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Abstract  

This research aimed to investigate the potential toxicity of titanium dioxide nanoparticles (TiO2NPS) to a 

freshwater planktonic rotifer, Colurella adriatica. Titanium dioxide (TiO2) nanoparticles (NPS) have gained 

significant attention in various fields owing to their unique physicochemical properties. They constitute 

approximately 70% of the global pigment-manufacturing volume. The TiO2 crystal forms include anatase and 

rutile, with the former being more chemically reactive. According to previous studies, the higher the surface area 

of the nanoparticles, the more toxic they become. Colurella adriatica was selected as the test species and acute 

exposure toxicity testing was conducted in reconstituted water. Acute concentrations of TiO2 NPS were 0.01, 

0.05, 0.10, 0.50, and 1.00 mg/l, with an LC50 of 0.0075 mg/l determined. Results from the acute toxicity test 

revealed a dose-dependent lethal effect of TiO₂ NPs on Colurella adriatica, with mortality reaching 85.67% at 

1.00 mg/L after 96 hours. This suggests that TiO₂ NPs may disrupt freshwater ecosystems, warranting further 

investigation into their environmental impact. This paper recommends that future research should prioritize the 

development of strategies to prevent and/or mitigate the accumulation of TiO2 NPS in freshwater ecosystems 

and their impact on aquatic organisms, among others. 
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Introduction 

Titanium dioxide (TiO2) is a naturally occurring mineral extensively used in a range of industrial and consumer 

goods. Recognized for its white hue, it serves as a pigment in paints, coatings, plastics, and beauty products 

(Ukaeje & Bandyopadhyay, 2024). Additionally, TiO2 has been employed in sunscreens for UV protection and 

in food items for whitening purposes (Lim et al., 2021; Shaltout et al., 2022). The distinctive attributes and 

potential uses of TiO2 nanoparticles have recently garnered increasing interest in diverse sectors (Dedman et al., 

2021). Every year, approximately 3.7 billion kilogrammes of titanium dioxide (TiO2), a white pigment known 

for its high refractive index and brightness, is used worldwide (Ali & Alwan, 2023). It accounts for 70% of the 

global pigment production volume (Bergamaschi et al., 2022) and is among the top five nanoparticles used in 

consumer products (Zhang et al., 2023). TiO2 is also used by people in making paper, inks, medications, 

pharmaceuticals, and toothpaste (Harris et al., 2023; Ramesh et al., 2023; Abbas et al., 2023). Nanoparticles are 

particles that are smaller than 100 nm in size. Nanomaterials occur naturally or are introduced into the 

environment as synthetic materials. According to previous studies, the surface area of nanoparticles can expand, 

making the substance more poisonous (Babazadeh et al., 2021). Because of their superior catalytic activity, TiO2 

nanoparticles (NPS) have become more popular in industrial and consumer applications in recent years. The 

enhancement in catalytic activity was attributed to their reduced size, resulting in a higher surface area per unit 

mass, thus facilitating more efficient catalytic reactions.  

Concerns have been expressed that the same features of TiO2 nanoparticles may cause distinct bioactive problems 

in life (Wang et al., 2020). The rapid increase in the number of published studies demonstrates that there is 

considerable concern regarding the safety of TiO2 nanoparticles. These researchers extensively explored some 

animal models with numerous exposure modes of administration, such as inhalation, cutaneous exposure, 

intratracheal instillation, oral gavage, and intragastric, intraperitoneal, or intravenous injection. Previous studies 

(Rashid et al., 2021; Autthawong et al., 2021; Zhang et al., 2023)  have shown that TiO2 NPS are more hazardous 

than fine Particles. Juarez-Maldonado  (2022) demonstrated that nano-sized Al2O3 may accumulate and influence 

the reproduction and behaviour of Eisenia fetida, albeit at elevated levels remains to be determined in the natural 

environment. This indicates that titanium oxide nanoparticles may infiltrate the food chain and cause poisoning 
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in animals (Herrera-Rodríguez et al., 2023). These results underscore the necessity for additional investigations 

on nanoparticle ecotoxicity, particularly their species-specific effects in aquatic ecosystems. Therefore, it is 

necessary to investigate the influence of titanium dioxide nanoparticles on zooplankton, Colurella adriatica 

Ehrenberg, 1831, and their effect on the aquatic food chain. 

