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Abstract  

The free vibration response of an axially functionally graded rotating cantilever tapered Rayleigh beam based on 

Rayleigh Beam Theory (RBT) is studied using the Differential Transform Method (DTM) and Variational 

Iteration Method (VIM).  Firstly, the governing partial differential equations of motion are simplified into ordinary 

differential equations through the separation of variables. Then, dimensionless parameters are integrated into the 

equations of motion to derive a set of recurrence equations. Utilising MAPLE 18 computer codes, the 

dimensionless frequencies and mode shapes are computed through direct algebraic operations and derived 

equations. The competency of DTM and VIM in determining the frequency parameters and the vibration modes 

of a rotating cantilever tapered Rayleigh beam composed of gradient materials is examined, and the influences of 

taper ratio, inverse of the slenderness ratio and rotational speed on the dimensionless frequencies are analysed. 

The first eight dimensionless frequencies' convergence and the associated vibration modes are displayed in graphs. 

For validation of results, a comparison is carried out between the methods adopted in this study. The outcomes 

reveal that the two semi-analytical techniques are effective and reliable and can be easily employed to examine 

functionally graded beams' free vibration. The results obtained show that there is excellent agreement between 

the two methods used. 

Keywords: Rotating Tapered Beam, Free Vibration, Functionally Graded Beam, Variational Iteration Method, 

Differential Transform Method 

 

Introduction 

An entirely modern family of hybrid materials called Functionally Graded Materials (FGMs), is studied in this 

work. In the past few years, the stationary and kinetic examination of Functionally Graded Beams (FGBs) has 

significantly drawn a large number of researchers. The concept of materials with functional grades was first 

proposed in 1984 by experts from various disciplines in Japan as means of creating heat-resistant materials 

(Nguyen et al., 2020). The research on FGMs is increasing exponentially due to its capability to meet some 

expected material features unlike  the usual non-heterogeneous and layered composite materials which undergo 

separation between them, massive residual stress, immense plastic distortions, etc. A FGM can be suitable 

alternative for structural materials of rotating beams since the dynamic behaviour of engineering components with 

FGMs plays a vital role in both research as well as industrial fields. Several investigations have been performed 

on functionally graded materials. New heterogeneous materials that are functionally graded are employed to 

design structures when exposed to high temperatures. FGMs are metal-matrix composites characterized by gradual 

changes in material ratios. Typically, these materials consist of ceramic and metal alloy blended together or from 

materials integration. The ceramic component is responsible for the high-thermal resilience as result of its low 

heat conductivity. Functionally graded materials are one of the high-tech materials whose physical-mechanical 

parameters vary continuously with respect to position or distance. The usage of FGMs in load-bearing structures 

leads stress relief, improves the strength and toughness of structure. The deformable metal component however, 

prevents breakage caused by stresses as a result of rapid temperature change in a short time frame. FGMs have 
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become increasingly useful and are now being applied in high-tech transportations and defense industries, nuclear 

reactors and electronics. 

Ebrahimi and Dashti (2015) used DTM in a study to examine the free vibration response of a spinning double 

tapered FGB in which the material parameters of the beam gradually change throughout the thickness in line with 

the power-law distribution in the proportion of constituent volumes. The study on free vibration of simply 

supported Rayleigh beam made up of multiphase materials was carried out by Avcar and Alwan, (2007) in which 

the equations describing the dynamics of FGBs were determined based on Rayleigh beam theory and the beam's 

material parameters are steadily graded throughout its thickness in accordance with power-law distribution. The 

formulation of a detailed transfer matrix technique for investigating the natural vibration properties of a FGB 

whereby the transfer matrix for the composite beam was derived from the interaction between forces and 

displacements at both beam ends (Lee, 2017). A novel technique to natural vibration properties of FG rotating 

Bernoulli-Euler beam using DTM was investigated by (Kumar et al., 2017). An overview of the dynamic stiffness 

method (DSM) for natural vibration characteristics of both functionally and non functionally graded beams in 

which the Wittrick-Williams algorithm was adopted to demonstrate the effectiveness of DSM in addressing free 

vibration problem of beams was presented by (Banerjee, 2019). The analysis of dynamic behaviour of spinning 

Timoshenko beams made up of axially graded materials that undergone flapwise bending using differential 

transform method was examined by (Ozdemir, 2019). The dynamic equilibrium and natural vibration properties 

of a spinning FG Timoshenko beam with gradual material property variations along its thickness in line with the 

power and exponential rules using finite element method was conducted by (Padhi et al., 2019). 

