.7366 2.8876 0.9543 

 200 5.0640 4.6145 4.6222 1.5588 0.9614 

 500 5.0196 4.5724 4.5802 0.9781 0.9443 

 3000 5.0013 4.5542 4.5619 0.3981 0.9486 

b 25 2.2956 1.8470 1.8708 2.8306 0.9514 

 60 2.1265 1.6789 1.7016 1.6415 0.9571 

 200 2.0221 1.5725 1.5953 0.8415 0.9600 

 500 2.0141 1.5669 1.5896 0.5295 0.9657 

 3000 2.0009 1.5537 1.5765 0.2142 0.9529 

 

 

Table 3:   Monte Carlo experiment for parameter a = 2, b = 1.5 for different values of n 

Parameter Sample 

Size 

ME AVB RMSE AW CP 

a 25 2.1881 2.0344 2.0757 1.9772 0.9500 

 60 2.0653 1.9086 1.9516 1.2262 0.9557 

 200 2.0278 1.8739 1.9165 0.6617 0.9529 

 500 2.0102 1.8541 1.8972 0.4165 0.9386 

 3000 2.0002 1.8447 1.8879 0.1693 0.9486 

b 25 1.7441 1.5904 1.6465 2.0210 0.9757 

 60 1.5737 1.4169 1.4759 1.1409 0.9571 

 200 1.5383 1.3845 1.4420 0.6055 0.9486 

 500 1.5102 1.3540 1.4127 0.3743 0.9357 

 3000 1.5007 1.3452 1.4039 0.1515 0.9386 

 

Table 4:   Monte Carlo experiment for parameter a = 4, b = 4.5 for different values of n 

Parameter Sample 

Size 

ME AVB RMSE AW CP 

a 25 4.2950 4.1264 4.1348 3.2151 0.9443 

 60 4.1427 3.9718 3.9803 2.0233 0.9514 

 200 4.0221 3.8512 3.8601 1.0820 0.9514 

 500 4.0103 3.8402 3.8491 0.6828 0.9586 

 3000 3.9997 3.8291 3.8379 0.2783 0.9429 

b 25 5.6601 5.4915 5.4991 8.6174 0.9629 

 60 4.9398 4.7688 4.7764 4.6230 0.9714 

 200 4.5679 4.3970 4.4049 2.2792 0.9500 

 500 4.5410 4.3709 4.3787 1.4297 0.9571 

 3000 4.4968 4.3262 4.3340 0.5762 0.9600 
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Table 5:  Monte Carlo experiment for parameter a = 4, b = 2.5 for different values of n 

Parameter Sample 

Size 

ME AVB RMSE AW CP 

a 25 4.2821 3.9738 3.9850 3.5139 0.9429 

 60 4.1584 3.8490 3.8597 2.2199 0.9571 

 200 4.0353 3.7265 3.7376 1.1888 0.9614 

 500 4.0127 3.7037 3.7149 0.7491 0.9529 

 3000 4.0018 3.6927 3.7039 0.3052 0.9400 

b 25 2.9228 2.6145 2.6336 3.8082 0.9600 

 60 2.7016 2.3922 2.4103 2.1976 0.9671 

 200 2.5478 2.2389 2.2576 1.1142 0.9500 

 500 2.5182 2.2093 2.2279 0.6942 0.9529 

 3000 2.5034 2.1943 2.2130 0.2812 0.9386 

 

For the HTKD distribution, which is defined by parameters a and b, the Monte Carlo experiments shown 

in Tables 2, 3, 4, and 5 investigate the performance of parameter estimation under various settings. Each 

table corresponds to particular combinations of these parameters and describes how different sample sizes 

affect estimation accuracy, bias, and interval precision.   

 

For example, the mean estimate (ME) progressively converges to the real value of 5 as the sample size n 

grows in Table 2, where a = 5 and b = 2. This convergence points to a fair approximation. Smaller 

numbers indicate less bias and better accuracy. The average absolute bias (AVB) and root mean squared 

error (RMSE) quantify the divergence between estimated and true values. The accuracy of the estimate is 

gauged by the average width of the 95% confidence interval (AW); smaller intervals correspond to more 

accurate estimations. Coverage Probability (CP) evaluates how effectively these intervals capture the 

genuine parameter values; for 95% confidence intervals, it should ideally be around 0.95.  

 

Table 3 examines parameters a = 2 and b = 1.5, showing a similar trend of unbiased estimation and 

increased precision with increasing sample numbers. The interpretation of AVB, RMSE, AW, and CP is 

consistent with Table 2, demonstrating the performance of the estimate approach at various parameter 

values.  