Colurella adriatica is a planktonic rotifer that belongs to the genus Lepadellidae and lives in freshwater, marine, 

brackish, and terrestrial settings. Its widespread application establishes it as a principal model for toxicity, 

ecology, and evolutionary biology studies. Rotifers offer exceptional suitability as model organisms for 

ecotoxicological research owing to their rapid cultivation in laboratory settings and capacity to yield sensitive 

test results. Moreover, the health of rotifer populations serves as a dependable indicator of water quality, as 

evidenced by previous research (Hashimshony et al., 2024). As zooplankton, they contribute to the survival of a 

tiny ecosystem that feeds and grows few fish. Rotifers are freshwater or brackish water creatures that do not 

serve as natural food for marine fish (Branco et al., 2023). However, they have a variety of advantageous 

characteristics that make them suitable for rearing freshwater fish larvae (Aidos et al., 2020; Soleh et al., 2023). 

Rotifers ranging from 200 to 350 µm are holoplankton, indicating that they are constant zooplankton inhabitants 

who are continuously in motion (Luo & Segers, 2020). Titanium dioxide nanoparticles smaller than 25 nm can 

pass through the cell membranes of freshwater zooplankton via canal water discharge caused by anthropogenic 

activities such as toothpaste usage, paint cracks, and plastics. Because zooplankton are not membrane-bound, 

they have access to organelles and deoxyribonucleic acid (DNA) inside the cell. This is dangerous because 

nanoparticles can carry harmful substances (Mohamed et al., 2023; Ferrante et al., 2023). Nanoparticles 

accumulate because of their ability to penetrate membranes, potentially increasing their toxicity (Pogribna et al., 

2020). Research has demonstrated the acute toxicity of titanium dioxide nanoparticles (TiO₂ NPs) to rotifers, key 

planktonic organisms in freshwater ecosystems. Dong et al. (2020) investigated TiO₂ NP effects on Brachionus 

calyciflorus, revealing impaired survival, reproduction, and physiological responses (e.g., antioxidant activity, 

swimming speed). Findings are relevant to closely related species like Colurella adriatica. Similarly, Das and 

Mukherjee (2024) highlighted TiO₂ NP toxicity in both the rotifer B. calyciflorus and the alga Scenedesmus 

obliquus,  though humic acid mitigated some effects. Collectively, these studies underscore the ecological risks 

posed by TiO₂ NPs to aquatic organisms, warranting further investigation into their long-term environmental 

impacts.  

Statement of the Problem 

Nigeria's economy relies heavily on natural resources, including freshwater ecosystems. Evaluating the 

ecological ramifications of TiO2 NP exposure is imperative to promote sustainable development practices that 

strike a balance between economic progress and environmental preservation. Nigeria's aquatic ecosystems, such 

as rivers, lakes, and coastal areas, may have unique environmental conditions that can interact with TiO2 NPS in 

ways that differ from those of other regions. Understanding how these nanoparticles behave and impact local 

aquatic organisms is crucial for their effective environmental management. A diverse range of aquatic species, 

many of which may be vulnerable to the effects of TiO2 NPS exist in aquatic bodies in Nigeria. Research, such 

as this study, can help identify which species are most at risk and develop targeted conservation efforts to protect 

biodiversity in Nigerian waters. TiO2 NPS can bioaccumulate in aquatic organisms and eventually enter the food 

chain. Research on the ecological consequences of TiO2 NP exposure can provide insights into the potential 

human health risks associated with consuming contaminated fish or water from Nigerian aquatic environments. 

Furthermore, understanding the ecological consequences of TiO2 NP exposure is essential for developing 

appropriate regulatory frameworks to protect the aquatic ecosystems in Nigeria. The findings of this study can 

inform policymakers of the need for specific guidelines or restrictions on the use of TiO2 NPS to prevent 

environmental harm. Available data on the effects of TiO2 NPs on Nigerian aquatic environments remains sparse. 