Different approaches, theories and assumptions have been employed in numerous researches to examine how 

functionally graded beams behave dynamically when subjected to different transient loads system (Al-Hawamdeh 

et al., 2017; Abu-Alshaikh & Almbaidin, 2020; Akbas, 2020; Huang et al., 2023; Nguyen et al., 2020). Gbadeyan 

and Olotu, (2020) examined the natural vibration study of rotating non-uniform prestressed Rayleigh beam via 

DTM whereby, they considered a model for which only the mass density per unit length remains constant while 

the modulus of elasticity was a function of coordinate x. Investigation was carried out on the dynamic reactions 

of beams in rotation with elastic constraints utilizing the modified Fourier series method, revealing the significant 

influence of linear springs on frequency and the lagging effect of elastic restraints on the rotational speed, as stated 

by (Guo et al., 2024; Wang et al., 2022). The finite element technique was used to examine how rotational speed 

affected a spinning cantilever beam's vibration. According to Ilechukwu et al. (2024), this study illustrated 

significance of taking rotational effects into account when designing beams. Non-uniform Rayleigh beams' 

dynamic behaviour in free vibration with a clamped-free boundary condition under rotation was examined, 

highlighting the superiority of p-FEM over h-FEM through convergence studies (Dhar & Sakar, 2023). The 

modeling and vibration behaviour of rotating piezoelectric multi-layer beams were investigated in a study by Chen 

et al. (2024), which found that the modal characteristics were significantly influenced by the tip mass, setting 

angle, and rotating speed. 

The free dynamic response of double-tapered beams in rotation which comprised of two-way functionally graded 

materials was conducted using three different beam theories, (Taima et al., 2023). An investigational research was 

conducted to analyze the flap-wise dynamic chacacteristics of spinning beams with varied cross-sectional designs. 

Digital Image Correlation measurement and Frequency Domain Decomposition were employed to find the 

vibration characteristics of the system (Huang et al., 2023). In order to give useful analytical approximations for 

structural design projects, a study examined the vibration behaviour of non-uniform beams using the Aboodh 

transform-based variational iteration method (Anjum et al., 2024). Addressing a critical knowledge gap in 

vibration analysis, this study focuses on analyzing the natural vibration properties of axially FG tapered rotating 

cantilever Rayleigh beams, a problem that has not been adequately addressed despite extensive research on FG 

beams. In order close this gap, the study uses two numerical techniques to examine the beam's free vibration - the 

VIM and DTM. The gradient material properties-the mass density and the modulus of elasticity are assumed to 

exhibit a continuous variation through the beam's axial length. This study contributes to filling the knowledge gap 

in the vibration behaviour of FG beams, specifically for axially FG tapered rotating cantilever Rayleigh beams. 

The findings will provide valuable insights for researchers and engineers working on similar problems. 

 

Materials and methods 

Considering an axially functionally graded rotating cantilever tapered Rayleigh beam about a vertical axis with a 

uniform rotation speed Ω of finite length 𝑙 as shown in Figure 1. The governing equation of motion is given by 

(Li et al., 2015) as  
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where 𝑀(𝑥, 𝑡) denotes the beam's dynamic response, 𝜌(𝑥) is the mass per unit volume, 𝐼(𝑥) is moment of inertia, 

A(x) is the variable cross-sectional area, 𝐸(𝑥) is Young’s modulus, 𝑥 is the coordinate along the longitudinal axis, 

𝑡 is the time. 𝑄(𝑥) is the arbitrary axial tensile excitation force. When an axial end force 𝑄0 is applied to the beam, 

𝑄(𝑥) is a constant function with 𝑄(𝑥) = 𝑄0. However, if the beam is impacted by distributed axial force 𝑔(𝑥), 

this implies that ( ) = ( )
l

x
Q x g d  .  

