Comparative Amino Acid Profiling of Arthropod Haemolymph in Zaria, Nigeria
Keywords:
Arthropod, Arthropod Haemolymph, Amino Acid, Kaduna State, NigeriaAbstract
This study investigates the amino acid profile of Haemolymph in eight arthropod species from Zaria, Nigeria, representing the classes Insecta, Arachnida, and Crustacea. Haemolymph samples (1 mL) were collected using the novel Antennae method from anesthetized and cleaned arthropods. Amino acid analysis was conducted using the Applied Biosystems PTH Amino Acid Analyzer following hydrolysis and defatting. A total of 17 amino acids were detected in the Haemolymph, including leucine, lysine, isoleucine, phenylalanine, serine, aspartic acid, valine, methionine, proline, arginine, tyrosine, histidine, cystine, alanine, glutamic acid, glycine, and threonine. Notably, Glutamic acid was found to be the most abundant in spider (5.08g/100g) while cystine was the least abundant in cricket (0.02 g/100g). Statistical analysis revealed significant differences (P<0.05) in amino acid composition between arthropod species and compared to RPMI 1640 control. These results suggest that amino acids play a critical role in cellular processes, including protein synthesis, energy production, and immunity, aiding in the arthropods' defense against infections. This finding aligns with previous studies, highlighting the importance of these compounds in arthropod physiology and their potential for further studies on metabolic processes and immune responses in invertebrates.
References
Aboul-Naga, A. M., Mansour, H., Aboul-Ela, M. B., & Almahdy, H. (1991). Breeding activity of two subtropical Egyptian sheep breeds under accelerated lambing system. Small Ruminant Research. https://doi.org/10.1016/0921-4488(91)90152-G
Ademola, J. A. (2017). Luminescence properties of common salt (NaCl) available in Nigeria for use as accident dosimeter in radiological emergency situation. Journal of Radiation Research and Applied Sciences, 10(2), 117–121. https://doi.org/10.1016/j.jrras.2017.01.003
Adenusi, A. A., Akinyemi, M. I., & Akinsanya, D. (2018). Domiciliary cockroaches as carriers of human intestinal parasites in Lagos Metropolis, Southwest Nigeria: Implications for public health. Journal of Arthropod-Borne Diseases, 12(2), 141.
Aslant, N., Toprak, K. I., & Yigin, A. (2024). Transcriptomic analysis of venom glands and amino acid profile of venom of different scorpion species. Polish Journal of Environmental Studies. https://doi.org/10.15244/pjoes//88229
Borsuk, G., Ptaszynska, A. A., Olszewski, K., Domaciuk, M., Krutmuang, P., & Paleolog, J. (2017). A new method for quick and easy Haemolymph collection from Apidae adults. Journal of Apicultural Research, 12(1), 776.
Buszewska-Forajta, M., Struclo-Lewicla, W., Bujak, R., Siluk, D., & Kaliszan, R. (2014). Determination of water-soluble components of abdominal secretion of grasshopper (Chorthippus species) by GC/MS/MS in search for potential wound healing agents. Chromatographia, 77, 1091–1102.
Chapman, R. F. (1998). The insect: Structure and function (4th ed.). Cambridge University Press. ISBN 0 521 57048 4 hardback.
Consoli, F. L., & Vinson, S. B. (2002). Haemolymph of reproductive. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 132(4), 711–719. https://doi.org/10.1016/s1096-4959(02)00087-8
Drilhon, A., Busnel, R. G., & Vargo, C. (1951). Free amino acids and fluorescent substances in the blood and Malpighian tubes of the Bombyx mori caterpillar with polyhedron diseases and flacherie. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 232(4), 360–361.
Duman, J., & Horwath, K. (1983). The role of Haemolymph proteins in the cold tolerance of insects. Annual Review of Physiology, 45, 261–270.