This research can help fill these knowledge gaps and provide a more comprehensive understanding of the 

potential risks associated with these nanoparticles, as well as support the development of mitigation strategies to 

minimize the impact of TiO2 NPS on aquatic ecosystems in Nigeria. This could include measures, such as 

wastewater treatment technologies or guidelines for the safe disposal of TiO2-containing products. Expanding 

scientific knowledge in this area is essential for protecting Nigeria's aquatic environments and promoting 

sustainable development across generations 

Aim and Objectives of the Study 

The aim of the study was to investigate nanotoxicological assessment of titanium dioxide nanoparticles on colurella 

adriatica. Specifically, the study sought to: 

1. Determine the acute toxicological effects of titanium dioxide nanoparticles (TiO₂ NPs) on the freshwater 

planktonic rotifer species, Colurella adriatica. 

2. Investigate the concentration-dependent effects of TiO2 NPS on the mortality rate of Colurella adriatica. 

3. Establish a lethal concentration (LC50) of TiO2 NPS for Colurella adriatica after 96 hours of exposure. 
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Research Questions 

The research questions that guided the study were as follows: 

1. What are the concentration-dependent and time-variable acute toxicity effects of titanium dioxide 

nanoparticles (TiO₂ NPs) on the freshwater rotifer Colurella adriatica 

2. What is the relationship between titanium dioxide nanoparticle (TiO2 NPS) concentration and mortality 

rates in Colurella adriatica, and how does this relationship vary across different concentrations and 

exposure durations? 

3. What is the lethal concentration (LC50) of titanium dioxide nanoparticles (TiO2 NPS) for Colurella 

adriatica after 96 hours of exposure, and how does this concentration compare with the LC50 values 

reported for other aquatic organisms? 

 

Materials and Methods 

Sources of Titanium dioxide nanoparticles and test organisms. 

Dry anatase-phase TiO₂ nanopowder (Sigma-Aldrich, St. Louis; CAS 637254) with a manufacturer-reported 

particle size of <25 nm served as the test material. C. adriatica cysts (Brineshrimp Direct, Utah) hatched in 

reconstituted water was used to establish experimental populations. 

 

Culture of Algae as a Source of Food 

Chlorella vulgaris, an alga, was used to feed the zooplankton. Chlorella vulgaris, a green alga, was cultivated in 

an old basal medium. Algal progress was tracked by recording blooms or reductions in growth to take necessary 

action. The optimal cultivation temperature was maintained between 20 °C and 31 °C using electric fans, and a 

pH of 8.0. The algae Chlorella vulgaris contains most vitamins, except vitamin C, and is extremely easy to 

culture, which is why it was used in this study. 

 

Dilution water  

Reconstituted freshwater was meticulously prepared using high-quality distilled water, with the addition of 96 

mg NaHCO3, 60 mg CaSO4.2H2O, 60 mg MgSO4.7H2O, and 4 mg KCl per litre, following the protocol 

outlined by Peltier and Weber (1985). The mixture was stirred constantly for 24 hours to ensure thorough 

homogenization. Subsequently, the pH of the solution was carefully adjusted to 7.5, employing a combination 

of strong hydrochloric acid and sodium hydroxide. It is imperative to note that this diluted water maintains its 

efficacy for seven days. 

 

Rotifer Cyst Hatching  

The cysts were carefully arranged in a shallow, wide dish, commonly known as a petri dish, which offers an 

optimal surface-area-to-volume ratio, ensuring efficient oxygen exchange. A transparent lid was used to prevent 

evaporation and maintain clarity. The liquid medium utilized for hatching was reconstituted in freshwater 

following the methodology described by Arimoro (2006). Approximately 20 ml of the reconstituted water was 

meticulously dispensed into a Petri dish, providing an ideal environment for the hatching of 1000–5000 eggs. 

Rotifer cysts were placed in diluted water and incubated at 25⁰C with 7000lux illumination to induce hatching. 

Hatching began after approximately 24 hours, and after 48 hours, over half of the cysts hatched. It was critical 

to start collecting the hatched test organisms after 50% of the cysts were hatched during the acute toxicity test 

because feeding was not performed during the test. Food deprivation led to death after approximately 32 hours 

of testing at 25 °C. 

 

Collection of Colurella adriatica into a Petri dish 

To transfer Colurella adriatica, which was less than 100µm in size, a micropipette and magnification were used. 