 

 

       

Figure 1: Configuration of axially functionally graded non-uinform rotating cantilever beam  
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The boundary conditions are 
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At 𝑥 = 𝑙,  
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 For free vibration, the following form of response applies 
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 Putting eq. (7) into eq. (1) leads to  
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In addition, using eq. (7), eqs. (3) - (6) are stated as: 
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The dimensionless parameters are applied:  
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The dimensionless forms eq. (8) and eqs. (9) - (12) are expressed as: 
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Differential Transform Method (DTM)  

A reliable and analytical method is the Differential Transform Method (DTM) derived from Taylor series 

expansion, primarily used to solve differential equations. Introduced by Zhou in 1986, DTM effectively addresses 

both linear and nonlinear equations, particularly in the field of electrical circuits. Through specific transformation 

rules, DTM changes differential equations and their boundary conditions into algebraic equations. By solving 

these equations, the method yields the expected solutions. Unlike traditional high-order Taylor series expansions, 

that require symbolic manipulation of differential coefficients, DTM provides a recursive approach to obtain 

higher-order solutions. This process ultimately leads to an exact solution  expressed in algebraic form. Basic 

definition and operations of DTM are presented as follows. Consider a function y(t) that is analytic in the domain 

D. This function can be expressed as a power series expansion centered at any point in the domain. The differential 

transform of y(t) is defined as:   
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In eq. (19),  𝑦(𝑡) is the original function and �̅�(𝑛) is the transformed function. 

The inverse differential transform of �̅�(𝑛) is defined as  
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Combining eqs. (19) and (20) gives  

                 

                
0 0

( )
( ) ,

!

n n

n
n t

t d y t
y t

n dt



= =

 
=  

 
                                             (21) 

 

denotes the Taylor series of 𝑦(𝑡) at 𝑡 = 0. According to eq. (21) the Taylor series expansion is the source of the 

differential transformation concept. In practice, a finite series is used to define the function 𝑦(𝑡), and eq. (21) is 

written as  
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is negligibly small. 
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The value of m in this study cannot be determined until the natural frequencies have converged. 

In addition, the original functions are represented by the small letters and a bar over the capital letters to 

represent the functions that have been transformed. 

Application of Differential Transform Method 

Defining 𝜆 = Λ2, the recursive algebraic relation holds when eq. (14) is differentially transformed: 
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where ( ), ( ), ( ), ( )Q k P k Y k H k and ( )V k  are the T-functions of ( ), ( ), ( ), ( )q p y h     and ( )v   

respectively. 

Eq. (19) is used to transform eqs. (15) and (16) into 
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Eq. (20) is used to transform eqs. (17) and (18) into 
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Eqs. (25) - (28) are algebraic equations solved utilizing MAPLE 18. 
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Assumed that  
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 where s  and z  are undetermined constants. Putting 𝑘 = 0 into eq. (24) yields 
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Similarly, putting 𝑘 = 1 into eq. (24) to obtain  
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Using the same recurrence relation, the subsequent terms can be iteratively calculated, the 𝑚𝑡ℎ term �̅�(𝑚) can 

also be determined, with 𝑚 being a function of the dimensionless frequency's convergence. Putting �̅�(0)𝑡𝑜 �̅�(𝑚) 

into eqs. (27) and (28) to get  
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The dimensionless frequencies are computed by solving eq. (34).  

With 𝜆 = Λ2, we get Λ = Λ𝑖
(𝑚)

, 𝑖 = 1,2, ⋯ where Λ𝑖
(𝑚)

 is the  𝑖𝑡ℎ estimated dimensionless frequency that 

corresponds to m, given that m is established by applying the following preset value: 
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− − ò                                                                    (35) 

 

where Λ𝑖
(𝑚−1)

 is the 𝑖𝑡ℎ estimated dimensionless frequency that corresponds to 𝑚 − 1 and 𝜖 is the error 

tolerance criterion. Thus, 𝜖 = 0.0001 in this study. There is discussion of two cases from eq. (35).  