 

The ME values in Table 4, where a = 4 and b = 4.5, indicate the degree to which estimations resemble the 

genuine values of 4 and 4.5, respectively. Important insights into bias reduction, accuracy enhancement, 

and interval dependability are provided here, as in the other tables, by AVB, RMSE, AW, and CP. Table 

5 similarly concentrates on a = 4 and b = 2.5, showing how ME values improve with larger sample 

numbers, signifying more precise estimation. Metrics like AVB, RMSE, AW, and CP provide further 

insight into how well the estimate process performs in various experimental setups. Together, these tables 

essentially highlight how sample size affects estimate quality. As seen by lower AVB and RMSE, 

narrower AWs, and higher CPs, larger sample sizes of ten result in more accurate and less biased 

parameter estimations. This thorough analysis highlights the value of the Monte Carlo simulation 

technique in statistical modelling and inference by demonstrating how reliable it is in evaluating the 

HTKD distribution parameters. 

 

Applications 

Here, we show that the HTKD distribution is applicable by utilising COVID-19 mortality rate data from the UK and 

Canada in Tables 6 and 8, respectively, and COVID-19 survival rate data from Spain in Table 10. The datasets are 

secondary data from Obulezi et al. (2023). We assess how well the novel HTKD distribution performs in 

comparison to some of the existing two-parameter distributions (Kumaraswamy, Beta, Weibull, and BurrXII). 

 

Table 6: First Data Set: UK's COVID-19 Mortality Rate 

0.1292 0.3805 0.4049 0.2564 0.3091 0.2413 0.1390 0.1127 0.3547 0.3126 

0.2991 0.2428 0.2942 0.0807 0.1285 0.2775 0.3311 0.2825 0.2559 0.2756 

0.1652 0.1072 0.3383 0.3575 0.2708 0.2649 0.0961 0.1565 0.1580 0.1981 

0.4154 0.3990 0.2483 0.1762 0.1760 0.1543 0.3238 0.3771 0.4132 0.4602 

0.3520 0.1882 0.1742 0.4033 0.4999 0.3930 0.3963 0.3960 0.2029 0.1791 

0.4768 0.5331 0.3739 0.4015 0.3828 0.1718 0.1657 0.4542 0.4772 0.3402 
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Table 7:  Model Comparison of Different Distributions for UK’s COVID-19 Mortality Rate 

Dataset 

Distribution Parameter 1 Parameter 2 AIC BIC 

HTKD a : 10.99207 b : 44.45731 -146.04328 -141.85459 

Beta Shape1 : 4.05028 Shape2 : 10.01369 -86.79892 -82.61023 

Kumaraswamy Shape1 : 2.68061 Shape2 : 19.58734 -87.72880 -83.54011 

BurrXII a : 2.82378 b : 24.49530 -86.80269 -82.61400 

Weibull Shape: 2.76070 Scale: 0.32540 -87.22986 -83.04117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8.  Second Data Set: Canada’s COVID-19 Mortality Rate 

0.1622 0.1159 0.1897 0.1260 0.3025 0.2190 0.2075 0.2241 0.2163 0.1262 

0.1627 0.2591 0.1989 0.3053 0.2170 0.2241 0.2174 0.2541 0.1997 0.3333 

0.2594 0.2230 0.2290 0.1536 0.2024 0.2931 0.2739 0.2607 0.2736 0.2323 

0.1563 0.2677 0.2181 0.3019 0.2136 0.2281 0.2346 0.1888 0.2729 0.2162 

0.2746 0.2936 0.3259 0.2242 0.1810 0.2679 0.2296 0.2992 0.2464 0.2576 

0.2338 0.1499 0.2075 0.1834 0.3347 0.2362     

 

Table 9: Model Comparison of Different Distributions for Canada’s COVID-19 Mortality 

Rate Dataset 

Distribution Parameter 1 Parameter 2 AIC BIC 

HTKD a : 22.42300 b : 12315.14098 -222.0884 -218.0377 

Beta Shape1 : 14.50032 Shape2 : 48.44678 -167.8800 -163.8293 

Kumaraswamy Shape1 : 5.03087 Shape2 : 1049.62460 -169.2000 -165.1493 

BurrXII a : 5.03599 b : 1058.64400 -169.2027 -165.1520 

Weibull Shape: 5.03354 Scale: 0.25087 -169.2014 -165.1507 

 

 
Figure 8: Plots of the histogram and fitted PDFs (left), empirical and fitted CDFs (right) of HTKD 

distribution for Canada’s COVID-19 mortality rate dataset 

                  

Figure 7: Plots of the histogram and fitted PDFs (left), empirical and fitted 

CDFs (right) of HTKD distribution for the UK's COVID-19 mortality rate 

dataset 
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Table 10: Third Data Set: Spain’s COVID-19 Survival Rate 