Newborns, distinguishable by their white colouration against a contrasting dark background, were carefully 

observed under a stereomicroscope set to 15X magnification. To ensure optimal visibility, the environment was 

dimmed to create a dark backdrop while sufficient illumination was provided. Using a micropipette, the test 

organisms were carefully collected and transferred to Petri plates containing the designated toxicant 

concentrations while under meticulous observation using a stereo microscope. 

Acute toxicity tests  

Acute toxicity testing of titanium dioxide nanoparticles (TiO₂ NPs) was performed using an adapted OECD 

Guideline 2004 protocol. The experimental design included five TiO₂ NP concentrations (0.01, 0.05, 0.10, 0.5, 

and 1.0 mg/L) and a blank control, with all treatments replicated three times. Test organisms (<24-hr-old 

neonates of Colurella adriatica) were exposed in groups of 10 individuals per 20 mL test solution (Petri dishes) 

under static conditions for 96 hours. During the exposure period, organisms were not fed to standardize metabolic 

responses. The hydrogen content of the test medium (pH 7.5) was determined at the beginning and end of the 

test. Colurella adriatica, which was unable to swim after 15 seconds of mild agitation in the test container, was 
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termed immobile. Heartbeats were monitored under a light microscope (4× magnification), and those that stopped 

were considered dead. 

 

Results 

Acute toxicity of titanium dioxide nanoparticles on Colurella adriatica 

The mortality of Colurella adriatica exposed to an acute concentration of titanium dioxide nanoparticles is 

presented in Table 1. The mortality rates were dose-dependent. The mortality rates increased when the TiO2 NP 

concentrations increased. At 24 hours, the highest mortality rates were 19.67% at 1.00 mg/l-1 concentration, 

followed by 15.33% at 0.50 mg/l-1, 13.00% at 0.10 mg/l-1, 6.77% at 0.05 mg/l-1, and 4.33%, 0.01 mg/l-1. A 

significant difference (p<0.05) was observed between the control and the concentration of 1.00 mg/L after 24 

hours of exposure. After 48 hours, the highest percentage mortality was recorded at 25.33% for the 1.00 mg/l -1  

concentration, while the lowest was 7.67% for the 0.01 mg/l-1 concentration. Significant differences (p<0.05) 

were noted between the control and the 1.00 mg/l-1 concentration after 48 hours of exposure. At 72 hours, the 

highest percentage of mortality was observed at 42.00% for the 1.00 mg/l-1 concentration, with the lowest at 

13.00% for the 0.01 mg/l-1 concentration. Again, significant differences (p<0.05) were found between the control 

and the 1.00 mg/l-1 concentration after 72 hours of exposure. By 96 hours, the lowest mortality rate was 23.00% 

for the 0.01 mg/L concentration, while the highest was 85.67% at a 1.00 mg/l-1 concentration. A statistically 

significant difference (p < 0.05) was observed between the control group and the 1.00 mg L⁻¹ exposure group 

following 96 hours of treatment. 

 

Table 1: Percentage (%) mortality of Colurella adriatica exposed to acute concentrations of titanium 

dioxide nanoparticles. 

 

Time (h)        

Conc. (mgl-1) 

 

  

0.00 

 

0.01 

 

0.05 

 

0.10 

 

0.50 

 

1.00 

 

24* 

 

                  

1.33±0.33e 

                  

4.33±0.88de 

                  

7.67±0.88cd 

                

13.00±1.15bc 

                

15.33±1.45ab 

                  

19.67±0.88a 

 

48* 

 

                  

2.67±0.33e 

                  

7.67±0.33d 

                            

10.67±1.20cd 

                  

13.67±1.45c 

                  

22.00±1.00b 

                  

25.33±2.60a 

 

72* 

 

                  

4.33±0.88e 

                      

13.00±1.15d 

                

26.67±1.76c 

                

35.33±0.88b 

                

38.00±2.65ab 

                  

42.00±2.08a 

 

96* 

 

                  

6.00±1.53e 

                 

23.00±1.53d 

                

37.00±1.53c 

                                   

54.67±0.88b 

                  

68.00±1.15b 

                  

85.67±1.20a 

1. Values are presented as means ± standard error 

2. The superscripts a, b, c, d, and e are used to show how the means differ along the rows per 24 h. 
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Figure 1: Mortality of Colurella adriatica exposed to TiO2 NPS at acute dose-dependent rates after 24 h 

 
Figure 2: Mortality of Colurella adriatica exposed to TiO2 NPS at acute dose-dependent rates after 48 hours. 

