Nanotoxicological Assessment of Titanium Dioxide Nanoparticles on Colurella adriatica
Keywords:
Titanium dioxide, Nanoparticles, Colurella adriatica, Acute-toxicity, Lethal concentrationAbstract
This research aimed to investigate the potential toxicity of titanium dioxide nanoparticles (TiO2NPS) to a freshwater planktonic rotifer, Colurella adriatica. Titanium dioxide (TiO2) nanoparticles (NPS) have gained significant attention in various fields owing to their unique physicochemical properties. They constitute approximately 70% of the global pigment-manufacturing volume. The TiO2 crystal forms include anatase and rutile, with the former being more chemically reactive. According to previous studies, the higher the surface area of the nanoparticles, the more toxic they become. Colurella adriatica was selected as the test species and acute exposure toxicity testing was conducted in reconstituted water. Acute concentrations of TiO2 NPS were 0.01, 0.05, 0.10, 0.50, and 1.00 mg/l, with an LC50 of 0.0075 mg/l determined. Results from the acute toxicity test revealed a dose-dependent lethal effect of TiO2 NPs on Colurella adriatica, with mortality reaching 85.67% at 1.00 mg/L after 96 hours. This suggests that TiO2 NPs may disrupt freshwater ecosystems, warranting further investigation into their environmental impact. This paper recommends that future research should prioritize the development of strategies to prevent and/or mitigate the accumulation of TiO2 NPS in freshwater ecosystems and their impact on aquatic organisms, among others.
References
Abbas, Z., Siddique, S., Rafiq, M., & Rehman, A. (2023). On generalized Bödewadt flow of TiO2/water nanofluid over a permeable surface with temperature jump. Advances in Mechanical Engineering, 15(10), 1-13.
Aidos, L., Cafiso, A., Serra, V., Vasconi, M., Bertotto, D., Bazzocchi, C., Radaelli, G., & Giancamillo, A. D. (2020). How different stocking densities affect growth and stress status of Acipenser baerii early stage larvae. MDPI Animals, 10(1289) 1-15.
Ali, R., & Alwan, A. H. (2023). Titanium dioxide annoparticles in dentistry: Multifaceted applications and innovations. Future Dental Research, 1(1), 12-25.
Ambroziak, R., Krajczewski, J., Pisarek, M., & Kudelski, A. (2020). Immobilization of cubic silver plasmonic nanoparticles on TiO2 nanotubes, reducing the coffee ring effect in surface-enhanced Raman spectroscopy applications. ACS Omega, 5, 13963-13972.
Autthawong, T., Yodbunork, C., Yodying, W., Boonprachai, R., Namsar, O., Yu, A., & Chimupala, Y. (2021). Fast-charging anode materials and novel nanocomposite design of rice husk-derived SiO2 and Sn nanoparticles self-assembled on TiO2(B) nanorods for lithium-ion storage applications. ACS Omega, 7, 1357-1367.
Babaei, M., Tayemeh, M., B., Jo, M., Yu, I., & Johari, S., A. (2022). Trophic transfer and toxicity of silver nanoparticles along a phytoplankton-zooplankton-fish food chain. The Science of the total environment, 84(2), 156807.
Babazadeh, B., A., Razeghi, J., Jafarirad, S., & Motafakkerazad, R. (2021). Are biosynthesized nanomaterials toxic for the environment? Effects of perlite and CuO/perlite nanoparticles on unicellular algae Haematococcus pluvialis. Ecotoxicology, 30, 899-913.
Bergamaschi, E., Bellisario, V., Macrí, M., Buglisi, M., Garzaro, G., Squillacioti, G., & Ghelli, F. (2022). A Biomonitoring pilot study in workers from a paints production plant exposed to pigment-grade titanium dioxide (TiO2) Toxic, 10, 171-195.
Bîrleanu, C., Pustan, M., Cioaza, M., Molea, A., Popa, F. & Conțiu, G. (2022). Effect of TiO2 nanoparticles on the tribological properties of lubricating oil: an experimental investigation. Scientific Reports, 12, 1501-5218.
Branco, C., Fintelman-Oliveira, E., & Miranda, V.B. (2023). A review of functional approaches for the study of freshwater communities with a focus on zooplankton. Hydrobiologia, 85, 4719-4744.
Chen, X. & Li, S. (2020). Influence of physicochemical properties on the toxicity of titanium dioxide nanoparticles to aquatic organisms: A review. Environmental Pollution, 26(Pt A), 115728.
