Zinc Oxide Co-Doped with Aluminium and Boron (Al:B:ZnO) Thin Films via Sol–Gel Process for Solar Cell Window Layers: A Review
DOI:
https://doi.org/10.63561/jacsr.v2i3.802Keywords:
Zinc Oxide, Sol-Gel, Transparent Conductive Oxide, Doping, Solar CellsAbstract
Solar energy is the most economical and plentiful long-term natural resource currently accessible. The rate of global economic growth and technical advancement is increasingly dependent on the need for cost-effective, high-performance optoelectronic devices. Zinc oxide (ZnO) films have garnered significant interest as viable substitutes for traditional transparent conductive oxides (TCOs) in solar systems. Zinc oxide nanoparticles (ZnONPs) are among the most extensively used metal oxide nanoparticles, garnering international scientific attention owing to their distinctive optical and chemical properties, biocompatibility, low toxicity, sustainability, and cost-effectiveness. The adaptability of ZnO enables doping with transition metals to improve its structural, electrical, optical, and magnetic properties. Doping with aluminium (Al) enhances electrical conductivity and optical clarity, while boron (B) doping reduces electrical resistivity and optical bandwidth while augmenting carrier concentration. Doping with a single element often improves just one specific optical or electrical characteristic. Simultaneous doping with both Al and B mitigates this constraint, resulting in a synergistic action that improves optical and electrical characteristics. After receiving Al-B co-doping treatment, the resistivity of ZnO film dropped from 6.12 × 102 Ωcm to 2.07 × 10–4 Ωcm. Furthermore, the ZnO film's transmittance values, surface homogeneity, and figure of merit value significantly increased due to the presence of Al and B components. Every investigation shown that the advantageous physical features of Al–B co-incorporated ZnO films make them a viable substitute for ITO films in TCO applications. The simultaneous enhancement renders co-doped ZnO very appropriate for transparent conductive electrodes and window layers in solar cell applications.
References
Adjimi, A., Zeggar, M. L., Attaf, N., & Aida, M. S. (2018). Fluorine-doped tin oxide thin films deposition by sol-gel technique. Journal of Crystallization Process and Technology, 08(04), 89–106. https://doi.org/10.4236/jcpt.2018.84006 DOI: https://doi.org/10.4236/jcpt.2018.84006
Alkallas, F. H., Trabelsi, A. B. G., Nasser, R., Fernandez, S., Song, J. M., & Elhouichet, H. (2022). Promising Cr-Doped ZnO Nanorods for Photocatalytic Degradation Facing Pollution. Applied Sciences (Switzerland), 12(1). https://doi.org/10.3390/app12010034 DOI: https://doi.org/10.3390/app12010034
Akhta, M. S., Riaz, S., Noor, R., & Naseem, S. (2013). Optical and structural properties of ZnO thin films for solar cell applications. Advanced Science Letters, 19(3), 834–838. https://doi.org/10.1166/asl.2013.4822 DOI: https://doi.org/10.1166/asl.2013.4822
Alsaad, A. M., Ahmad, A. A., Qattan, I. A., Al-Bataineh, Q. M., & Albataineh, Z. (2020). Structural, optoelectrical, linear, and nonlinear optical characterizations of dip-synthesized undoped zno and group iii elements (B, al, ga, and in)-doped zno thin films. Crystals, 10(4). https://doi.org/10.3390/cryst10040252 DOI: https://doi.org/10.3390/cryst10040252
Alsagri, A. S. (2022). Photovoltaic and Photovoltaic Thermal Technologies for Refrigeration Purposes: An Overview. Arabian Journal for Science and Engineering, 47(7), 7911–7944. https://doi.org/10.1007/s13369-021-06534-2 DOI: https://doi.org/10.1007/s13369-021-06534-2
Amakali, T., Daniel, L. S., Uahengo, V., Dzade, N. Y., & Leeuw, N. H. De. (2020). Structural and Optical Properties of ZnO Thin Films Sol – Gel Methods. Crystals, 10(2), 132. DOI: https://doi.org/10.3390/cryst10020132