CASE I:  Λ𝑖
(𝑚)

 is the 𝑖𝑡ℎ estimated dimensionless frequency denoted Λ𝑖  if eq. (35) is satisfied. 

Putting Λ𝑖  into eq. (33), gives  

           1 1=     where  isa constant.z c s c                                           (36) 

Putting Λ𝑖  and eq. (36) into �̅�(0)  𝑡𝑜 �̅�(𝑚) using eq, (22), yields  
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given that �̅�∗(𝑘) denotes �̅�(𝑘) whose Λ and 𝑧 are replaced by Λ𝑖  and 𝑐1𝑠, the 𝑖𝑡ℎ mode shape that corresponds 

to the dimensionless frequency Λ𝑖  is ( ).iy   Additionally, by =
x

l
  leads to  
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x
Y x y

l
                                                                (38) 

CASE II: The procedures given below should be repeated until the 𝑖𝑡ℎ dimensionless frequency and 𝑖𝑡ℎ vibration 

mode are determined if eq. (35) is not satisfied. 

Step 1: Replace m with 𝑚 + 1. 

Step 2: The identical procedure outlined in eqs. (34) - (38). The free vibration response can   

be expressed using vibration mode functions as follows:  

                               
1 2

1

( , ) ( )( cos sin ),i

i

x t Y x e t e t  


=

= +                       (39) 

where the initial conditions in eq. (2) determine 𝑒1 and 𝑒2. 

 

Variational Iteration Method (VIM) 

Relatively few number of researchers has extensively used the VIM to solve vibration behaviour of structures. 

Since detailed information related to VIM is available in numerous literature, only basic concept of VIM is 

illustrated in this work .  

Consider a general non-linear differential equation 
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 ( ) ( ) = ( ),y yL N f  +  (40) 

 

where ( )f   is a known continuous function, N and L are non-linear and linear operators, respectively. Using 

the VIM theory as a basis, the following correction functional was constructed. 
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Here, µ represents a generalized Lagrange multiplier derived from variational principle, ( )ny   is a restricted 

variation of the nth-order approximation, which implies that ( ) = 0ny   where   is the variational derivative, 

( )ny   is the nth-order approximation for ( ).y   

 

By making use of eq. (41), the correction functional for the dimensionless governing eq. (14) can be written as 

1
0

( ) ( ) ( )
( ) = ( ) ( ) 2 ( ) ( ) ( )

( ) ( ) ( )

iv

n n n n n n

v t v t q t
y y y t y t y t y t

v t v t v t



  +

 
  + + + +


  

 
2 2 2 2( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

n n n n

q t h t h t p t
y t y t y t y t dt

v t v t v t v t
 

  
  + +  + + −  

    

 (42) 

 

 In this condition, the Lagrange multiplier (µ) can be determined as  

  
3( )

= (43)
3!

t 


−

                                                                         

Putting eq. (43) into eq. (42) to give  

 

3

1
0

( ) ( ) ( ) ( )
( ) = ( ) ( ) 2 ( ) ( ) ( )

3! ( ) ( ) ( )

iv

n n n n n n

t v t v t q t
y y y t y t y t y t

v t v t v t

 
 +

 −
  + + + +


  

 
2 2 2 2( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

n n n n

q t h t h t p t
y t y t y t y t dt

v t v t v t v t
 

  
  + +  + + −  

  
 (44) 

 

If = 0,1,2,3, , ,n k one can obtain the following successive iteration formula: 
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 (45) 

 

To start the initial process, the initial approximation given by 𝑦0(𝜉) in eq. (45) can be expressed as follows:  

  

 

 
2 3

0

(0) (0)
( ) = (0) (0)

2! 3!

y y
y y y   

 
+ + +  (46) 

 

where (0), (0), (0)y y y   and (0)y are unknown constants that need to be found while applying the above 

dimensionless boundary condition (He, 1999).  