Edwards, S. L., Brough, R., & Lord, C. (2008). Resistance to therapy caused by intragenic deletion in BRCA. Nature, 451(7177), 1111-1115. https://doi.org/10.1038/nature06548
Finke, M. O. (2015). Complete nutrient content of three species of wild insect, pallid-winged grasshopper, rhinoceros beetles and the white-lined sphinx moth. Journal of Insects as Food and Feed, 1(4), 281–292. https://doi.org/10.3920/JIFF2015.0033
Gibb, T. J., & Oseto, C. Y. (2006). Arthropod Collection and Identification: Laboratory and field techniques. Entomologische Berichten, 66, 186.
Huong, D. T. T., Yang, W., Okuno, A., & Wilder, M. N. (2001). Changes in free amino acids in the Haemolymph of giant freshwater prawn (Macrobrachium rosenbergii) exposed to varying salinities: Relationship to osmoregulatory ability. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 128(2), 317–326. https://doi.org/10.1016/s1095-6433(00)00310-x
Kaya, Y., & Kacatepe, D. (2014). Chemical composition and nutritional quality of scorpion fish (Scorpaena porcus, Linnaeus 1758) muscle. Indian Journal of Animal Research, 48(1), 83–87.
Kohler, R., Kariuki, L., Lambert, C., & Biesalski, H. K. (2019). Protein, amino acid and mineral composition of some edible insects from Thailand. Journal of Asia-Pacific Entomology, 22(1), 372–378.
Kuhn-Nentwig, L., & Nentwig, W. (2012). The immune system of spiders. In W. Nentwig (Ed.), Spider ecophysiology (pp. [insert page range]). Springer. https://doi.org/10.1007/978-3-642-33989-9_7
Lee, J., Shim, J., Chi, E., & Lee, I. (2013). Comparison of the amino acid content in pharmacopuncture extracts taken from a scorpion’s body and from its tail. Journal of Pharmacopuncture, 16(2), 33.
Ma, L., Wang, Y, Zhang, W., Wang, H., Liu, & Xu, B. (2016). Alterations in protein and amino acid metabolism in honeybees (Apis mellifere) fed different L-leucine diets during larval stage. Journal of Asia-Pacific Entomology, 19(3):768-774.
Melo-Ruiz, V., Sandoval-Trujilla, H., Quirino-Barreda, T., Sandez-Herrera, K., Diaz-Gracia, R., & Calvo-Carrilo, C. (2015). Chemical composition and amino acid content of the species of edible grasshoppers from Mexico. Emirates Journal of Food and Agriculture, 27(8), 654–658.
Mora-Aguilar, E., Arriaga-Jimenez, A., Correa, C., da Silva, P. G., Korasaki, V., Lopez-Beyoda, P. A., Hernadez, M. I. M., Pablo-Cea, J. D., Salomao, R. P., Valencia, G., Vulinec, K., Edwards, F. A., Edwards, D. P., Halfter, G., & Noriega, J. A. (2023). Toward a standardized methodology for sampling dung beetles (Coleoptera: Scarabaeinae) in Neotropics: A critical review. Frontiers in Ecology and Evolution, 11, 1096208. https://doi.org/10.3389/fevo.2023.1096208
Narayanan, M. A. B., & Ramjee, V. (1969). On the criteria for reverse transition in a two-dimensional boundary layer flow. Journal of Fluid Mechanics, 35(2), 225–241. https://doi.org/10.1017/S0022112069001237
Osborne, N. N., & Neuhoff, V. (1974). Amino acid and serotonin content in the nervous system, muscle and blood of the cockroach, Periplaneta americana. Brain Research, 80(2), 251–264. https://doi.org/10.1016/0006-8993(74)90436-6
Ping, F. P. F., Lujianjian, L., Oing, L. P. L., Jian, L. J. L., & Baquan, G. B. G. (2017). Effects of different salinity levels on free amino acid composition in muscle and Haemolymph of the swimming crab, Portunus trituberculatus. Journal of Ocean University of China, 41(3), 374–381.