0.6670 0.5000 0.5000 0.4286 0.7500 0.6531 0.5161 0.7895 0.7689 0.6873 

0.5200 0.7251 0.6375 0.6078 0.6289 0.5712 0.5923 0.6061 0.5924 0.5921 

0.5592 0.5954 0.6164 0.6455 0.6725 0.6838 0.6850 0.6947 0.7210 0.7315 

0.7412 0.7508 0.7519 0.7547 0.7645 0.7715 0.7759 0.7807 0.7838 0.7847 

0.7871 0.7902 0.7934 0.7913 0.7962 0.7971 0.7977 0.8007 0.8038 0.8289 

0.8322 0.8354 0.8371 0.8387 0.8456 0.8490 0.8535 0.8547 0.8564 0.8580 

0.8604 0.8628 0.6586 0.7070 0.7963 0.8516     

 

 

Table 11: Model comparison of different distributions for Spain’s COVID-19 survival rate dataset 

Distribution Parameter 1 Parameter 2 AIC BIC 

HTKD a : 23.44384 b : 5.88810 -226.9411 -222.5618 

Beta Shape1 : 12.79436 Shape2 : 4.89945 -111.1486 -106.7692 

Kumaraswamy Shape1 : 8.07822 Shape2 : 7.73824 -113.6686 -109.2893 

BurrXII a : 9.05443 b : 11.51520 -109.4720 -105.0927 

Weibull Shape: 8.67669 Scale: 0.76840 -111.1991 -106.8198 

 

 
Discussion  

An extensive examination of several distributions was carried out in order to ascertain which statistical 

distribution would be most suitable for the UK data on the COVID-19 mortality rate. Among all the 

distributed values evaluated, the HTKD distribution has the lowest AIC and BIC values, which suggests that it 

is the most appropriate. With an AIC of -146.04328 and a BIC of -141.85459 (see Table 7), the HTKD 

distribution performs better than the Beta, Kumaraswamy, BurrXII, and Weibull distributions. These 

results imply that the HTKD distribution provides the most accurate model for the UK's COVID-19 

mortality rate dataset.  

 

Graphical representations in Figure 7 further support this conclusion. The HTKD distribution successfully fits 

the dataset, as seen by the fitted PDF, which closely reflects the shape of the histogram, and the fitted CDF, 

which agrees well with the empirical CDF. This close agreement demonstrates the accuracy and dependability 

of the HTKD distribution in simulating the COVID-19 death rate in the UK. 

 

Comparing the HTKD distribution with other distributions using the COVID-19 mortality rate dataset from 

Canada revealed similar results. With the lowest AIC and BIC values of -222.0884 and -218.0377 (see Table 

9), respectively, the HTKD distribution scored better than the other models, including the Beta, 

Kumaraswamy, BurrXII, and Weibull distributions. It may be inferred from this that the HTKD distribution 

fits the data from Canada the best. The better match of the HTKD distribution for Canada’s COVID-19 

mortality rate dataset is further supported by further graphical evidence. The empirical and fitted curves near 

agreement demonstrate the model’s precision and potency in capturing the data.  

 

The HTKD distribution has the lowest AIC (-226.9411) and BIC (-222.5618) values among the distribution 

fits tested for the COVID-19 survival rate dataset for Spain. The flexibility and durability of the HTKD 

distribution are shown by its consistent performance across a variety of datasets, which makes it a dependable 
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option for modelling epidemiological data. The graphical displays of the Spain dataset’s histograms, fitted 

PDFs, empirical data, and fitted CDFs provide more evidence of the HTKD distribution’s efficacy in 

predicting survival rates. The ability of the HTKD distribution to appropriately depict Spain’s survival rates is 

validated by the excellent agreement between the fitted curves and the actual data.  

 

When compared to other studied distributions, including Beta, Kumaraswamy, BurrXII, and Weibull, the 

HTKD distribution consistently offers the greatest match, according to an examination of COVID-19 mortality 

and survival rate statistics for the UK, Canada, and Spain. The lowest AIC and BIC values found for the 

HTKD distribution across all datasets, as well as the tight correspondence between the fitted HTKD curves and 

the real data in graphical representations, confirm this result. The HTKD distribution’s outstanding modelling 

performance for these datasets demonstrates its promise as a reliable and adaptable tool for statistical  analysis 

in epidemiological research. To further confirm the efficacy and generalisability of the HTKD distribution, 

future studies might investigate its application to different epidemiological datasets. 

 

Conclusion 

This work presented and investigated the HTKD distribution, a new flexible unit interval distribution. 

Numerous statistical characteristics of it were examined. The robustness and correctness of the parameter 

estimates were validated by Monte Carlo simulations. The HTKD distribution consistently offered the best fit 

when applied to COVID-19 mortality rates in the UK, Canada, and Spain, as evidenced by the lowest AIC and 

BIC values and close alignment of fitted curves with empirical data, in contrast to the Beta, Kumaraswamy, 

BurrXII, and Weibull distributions. The HTKD distribution's flexibility and strong performance across datasets 

highlighted its potential as a versatile tool for epidemiological analysis. Future research could extend its 

application to diverse epidemiological data and more complex data structures to enhance its utility in public 

health research. 
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