 

The solution to eq. (44) can then be provided as 
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 ( ) = ( )lim k
k

y y 
→

 (47) 

 

In order to obtain a reasonable approximate solutions, a large value of "n" is chosen instead of   on the basis of 

accuracy required,  

 

 ( ) = ( ).ny y   (48) 

Substituting eq. (48) into the boundary condition, so that four systems of equations are obtained. This can be 

further assembled into matrix form 

 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

(0) 0

(0) 0
=

(0) 0

(0) 0

y

y

y

y

    
    
    
    
    

    

 (49) 

 

The coefficient matrix's determinant is zero for a non-trivial solution.  

 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

= 0  (50) 

 

Therefore, the numerical solution to the resulting polynomial in terms of ( )  for the dimensionless frequencies 

is provided. As a result, the natural frequencies are as follows: 

 

 
0 0

2

0 0

=
E I

l A





 (51) 

 

Numerical Implementation 

To illustrate the methods proposed in this research, the free vibrations of axially FG spinning cantilever tapered 

Rayleigh beam is studied. In this section, the rotating Rayleigh beam is affixed at x=0 and its material 

parameters are assumed to be 
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n
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x x
E x I x E I c

l l

x x x
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l l l



 

+    
+ −    

    


     + + −           

                        (52) 

where (0), (0), (0), (0)A I and E  represent mass per unit volume, cross-sectional area, moment of inertia, 

and Young’s modulus at 𝑥 = 0 respectively.  

The centrifugal force 𝑁(𝑥) positioned at 𝑥 distance from the center of rotation is expressed by  

  

              
2( ) = ( ) ( )

l

x
Q x x A x xdx 

              
 (53) 

where Ω is the rotational speed. 

The case =1n  is considered in eq. (40). 

For example, the expression for ( )Q x , ( )v  , ( )q  , ( )p   and ( )h   are given as follows:     
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For free vibration, substitute eqs. (54) - (59) into eq. (14) to give  
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Applying the differential transform to eq. (60) gives   
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Putting these values of (0) (3)Y Y−  and 0k =   into eq. (24), gives  

           
2 21 415
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24 12

Y s z 
  

− − +  
  

 (62) 

   

Putting the values of (0) (4)Y Y−
 
and 1k =  into eq, (24), gives  
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Putting the values of (0) (5)Y Y−
 
and 2k =  into eq. (24), yields  
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4 2 2

z 
 

+ − −  
      

 (64) 

 

Following the same recursive procedure, the 𝑚𝑡ℎ term �̅�(𝑚) can be determined. Computer codes developed 

utilizing MAPLE 18, the natural frequencies and their related vibration modes were evaluated for 𝛾 = 0.01, 𝛽 =
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0.5, 𝛼 = 5 and 𝑐 = 0.5 using eq. (61). The first four dimensionless frequencies are 𝜆1 = 6.0321 at 𝑚 = 32, 𝜆2 =
19.3552 at 𝑚 = 33, 𝜆3 = 43.7817 at 𝑚 = 38 and 𝜆4 = 79.8652 at 𝑚 = 40. Now to determine the first vibration 

mode, 𝜆1 is substituted into �̅�(0)𝑡𝑜 �̅�(32) and using eq. (22), the series function of the first vibration mode is 

obtained as                       

2 3 4 5 6 7

1
32

( ) = ( 1.1203 0.8803 0.4649 0.1501 0.0234y s      − + − + −  

           
8 9 10 11 12 13 140.0082 0.0106 0.0098 0.0058 0.0026 0.0011 0.0002      − + − + − + −  

    
15 16 5 17 5 18 5 190.0002 0.0001 3.6986 10 4.4152 10 1.2071 10    − − −+ + +  +  +   