Das, S., & Mukherjee, A. (2024). Combined effects of titanium dioxide nanoparticles and bisphenol-A on freshwater algae Scenedesmus obliquus, and the importance of humic acid in reducing toxicity. Nanotechnology for Environmental Engineering, 9, 86-98.
Dedman, C., J., King, A., M., Christie-Oleza, J., & Davies, G. (2021). Environmentally relevant concentrations of titanium dioxide nanoparticles pose negligible risk to marine microbes. Environmental Science. Nano, 8, 1236-1255.
Dong, L., Wang, H., Ding, T., Li, W., & Zhang, G. (2020). Effects of TiO2 nanoparticles on the life-table parameters, antioxidant indices, and swimming speed of the freshwater rotifer Brachionus calyciflorus. Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology, 33(4), 230-239.
Ferrante, M., Grasso, A., Salemi, R., Libra, M., Tomasello, B., Fiore, M. & Copat, C. (2023). DNA damage and apoptosis as in-vitro Effect biomarkers of titanium dioxide nanoparticles (TiO2-NPs) and the food additive E171 toxicity in colon cancer cells: HCT-116 and Caco-2. International Journal of Environmental Research and Public Health, 20, 2002-2016.
Ganguly, A. & Candolin, U. (2023). Impact of light pollution on aquatic invertebrates: Behavioral responses and ecological consequences. Behavioral Ecology and Sociobiology, 77(104), 1-15.
Grande, F., Tucci, P., Bevacqua, E. & Occhiuzzi, M., A. (2022). TiO2-NPs toxicity and safety: An update of the findings published over the last six years. Mini Reviews in Medicinal Chemistry, 23(9), 1050-1057.
Harris, T., R., Griffith, J., A., Clarke, C., E., Garner, K., L., Bowdridge, E., & DeVallance, E. (2023). Distinct profiles of oxylipid mediators in liver, lung, and placenta after maternal nano-TiO2 nanoparticle inhalation exposure. Environmental Science. Advances 2, 740-748.
Hashimshony, T., Levin, L., Fröbius, A., C., Dahan, N., Chalifa-Caspi, V., Hamo, R., et al., (2024). A transcriptomic examination of encased rotifer embryos reveals the developmental trajectory leading to long-term dormancy; are they “animal seeds”? BMC Genomics, 25, 119-146.
Herrera-Rodríguez, M., A., Ramos-Godínez, M., D., P., Cano-Martínez, A., Segura, F., C., Ruiz-Ramírez, A., Pavón, N., et al., (2023).Food-grade titanium dioxide and zinc oxide nanoparticles induce toxicity and cardiac damage after oral exposure in rats. Particle and Fibre Toxicology, 20(4), 00553-00557.
Hou, J., Li, T., Miao, L., You, G., Xu, Y., & Liu, S. (2020). Dynamic responses of community structure and microbial functions of periphytic biofilms during chronic exposure to TiO2 NPs. Environmental Science Nano, 7, 665-675.
Jones, A. B., & Johnson, C. D. (2019). Acute toxicity of titanium dioxide nanoparticles on Colurella adriatica: A laboratory study. Journal of Environmental Toxicology, 25(3), 123-135.
Juarez-Maldonado, A. (2022). Impact of nanomaterials on plants: What other implications do they have? BIOCELL, 46(3),651-654.
Kazemi, F., Esmaeeli, M., Mohammadzadehjahani, P., Amiri, M., Vosough, P. & Ahmadi-Zeidabadi, M. (2022). Investigation of the toxicity of TiO2 nanoparticles on glioblastoma and neuroblastoma, as the most widely used nanoparticles in photocatalytic processes. Environmental Health Engineering and Management, 9(4), 365-374.
Li, K., Qian, J., Wang, P., Wang, C., Fan, X., & Lu, B. (2019). Toxicity of three crystalline TiO2 nanoparticles in activated sludge: Bacterial cell death modes differentially Weaken Sludge Dewaterability. Environmental Science & Technology, 5(8), 4542-4555.
Lim, J., Lee, S., Kim, W., Pak, S., Moon, C., Shin, I., Heo, J., Ko, J., & Kim, J. (2021). titanium dioxide nanoparticles exacerbate allergic airway inflammation via TXNIP upregulation in a mouse model of asthma. International Journal of Molecular Sciences, 22(9), 1-16.
Luo, Y., & Segers, H. (2020). Eight new Lepadellidae (Rotifera, monogononta) from the Congo bring the level of endemism in Africa's rotifers. Zootaxa, 47(3), 3-6.