 

 
Figure 3: Mortality of Colurella adriatica exposed to TiO2 NPS at acute dose-dependent rates after 72 hours. 
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Figure 4: Mortality of Colurella adriatica exposed to TiO2 NPS at acute dose-dependent rates after 96 hours. 

 

Discussion 

After 96 hours, Colurella adriatica mortality rates varied between concentrations, with the highest rate at 1.00 

mg/l-1 of <25 nm TiO2 nanoparticles (85.67%) and the lowest at 0.01 mg/l-1 of TiO2 nanoparticles (23.00%). As 

a result, prolonged exposure of a water body to TiO2 nanoparticles at these concentrations for more than 96 hours 

may lead to significant mortality rates in the aquatic ecosystem, affecting various organisms, such as 

phytoplankton, zooplankton, fingerlings, and small fish (Zhu et al., 2021; Zheng et al., 2023). The studies 

conducted by Ambroziak et al. (2020), Manchwari et al. (2022), and Bîrleanu et al. (2022) have also reported 

that TiO2 nanoparticles (with sizes ranging from 25 nm to <100 nm) at concentrations below 3 mg/l-1  had 

minimal effects on Daphnid immobilization. TiO2 has also been shown to enhance D. magna mortality as TiO2 

concentration increases (Kazemi et al., 2022). The toxicity of the test organisms increased dramatically when the 

duration was extended from 24 to 96 hours, resulting in an LC50 (0.075 mg/L). This demonstrated that exposure 

time significantly influenced the toxicological effects of TiO2 NPS on Colurella adriatica. This is in line with 

studies by Smith (2017), Grande et al. (2022) and Ferrante et al. (2023). Furthermore, the toxicity of TiO2 

nanoparticles under pre-illumination by simulated sunlight was found to be higher than that of non-illuminated 

TiO2 nanoparticles. Research conducted by Li et al. (2019), Zeng et al., (2020) and Yang et al. (2023) 

corroborates this finding.  In this study, the toxicity of NPs increased with exposure length, indicating that they 

may also play a key role in the toxicity mediated by NPs. Babaei et al. (2022) also observed that nanoparticles 

can travel through the ecosystem and affect fish at the top of the food chain. In a similar vein, Jones and Johnson 

(2019) studied the acute toxicity of TiO2 nanoparticles on Colurella adriatica in a controlled laboratory setting. 

The researchers subjected Colurella adriatica to varied concentrations of TiO2 nanoparticles and found dose-

dependent effects on mortality and reproductive behaviour. The results showed that exposure to high 

concentrations of TiO2 nanoparticles increased death rates and impaired reproductive success in Colurella 

adriatica populations. 

Titanium dioxide nanoparticles exhibited toxicity to Colurella adriatica, with mortality reaching 85.67% as the 

concentration of the toxicant increased from 0.01 mg/l-1 to 1.00 mg/l-1. After 96 hours of exposure, the LC50 was 

determined to be 0.075 mg/l-1. These findings indicate that the release of TiO2 NPs into aquatic environments 

may represent a risk to the health of rotifers, zooplankton and other aquatic creatures, as well as having negative 

impacts on them. It also may threaten the rotifers' fertility (population growth rate) by lowering their reproductive 

rates when the concentrations and duration of exposure to the toxicant, TiO2, rise. As nanomaterials (NMs) grow 

more prevalent in everyday life, it is clear that the consequences of NMs, particularly TiO2 NPs, on the 

environment have become a major source of worry. Furthermore, the release of NPs into freshwater ecosystems 

may put humans at risk of exposure through drinking water and food chains. This finding can be used to 

demonstrate the dose-dependent effects of Titanium oxide NPs on the survival, growth, and reproduction of 

Colurella adriatica. The acute toxicity of titanium dioxide nanoparticles (TiO₂ NPs) to Colurella adriatica poses 

substantial ecological risks for Nigerian freshwater ecosystems. As a keystone planktonic rotifer, C. adriatica 

plays a vital role in food web dynamics and nutrient cycling. Our findings demonstrate that TiO₂ NP exposure 

significantly impairs rotifer survival, which may trigger trophic cascades by reducing prey availability for higher 

organisms (Matouke et al., 2021). Such nanoparticle-induced population declines could destabilize aquatic 

community structures, as evidenced in other freshwater systems (Hou et al., 2020; Ganguly & Candolin, 2023). 