Andjela B, S. (2021). Application of photovoltaic technology in the use of solar energy. Annals of Environmental Science and Toxicology, 5, 094–098. https://doi.org/10.17352/aest.000044 DOI: https://doi.org/10.17352/aest.000044
Asif, N., Amir, M., & Fatma, T. (2023). Recent advances in the synthesis, characterization and biomedical applications of zinc oxide nanoparticles. Bioprocess and Biosystems Engineering, 0123456789. https://doi.org/10.1007/s00449-023-02886-1 DOI: https://doi.org/10.1007/s00449-023-02886-1
Battaglia, C., Cuevas, A., & De Wolf, S. (2016). High-efficiency crystalline silicon solar cells: Status and perspectives. Energy and Environmental Science, 9(5), 1552–1576. https://doi.org/10.1039/c5ee03380b DOI: https://doi.org/10.1039/C5EE03380B
Bhandari, K. P., Sapkota, D. R., Jamarkattel, M. K., Stillion, Q., & Collins, R. W. (2023). Zinc Oxide Nanoparticles—Solution-Based Synthesis and Characterizations. Nanomaterials, 13(11), 1–15. https://doi.org/10.3390/nano13111795 DOI: https://doi.org/10.3390/nano13111795
Bin Rafiq, M. K. S., Amin, N., Alharbi, H. F., Luqman, M., Ayob, A., Alharthi, Y. S., Alharthi, N. H., Bais, B., & Akhtaruzzaman, M. (2020). WS2: A New Window Layer Material for Solar Cell Application. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-57596-5 DOI: https://doi.org/10.1038/s41598-020-57596-5
Bokov, D., Turki Jalil, A., Chupradit, S., Suksatan, W., Javed Ansari, M., Shewael, I. H., Valiev, G. H., & Kianfar, E. (2021). Nanomaterial by Sol-Gel method: Synthesis and application. Advances in Materials Science and Engineering. https://doi.org/10.1155/2021/5102014 DOI: https://doi.org/10.1155/2021/5102014
Bouacheria, M. A., Djelloul, A., Adnane, M., Larbah, Y., & Benharrat, L. (2022). Characteristics of ZnO and Al doped zno thin films prepared by sol gel method for solar cell applications. Journal of Inorganic and Organometallic Polymers and Materials, 32(7), 2737–2747. https://doi.org/10.1007/s10904-022-02313-0 DOI: https://doi.org/10.1007/s10904-022-02313-0
Carofiglio, M., Barui, S., Cauda, V., & Laurenti, M. (2020). Doped zinc oxide nanoparticles: Synthesis, characterization and potential use in nanomedicine. Applied Sciences (Switzerland), 10(15). https://doi.org/10.3390/app10155194 DOI: https://doi.org/10.3390/app10155194
Castañeda, L. (2022). Review of Con-ducting Oxides Semiconductors in Thin Solid Films. Biomed J Sci & Tech Res, 41(1), 32261–32270. https://doi.org/10.26717/BJSTR.2022.41.006531
Chavan, G. T., Kim, Y., Khokhar, M. Q., Hussain, S. Q., Cho, E. C., Yi, J., Ahmad, Z., Rosaiah, P., & Jeon, C. W. (2023). A Brief Review of Transparent Conducting Oxides (TCO): The Influence of Different Deposition Techniques on the Efficiency of Solar Cells. Nanomaterials, 13(7). https://doi.org/10.3390/nano13071226 DOI: https://doi.org/10.3390/nano13071226
Chowdhury, T. A., Bin Zafar, M. A., Sajjad-Ul Islam, M., Shahinuzzaman, M., Islam, M. A., & Khandaker, M. U. (2023). Stability of perovskite solar cells: issues and prospects. RSC Advances, 13(3), 1787–1810. https://doi.org/10.1039/d2ra05903g DOI: https://doi.org/10.1039/D2RA05903G
Dervin, S., & Pillai, S. C. (2017). An introduction to sol-gel processing for aerogels. February, 1–22. https://doi.org/10.1007/978-3-319-50144-4_1 DOI: https://doi.org/10.1007/978-3-319-50144-4_1
Doroody, C., Rahman, K. S., Kiong, T. S., & Amin, N. (2022). Optoelectrical impact of alternative window layer composition in CdTe thin film solar cells performance. Solar Energy, 233(February), 523–530. https://doi.org/10.1016/j.solener.2022.01.049 DOI: https://doi.org/10.1016/j.solener.2022.01.049
Esposito, S. (2019). Traditional sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials, 12(4), 1–25. https://doi.org/10.3390/ma12040668 DOI: https://doi.org/10.3390/ma12040668
Gultepe, O., & Atay, F. (2022). Al and B co-doped ZnO samples as an alternative to ITO for transparent electronics applications. Journal of Materials Science: Materials in Electronics, 33(18), 15039–15053. https://doi.org/10.1007/s10854-022-08421-4 DOI: https://doi.org/10.1007/s10854-022-08421-4