    
5 20 7 21 7 22 6 231.1703 10 9.3479 10 1.1990 10 2.2572 10   − − − −+  +  −  −   

    
6 24 6 25 6 26 6 272.1389 10 1.9663 10 1.4513 10 1.0066 10   − − − −−  −  −  −   

    
7 28 7 29 7 30 8 316.2911 10 3.6291 10 1.8702 10 8.2063 10   − − − −−  −  −  −   

    
8 322.4896 10 )−−   (65) 

Similarly, the second vibration mode function is given by  

2 3 4 5 6 7 8

2
33

( ) = ( 1.5199 0.6777 0.9288 0.6820 0.1787 0.1974y s       − + − + − +  

        
9 10 11 12 13 14 150.0740 0.0393 0.0187 0.0040 0.0060 0.0025 0.0028      − + − + − − −  

 
16 17 18 19 20 5 210.0019 0.0013 0.0008 0.0004 0.0002 5.0658 10     −− − − − − −   

 
5 22 5 23 5 24 5 251.7332 10 4.6771 10 5.0368 10 4.3516 10   − − − −+  +  +  +   

 
5 26 5 27 5 28 6 293.2768 10 2.2504 10 1.4200 10 8.2466 10   − − − −+  +  +  +   

 
6 30 6 31 7 32 8 334.3338 10 1.9738 10 6.7339 10 3.7663 10 )   − − − −+  +  +  +   (66) 

 Also, the third vibration mode function is given by  

2 3 4 5 6 7 8

3
38

( ) = ( 2.1222 0.3637 1.6178 4.3493 0.9556 0.5350y s       − + − + − +  

  
9 10 11 12 13 14 151.9458 0.1266 0.2244 0.4982 0.0080 0.0940 0.0510      − + − + + + −  

          
16 17 18 19 20 21 220.0065 0.0136 0.0038 0.0022 0.0009 0.0005 0.0001      + − + − + − +  

   
23 5 24 5 25 6 26 6 270.0001 1.9979 10 2.8957 10 3.3247 10 4.8826 10    − − − −− +  −  +  −   

   
6 28 8 29 6 30 7 311.6778 10 7.0218 10 1.1225 10 5.9046 10   − − − −+  +  +  +   

   
7 32 7 33 7 34 7 355.9967 10 3.5216 10 2.5481 10 1.4333 10   − − − −+  +  +  +   

   
8 36 8 37 8 388.6733 10 4.3938 10 2.2159 10 )  − − −+  +  +   (67) 

 And the fourth vibration mode function is given by  
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2 3 4 5 6 7 8

4
40

( ) = ( 2.8289 0.0268 2.3856 16.0246 6.7300 3.5809y s       − − − + − −  

  
9 10 11 12 13 14 1514.7195 7.5429 4.6064 8.0067 3.3188 2.3289 3.0214      − + + + − − −  

  
16 17 18 19 20 21 220.5388 0.5239 0.7987 0.0425 0.0165 0.1256 0.0255      + + + + − − −  

  
23 24 25 26 27 28 290.0162 0.0089 0.0014 0.0027 0.0004 0.0002 0.0002      − + + + − + −  

  
5 30 5 31 6 32 5 332.5653 10 5.0620 10 9.0583 10 1.1038 10   − − − −+  −  +  −   

  
6 34 6 35 7 36 7 371.7124 10 2.7800 10 2.4008 10 6.5664 10   − − − −+  −  +  −   

  
8 38 7 39 8 405.8750 10 1.2516 10 3.3843 10 )  − − −+  −  +   (68) 

By going through similar recurrence process, other higher order dimensionless frequencies ( 5 ,   

 6 , 7  and 8 ) and the vibration mode functions that correspond to them can be found. 