Furthermore, TiO₂ NP contamination may compromise water quality parameters (Rylsky et al., 2023), potentially 
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affecting essential ecosystem services, including drinking water provision, agricultural use, and recreational 

activities. These findings underscore the need for stringent regulation of nanoparticle discharges in vulnerable 

aquatic habitats. 

Furthermore, the toxicity of TiO₂ nanoparticles (NPs) to aquatic organisms is critically dependent on their 

physicochemical characteristics, particularly particle size, surface area, and coating properties (Chen & Li, 2020). 

Nanoparticles with smaller diameters and larger surface-area-to-volume ratios demonstrate enhanced toxicity 

due to increased biological reactivity and cellular uptake potential. While our acute toxicity studies with 

Colurella adriatica provide crucial baseline data on immediate nanoparticle effects, these findings represent just 

one component of comprehensive ecological risk assessment. A complete understanding of TiO₂ NP impacts 

requires complementary investigations including chronic exposure studies to identify sublethal and 

transgenerational effects, field-based validations to determine environmental bioavailability under natural 

conditions, and computational modelling to predict ecosystem-scale consequences. For Nigerian freshwater 

ecosystems, where C. adriatica serves dual roles as both a keystone species in food web dynamics and a sensitive 

bioindicator of water quality, addressing these knowledge gaps becomes particularly urgent. Implementing 

initiative-taking conservation strategies that combine targeted nanoparticle research, systematic environmental 

monitoring programmes, and evidence-based regulatory frameworks will be essential for safeguarding aquatic 

biodiversity and maintaining ecosystem services in vulnerable freshwater habitats. 

Conclusion 

In conclusion, this research has shed light on the acute toxicity of titanium dioxide nanoparticles (NPs) on 

Colurella adriatica Ehrenberg, 1831, providing valuable insights into the potential environmental impacts of 

these widely used nanoparticles. Through systematic experimentation and analysis, we have demonstrated that 

titanium dioxide NPs pose a significant threat to the survival and physiological integrity of Colurella adriatica, 

highlighting the importance of careful consideration and regulation in their use and disposal. These findings 

underscore the necessity for further research aimed at understanding the mechanisms underlying nanoparticle 

toxicity and developing effective mitigation strategies to safeguard aquatic ecosystems. As we continue to 

advance our understanding of nanoparticle toxicity, we must integrate this knowledge into regulatory frameworks 

and industry practices to ensure the sustainable coexistence of nanotechnology and environmental health. 

 

Recommendations  

Based on the findings from the study, the recommendations are as follows: 

1. The acute toxicity of titanium dioxide nanoparticles in Colurella adriatica raises concerns about the 

wider impact on aquatic ecosystems and biodiversity. Adequate measures should be taken to prevent 

the use and wanton disposal of titanium dioxide nanoparticles. 

2. There should be risk assessment and regulatory decision-making on the use and emission of titanium 

dioxide nanoparticles. 

3. The complex challenges of nanoparticles require interdisciplinary collaboration between scientists, 

policymakers and stakeholders in the industry. This study recommends the integration of the expertise 

of various fields to develop an effective strategy for assessing and managing the risks of nanoparticles. 

4. To protect the health of the environment, it is essential to educate the public about potential risks 

associated with nanoparticles and promote responsible use and disposal practices.  

5. This study provides a foundation for future research on nanoparticle toxicity, including investigations 

into the mechanisms of toxicity, long-term effects on aquatic organisms, and potential interactions with 

other environmental stressors. It is essential to continue advancing our understanding of nanoparticle 

behaviour and its impacts on natural ecosystems. 
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