Hassan, H. Z., & Mohamad, A. A. (2012). A review on solar cold production through absorption technology. Renewable and Sustainable Energy Reviews, 16(7), 5331–5348. https://doi.org/10.1016/j.rser.2012.04.049 DOI: https://doi.org/10.1016/j.rser.2012.04.049
Holechek, J. L., Geli, H. M. E., Sawalhah, M. N., & Valdez, R. (2022). A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability (Switzerland), 14(8), 1–22. https://doi.org/10.3390/su14084792 DOI: https://doi.org/10.3390/su14084792
Huang, G., Wang, K., & Markides, C. N. (2021). Photovoltaic / Thermal Solar Collectors (Issue January). https://doi.org/10.1016/B978-0-12-819727-1.00051-0 DOI: https://doi.org/10.1016/B978-0-12-819727-1.00051-0
Huang, H. H., Liu, Q. H., Tsai, H., Shrestha, S., Su, L. Y., Chen, P. T., Chen, Y. T., Yang, T. A., Lu, H., Chuang, C. H., Lin, K. F., Rwei, S. P., Nie, W., & Wang, L. (2021). A simple one-step method with wide processing window for high-quality perovskite mini-module fabrication. Joule, 5(4), 958–974. https://doi.org/10.1016/j.joule.2021.02.012 DOI: https://doi.org/10.1016/j.joule.2021.02.012
Im, H., Wittenberg, N. J., Lindquist, N. C., & Oh, S. H. (2012). Atomic layer deposition: A versatile technique for plasmonics and nanobiotechnology. Journal of Materials Research, 27(4), 663–671. https://doi.org/10.1557/jmr.2011.434 DOI: https://doi.org/10.1557/jmr.2011.434
Imran, H. J., Hubeatir, K. A., Aadim, K. A., & Abd, D. S. (2021). Preparation methods and classification study of nanomaterial: A review. Journal of Physics: Conference Series, 1818(1). https://doi.org/10.1088/1742-6596/1818/1/012127 DOI: https://doi.org/10.1088/1742-6596/1818/1/012127
Jang, S., Karade, V. C., Jang, J. S., Jo, E., Shim, H., Kim, S. G., Patil, K., Gour, K. S., & Kim, J. H. (2023). Achieving over 10% device efficiency in Cu2ZnSn(S,Se)4 thin-film solar cells with modifications of window layer properties. Journal of Alloys and Compounds, 930, 167302. https://doi.org/10.1016/j.jallcom.2022.167302 DOI: https://doi.org/10.1016/j.jallcom.2022.167302
Khantoul, A. R., Sebais, M., Rahal, B., Boudine, B., & Halimi, O. (2018). Structural and optical properties of zno and co doped ZnO thin films prepared by sol-gel. Acta Physica Polonica A, 133(1), 114–117. https://doi.org/10.12693/APhysPolA.133.114 DOI: https://doi.org/10.12693/APhysPolA.133.114
Koralli, P., Varol, S. F., Mousdis, G., Mouzakis, D. E., Merdan, Z., & Kompitsas, M. (2022). Comparative Studies of Undoped/Al-Doped/In-Doped ZnO Transparent Conducting Oxide Thin Films in Optoelectronic Applications. Chemosensors, 10(5). https://doi.org/10.3390/chemosensors10050162 DOI: https://doi.org/10.3390/chemosensors10050162
Larsson, F. (2020). Window Layer Structures for Chalcopyrite Thin-Film Solar Cells. http://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A1456222&dswid=-5593
Li, Y., Cheng, M., Jungstedt, E., Xu, B., Sun, L., & Berglund, L. (2019). Optically Transparent Wood Substrate for Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 7(6), 6061–6067. https://doi.org/10.1021/acssuschemeng.8b06248 DOI: https://doi.org/10.1021/acssuschemeng.8b06248
Mahmood, A., & Naeem, A. (2017). Sol-gel-derived doped zno thin films: Processing, properties, and applications. Recent Applications in Sol-Gel Synthesis. https://doi.org/10.5772/67857 DOI: https://doi.org/10.5772/67857
Mandal, A. K., Katuwal, S., Tettey, F., Gupta, A., Bhattarai, S., Jaisi, S., Bhandari, D. P., Shah, A. K., Bhattarai, N., & Parajuli, N. (2022). Current research on zinc oxide nanoparticles: Synthesis, characterization, and biomedical applications. Nanomaterials, 12(17). https://doi.org/10.3390/nano12173066 DOI: https://doi.org/10.3390/nano12173066