Manchwari, S., Khatter, J., & Chauhan, R. (2022). Modifications in structural, morphological and optical properties of TiO2 nanoparticles: Effect of pH. Chemical Papers,76, 7545-7551.
Matouke, M., Sanusi, H., M., & Eneojo, A. (2021). Interaction of copper with titanium dioxide nanoparticles induced hematological and biochemical effects in Clarias gariepinus. Environmental Science and Pollution Research, 28, 67646-67656.
Mohamed, H., Behira, L., S., T., & Diab, A. (2023). Estimation of genomic and mitochondrial DNA integrity in the renal tissue of mice administered with acrylamide and titanium dioxide nanoparticles. Scientific Reports, 13, 13523-13533.
OECD (2004). OECD Standard Approach of acute toxicity studies of Titanium Dioxide Nanoparticles. http://www.oecd-library.org.
Peltier, W., & Weber, C.I. (1985). Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. 3rd Edition. Environmental Research Laboratory, EPA 600/4-85-013, 217. https://nepis.epa.gov.
Pogribna, M., Koonce, N., Mathew, A., Word, B., Patri, A., Lyn-Cook, B., & Hammons, G. (2020). Effect of titanium dioxide nanoparticles on DNA methylation in multiple human cell lines. Nanotoxicology, 14, 534-553.
Ramesh, S., Govarthanan, K., & Palaniappan, A. (2023). TiO2 nanostructures a double-edged sword: current progress on their role in stem cells’ differentiation, cancer therapy, and their toxicity issues. Nanotoxicology, 17, 176-201. Rashid, M.M., Forte-Tavcer, P., & Tomsic, B. (2021). Influence of Titanium Dioxide Nanoparticles on Human Health and the Environment. Nanomaterials, 11, 2354. https://doi.org/10.3390/nano11092354
Rylsky, O., Dombrovskiy, K., Masikevych, Y., Masikevych, A., & Malovanyy, M. (2023). evaluation of water quality of the Siret river by Zooperiphyton organisms. Journal of Ecological Engineering, 24(6), 294-302.
Shaltout, E., S., Makboul, R., Abdellah, N., Z., & Ebrahem, N. (2022). possible multi-organ toxicity in rats after chronic oral administration of titanium dioxide: Biochemical and histopathological study. The Egyptian Journal of Forensic Sciences and Applied Toxicology, 22(2), 127-137.
Smith, E. R. (2017). Effects of Titanium dioxide nanoparticles on the acute toxicity of Daphnia magna: A dose-response study. Environmental Science and Pollution Research, 24(15), 13456-13464.
Soleh, M., Naryaningsih, A., Nur, A., Purnomo, S., Suwoyo, D., & Soetanti, E. (2023). Utilization of rotifers as natural feed in the rearing of saline Nile tilapia (Oreochromis niloticus) larvae. BIO Web of Conferences, 74(4), 1-7. Ukaeje, O. C., & Bandyopadhyay, B. C. (2024). Titanium dioxide promotes the growth and aggregation of calcium phosphate and monosodium urate mixed crystals. Crystals (Basel), 14(1), 11-23. https:// doi.org. 10.3390/cryst14010011.
Wang, S., Wang, Y., Li, L., Li, L., Fu, G., & Shi, R. (2020). Green synthesis of Ag/TiO2 composite coated porous vanadophosphates with enhanced visible-light photo-degradation and catalytic reduction performance for removing organic dyes. Dalton transactions, 49(23), 7920-7931.
Yang, L., Xu,J., Gao, H., Dai, S., Liu, L., Xi, Y., et al., (2023). Toxicity enhancement of nano titanium dioxide to Brachionus Calyciflorus (Rotifer) under stimulated sunlight and underlying mechanisms. Ecotoxicology and Environmental Safety, 25(1), 114556. https://doi.org.10.1016/j.ecoenv.2023.114556.
Zeng, W.G., Cai, T., Liu, Y.T., Wang, L.L., Dong, W.Y., & Chen, H. (2020). An artificial organic-inorganic z-scheme photocatalyst supramolecular with excellent visible light absorption and photocatalytic activity. Chemical Engineering Journal, 38(1), 122691. https://doi.org.10.1016/j.cej.2019.122691.
Zhang, X., Song,Y., Gong, H., Wu, C., Wang, B., & Chen, W. (2023). Neurotoxicity of titanium dioxide nanoparticles: A review. International Journal of Nanomedicine, 18, 7183-7204.
Zhu, X., Chang, Y., & Chen, Y. (2010). Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere, 78, 209-215.