 

 

Results 

Table 1. The first four dimensionless frequencies' convergence for different number of terms (𝑚) 

  

𝑚 𝜆1 𝜆2 𝜆3 𝜆4 

6 4.3365 359.8506 - - 

7 6.8139 41.2999 - - 

8 6.7090 39.5918 - - 

9 5.8981 24.8219 - - 

10 6.5596 25.1675 73.8991      - 

11 5.9982 22.2744 59.7463 286.4150 

12 6.2251 22.1913 44.0790 169.7176 

13 6.0818 21.1222 43.6837 94.3844 

14 6.1014 20.6995 40.6594 76.8238 

15 6.0674 20.1954 42.7924 59.8628 

16 6.0525 19.8467 42.0666 58.3962 

17 6.0439 19.5660 44.1464 54.3939 

18 6.0319 19.3523 43.1897 182.9810 

19 6.0278 19.2103 43.8660 131.3620 

20 6.0227 19.1222 43.5082 106.9456 
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21 6.0218 19.0877 43.7660 84.3971 

22 6.0215 19.0911 43.6877 79.6413 

23 6.0228 19.1224 43.7781 76.1763 

24 6.0246 19.1675 43.7624 78.0626 

25 6.0265 19.2159 43.7898 78.4507 

26 6.0283 19.2597 43.7861 80.4262 

27 6.0298 19.2950 43.7923 80.0230 

28 6.0308 19.3208 43.7898 80.2573 

29 6.0315 19.3379 43.7896 79.9285 

30 6.0318 19.3480 43.7875 79.9670 

31 6.0320 19.3532 43.7861 79.8778 

32 6.0321 19.3551 43.7846 79.8958 

33 6.0321 19.3552 43.7837 79.8707 

34 6.0321 19.3551 43.7828 79.8751 

35 6.0320 19.3550 43.7823 79.8670 

36 6.0320 19.3549 43.7820 79.8678 

37 6.0319 19.3548 43.7818 79.8654 

38 6.0319 19.3499 43.7817 79.8656 

39 6.0319 19.3498 43.7817 79.8651 

40 6.0319 19.3497 43.7816 79.8652 

 

    

Table 2. The Convergence of the fifth-eighth dimensionless frequencies for different number of   

         terms (𝑚) 

 

𝑚 𝜆5 𝜆6 𝜆7 𝜆8 

20 263.2267 - - - 

25 100.0973 169.7261 384.3374 1033.7109 

26 97.2986 143.2639 291.7822 705.7031 

27 110.4462 115.0735 234.0915 511.3601 

28 190.3831 393.6437 921.2227 2333.7308 

29 161.9919 310.7301 673.2418 1695.1102 

30 136.2866 255.0703 513.8866 1173.6024 
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40 127.6035 186.1657 285.4292 473.6117 

41 127.6078 182.6694 253.6838 406.5400 

42 127.5966 183.7248 230.2007 354.4214 

43 127.5989 185.2632 220.4645 312.4231 

44 127.5952 186.8228 219.7709 280.0039 

45 127.5952 187.1176 232.1961 250.4475 

46 127.5938 187.1295 340.5123 528.1634 

47 127.5936 186.9677 306.3635 464.0827 

48 127.5931 186.9140 274.1329 412.4063 

49 127.5930 186.8753 257.2678 369.8167 

50 127.5929 186.8745 253.7965 335.5048 

51 127.5928 186.8712 254.5790 310.2504 

52 127.5928 186.8733 256.1257 299.6250 

53 127.5928 186.8725 257.4041 300.1089 

54 127.5928 186.8726 257.7453 314.1927 

55 127.5928 186.8721 257.7446 432.1762 

56 127.5928 186.8720 257.6346 393.1672 

57 127.5928 186.8718 257.5810 358.7274 

58 127.5928 186.8717 257.5541 339.6246 

59 127.5928 186.8716 257.5515 336.3390 

60 127.5928 186.8716 257.5512 336.9179 

64 127.5928 186.8716 257.5532 339.5808 

65 127.5928 186.8716 257.5531 339.5070 

66 127.5928 186.8716 257.5530 339.4631 

67 127.5928 186.8716 257.5530 339.4441 

68 127.5928 186.8716 257.5530 339.4413 

69 127.5928 186.8716 257.5530 339.4418 

70 127.5928 186.8716 257.5530 339.4431 

71 127.5928 186.8716 257.5530 339.4437 

72 127.5928 186.8716 257.5530 339.4438 

 

   