Mishra, P. N., Mishra, P. K., & Pathak, D. (2022). The influence of Al doping on the optical characteristics of ZnO nanopowders obtained by the low-cost sol-gel method. Chemistry (Switzerland), 4(4), 1136–1146. https://doi.org/10.3390/chemistry4040077b DOI: https://doi.org/10.3390/chemistry4040077
Naser, A., Hachim, D., & Abed, Q. (2022). A review of Effect the Zinc Oxide deposition on Crystalline Silicon Solar Cells. https://doi.org/10.4108/eai.7-9-2021.2314810 DOI: https://doi.org/10.4108/eai.7-9-2021.2314810
Negrescu, A. M., Killian, M. S., Raghu, S. N. V., Schmuki, P., Mazare, A., & Cimpean, A. (2022). Metal oxide nanoparticles: Review of Synthesis, Characterization and Biological Effects. Journal of Functional Biomaterials, 13(4). https://doi.org/10.3390/jfb13040274 DOI: https://doi.org/10.3390/jfb13040274
Neha, & Rambeer, J. (2021). Renewable energy sources: A review. Journal of Physics: Conference Series, 1979(1). https://doi.org/10.1088/1742-6596/1979/1/012023 DOI: https://doi.org/10.1088/1742-6596/1979/1/012023
Nourdine, A., Abdelli, M., Charvin, N., & Flandin, L. (2021). Custom synthesis of zno nanowires for efficient ambient air-processed solar cells. ACS Omega, 6(48), 32365–32378. https://doi.org/10.1021/acsomega.1c01654 DOI: https://doi.org/10.1021/acsomega.1c01654
Oleshko, O., Husak, Y., Korniienko, V., Pshenychnyi, R., Varava, Y., Kalinkevich, O., Pisarek, M., Grundsteins, K., Pogorielova, O., Mishchenko, O., Simka, W., Viter, R., & Pogorielov, M. (2020). Biocompatibility and antibacterial properties of zno-incorporated anodic oxide coatings on TiZrNb alloy. Nanomaterials, 10(12), 1–15. https://doi.org/10.3390/nano10122401 DOI: https://doi.org/10.3390/nano10122401
Orori, M. C. (2023). Properties of Zinc Oxide thin layers for Photovoltaic Applications. (Indicate the journal), 7(3), 1–9. https://doi.org/10.19080/JOJMS.2023.07.555716 DOI: https://doi.org/10.19080/JOJMS.2023.07.555716
Owens, G. J., Singh, R. K., Foroutan, F., Alqaysi, M., Han, C. M., Mahapatra, C., Kim, H. W., & Knowles, J. C. (2016). Sol-gel based materials for biomedical applications. Progress in Materials Science, 77, 1–79. https://doi.org/10.1016/j.pmatsci.2015.12.001 DOI: https://doi.org/10.1016/j.pmatsci.2015.12.001
Pastuszak, J., & Węgierek, P. (2022). Photovoltaic cell generations and current research directions for their development. Materials, 15(16). https://doi.org/10.3390/ma15165542 DOI: https://doi.org/10.3390/ma15165542
Periyasamy, A. P., Venkataraman, M., Kremenakova, D., Militky, J., & Zhou, Y. (2020). Progress in sol-gel technology for the coatings of fabrics. Materials, 13(8). https://doi.org/10.3390/MA13081838 DOI: https://doi.org/10.3390/ma13081838
Prasetyo, S. D., Prabowo, A. R., & Arifin, Z. (2023). The use of a hybrid photovoltaic/thermal (PV/T) collector system as a sustainable energy-harvest instrument in urban technology. Heliyon, 9(2), e13390. https://doi.org/10.1016/j.heliyon.2023.e13390 DOI: https://doi.org/10.1016/j.heliyon.2023.e13390
Regmi, G., Rijal, S., & Velumani, S. (2023). Aluminum-doped zinc oxide ( AZO ) ultra-thin films deposited by radio frequency sputtering for flexible Cu ( In, Ga ) Se 2 solar cells. Memories - Materials, Devices, Circuits and Systems, 5(June), 100064. https://doi.org/10.1016/j.memori.2023.100064 DOI: https://doi.org/10.1016/j.memori.2023.100064
Sarma, B., Barman, D., & Sarma, B. K. (2019). AZO (Al:ZnO) thin films with high figure of merit as stable indium free transparent conducting oxide. Applied Surface Science, #pagerange#. https://doi.org/10.1016/j.apsusc.2019.02.146 DOI: https://doi.org/10.1016/j.apsusc.2019.02.146
Savale, P. A. (2016). Physical vapor deposition (PVD) methods for synthesis of thin films: A comparative study. Scholars Research Library Archives of Applied Science Research, 8(5), 1–8. http://scholarsresearchlibrary.com/archive.html