Punzo, P. (1983). Haemolymph chemistry of spiders: Heteropoda venatoria (Sparassidae), Pisaurina mira (Pisauridae), and Amaurobius bennetti (Amaurobiidae). Comparative Biochemistry and Physiology Part A: Physiology, 75(4), 647–652. https://doi.org/10.1016/0300-9629(83)90435-8
Sai’d, S. M., Obuid-Allah, A. H., Abd-Elatif, El-Shimy, N., Ali, R. S., & Mahmood, M. A. (2021). Analysis of amino acids, fatty acids, and neurotoxins using gas chromatography-mass spectrometry in four scorpion species inhabiting New Valley Governorate, Egypt. Turkish Journal of Zoology, 45(6), 442–454.
Sankar, R. S., & Yogamoorthi, A. (2012). Free amino acid composition in Haemolymph and muscle of the ghost crab Ocypode platytarsis. Pakistan Journal of Biological Sciences, 15(10), 490–495. https://doi.org/10.3923/pjbs.2012.490.495
Schauff, M. E. (2001). Collecting and preserving insects and mites: Techniques and tools. Systematic Entomology Laboratory, USDA. Miscellaneous Publication, 1443, 1–103.
Shaw, E. (1955). Amino compounds and ethanolamine phosphoric acid of the grasshopper egg. Experimental Cell Research, 9(3), 489–501. https://doi.org/10.1016/0014-4827(55)90076-7
Slama, J. (1983). Gravity model and its estimation for international flows of engineering products, chemical and patent applications. Acta Oeconomica, 30(3–4), 241–253. http://www.jstor.org/stable/40728773
Sowa, S. M., & Keeley, L. L. (1996). Free amino acids in the Haemolymph of the cockroach Blaberus discoidalis. Comparative Biochemistry and Physiology Part A: Physiology, 113(2), 131–134. https://doi.org/10.1016/0300-9629(95)02063-6
Stratakis, E., Fragkiadakis, G., & Tentes, I. (1993). Purification and properties of the fatty acid-binding VHDL from the Haemolymph of the spider Eurypelma californicum. Journal of Experimental Zoology, 267(5), 483–492. https://doi.org/10.1002/jez.1402670509
Tillinghast, E. K., & Townley, M. A. (2008). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 151(3), 286–295. https://doi.org/10.1016/j.cbpb.2008.07.009
Wu, F., Kronenberg, D., Hertel, I., & Grzesiek, S. (2023). The key role of glutamine for protein expression and isotopic labeling in insect cells. JBC Communications. https://doi.org/10.1016/j.jbc.2023.103142
Wyatt, G. R., Lougheed, T. C., & Wyatt, S. S. (1956). The chemistry of insect Haemolymph. Journal of General Physiology, 39(6), 853–868. https://doi.org/10.1085/jgp.39.6.853
Yi, S., & Adams, T. S. (2000). Effects of pyriproxyfen and photoperiod on free amino acid concentrations and proteins in the Haemolymph of the Colorado potato beetle, Leptinotarsa decemlineata (Say). Journal of Insect Physiology, 46(10), 1341–1353. https://doi.org/10.1016/S0022-1910(00)00058-3
Zamudio-Flores, P., Sanchez-Ortiz, O., Tirado-Gallo, J. M., Espino-Diaz, M., Ochoa-Reyes, E., Hernandez-Centeno, F., Hernandez-Gonzalez, M., Lopez-De la Pena, H. Y., Salgado-Delgado, R., & Garcia-Cano, V. G. (2019). Food supplements from a grasshopper: A developmental stage-wise evaluation of amino acid profile, protein and vitamins in Brchystola magna (Girard). Emirates Journal of Food and Agriculture, 31(7), 361. https://doi.org/10.9755/ejfa.2019.v31.i7.1989