Shaikhaldein, H. O., Al-qurainy, F., Khan, S., Nadeem, M., Tarroum, M., Salih, A. M., Gaafar, A. Z., Alshameri, A., Alansi, S., Alenezi, N. A., & Alfarraj, N. S. (2021). Biosynthesis and characterization of zno nanoparticles using ochradenus arabicus and their effect on growth and antioxidant systems of maerua oblongifolia. Plants, 10(1), 1801. DOI: https://doi.org/10.1038/s41598-020-74675-9
Sharma, S., Singh, K., Kumar, S., Bhatt, K., Dwivedi, Y., Rana, A., & Tripathi, C. C. (2021). Fabrication of reduced graphene oxide modified poly(3,4-ethylenedioxythiophene) polystyrene sulfonate based transparent conducting electrodes for flexible optoelectronic application. SN Applied Sciences, 3(1), 1–8. https://doi.org/10.1007/s42452-020-04034-w DOI: https://doi.org/10.1007/s42452-020-04034-w
Sharmin, A., Tabassum, S., Bashar, M. S., & Mahmood, Z. H. (2019). Depositions and characterization of sol–gel processed Al-doped ZnO (AZO) as transparent conducting oxide (TCO) for solar cell application. Journal of Theoretical and Applied Physics, 13(2), 123–132. https://doi.org/10.1007/s40094-019-0329-0 DOI: https://doi.org/10.1007/s40094-019-0329-0
Shweta, K. P., & Thapa, K. B. (2019). Synthesis and characterization of ZnO nano-particles for solar cell application by the cost effective co-precipitation method without any surfactants. AIP Conference Proceedings, 2142(September). https://doi.org/10.1063/1.5122336 DOI: https://doi.org/10.1063/1.5122336
Sivaraj, S., Rathanasamy, R., Kaliyannan, G. V., Panchal, H., Jawad Alrubaie, A., Musa Jaber, M., Said, Z., & Memon, S. (2022). A Comprehensive Review on Current Performance, Challenges and Progress in Thin-Film Solar Cells. Energies, 15(22). https://doi.org/10.3390/en15228688 DOI: https://doi.org/10.3390/en15228688
Speaks, D. T. (2020). Effect of concentration, aging, and annealing on sol gel ZnO and Al-doped ZnO thin films. International Journal of Mechanical and Materials Engineering, 15(1). https://doi.org/10.1186/s40712-019-0113-6 DOI: https://doi.org/10.1186/s40712-019-0113-6
Steenhusen, S., Scherg, G. P., & Löbmann, P. (2023). Increased durability of sol–gel derived MgF2 antireflective coatings capped by vapor deposition. Journal of Sol-Gel Science and Technology, 105(1), 58–62. https://doi.org/10.1007/s10971-022-05977-9 DOI: https://doi.org/10.1007/s10971-022-05977-9
Suriyachai, N., Chuangchote, S., Laosiripojana, N., Champreda, V., & Sagawa, T. (2020). Synergistic effects of co-doping on photocatalytic activity of titanium dioxide on glucose conversion to value-added chemicals. ACS Omega, 5(32), 20373–20381. https://doi.org/10.1021/acsomega.0c02334 DOI: https://doi.org/10.1021/acsomega.0c02334
Vallejos, S., Di Maggio, F., Shujah, T., & Blackman, C. (2016). Chemical vapour deposition of gas sensitive metal oxides. Chemosensors, 4(1), 1–18. https://doi.org/10.3390/chemosensors4010004 DOI: https://doi.org/10.3390/chemosensors4010004
Vignesh, K., Nair, A. S., Udhayakeerthana, C., & Kalaivani, T. (2022). Synthesis and characterization ZnO nanoparticles using sol-gel method and their antibacterial study. IOP Conference Series: Materials Science and Engineering, 1219(1), 012019. https://doi.org/10.1088/1757-899x/1219/1/012019 DOI: https://doi.org/10.1088/1757-899X/1219/1/012019
Wai, H. S., & Li, C. (2022). Effect of aluminum doping ratios on the properties of aluminum-doped zinc oxide films deposited by mist chemical vapor deposition method applying for photocatalysis. Nanomaterials, 12(2). https://doi.org/10.3390/nano12020195 DOI: https://doi.org/10.3390/nano12020195
Zyoud, S. H., Zyoud, A. H., Abdelkader, A., & Ahmed, N. M. (2021). Numerical simulation for optimization of znte-based thin-film heterojunction solar cells with different metal chalcogenide buffer layers replacements: Scaps-1d simulation program. International Review on Modelling and Simulations, 14(2), 79–88. https://doi.org/10.15866/iremos.v14i2.19954 DOI: https://doi.org/10.15866/iremos.v14i2.19954