Table 3. Comparison of the first eight dimensionless frequencies for 𝛾 = 0.01, 𝛽 = 0.5, 𝛼 = 5   
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         and 𝑐 = 0.5 

 

𝜆𝑖 DTM VIM 

𝜆1 6.0319 6.0319 

𝜆2 19.3496 19.3496 

𝜆3 43.7817 43.7817 

𝜆4 79.8656 79.8656 

𝜆5 127.5928 127.5928 

𝜆6 186.8716 186.8716 

𝜆7 257.5529 257.5529 

𝜆8 339.4437 339.4437 

 

Table 4.  Effects of the inverse of slenderness ratio (𝛾), rotational speed (𝛼) and taper ratio (𝑐) on  

          the dimensionless frequencies 

   

γ α 
 λ1   λ2   λ3  

  c = 0.25 c = 0.50 c = 0.75 c = 0.25  c = 0.50 c = 0.75 c = 0.25 c = 0.50 c = 0.75 

0.100  2.4134 2.5528 2.8205 14.6015 13.4591 12.0316 37.0061 33.4240 28.5018 

0.050  2.4233 2.5653 2.8347 15.4831 14.0155 12.3341 42.3919 36.8903 30.3118 

0.033  2.4252 2.5677 2.8375 15.6636 14.1262 12.3926 43.6754 37.6600 30.6863 

0.025 0 2.4258 2.5685 2.8384 15.7282 14.1655 12.4133 44.1531 37.9410 30.8207 

0.020  2.4261 2.5689 2.8388 15.7583 14.1839 12.4228 44.3796 38.0733 30.8835 

0.013  2.4264 2.5693 2.8392 15.7883 14.2020 12.4324 44.6068 38.2053 30.9458 

0.010  2.4265 2.5694 2.8394 15.7988 14.2084 12.4357 44.6871 38.2518 30.9678 

BE  2.4267 2.5696 2.8396 15.8123 14.2166 12.4400 44.7910 38.3119 30.9961 

0.100  5.8582 5.9707 6.1913 19.2050 18.2647 17.0030 41.3885 38.1579 33.6175 

0.050  5.8950 6.0169 6.2412 20.4468 19.0709 17.4621 47.5577 42.1971 35.7921 

0.033  5.9020 6.0255 6.2505 20.7002 19.2308 17.5508 49.0268 43.0930 36.2416 

0.025 5 5.9044 6.0286 6.2537 20.7909 19.2877 17.5821 49.5735 43.4201 36.4027 

0.020  5.9056 6.0300 6.2552 20.8332 19.3141 17.5967 49.8326 43.5740 36.4781 

0.013  5.9067 6.0314 6.2567 20.8752 19.3404 17.6111 50.0926 43.7276 36.5530 

0.010  5.9071 6.0318 6.2572 20.8899 19.3496 17.6161 50.1845 43.7817 36.5793 

BE  5.9076 6.0325 6.2579 20.9089 19.3614 17.6226 50.3034 43.8516 36.6132 

0.100  10.7223 10.8187 11.0224 28.8205 28.0700 26.7615 52.0128 49.5234 45.5642 

0.050  10.7882 10.9057 11.1203 30.7782 29.3438 27.5044 60.1575 54.9368 48.5590 

0.033  10.8010 10.9220 11.1386 31.1770 29.5965 27.6478 62.0932 56.1352 49.1769 

0.025 10 10.8055 10.9277 11.1449 31.3196 29.6862 27.6985 62.8131 56.5726 49.3985 

0.020  10.8075 10.9303 11.1479 31.3862 29.7280 27.7220 63.1545 56.7783 49.5021 

0.013  10.8096 10.9330 11.1508 31.4523 29.7695 27.7453 63.4967 56.9837 49.6049 

0.010  10.8103 10.9339 11.1519 31.4755 29.7840 27.7535 63.6178 57.0560 49.6411 

BE  10.8113 10.9350 11.1532 31.5054 29.8027 27.7640 63.7743 57.1495 49.6877 
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Figure 2: The convergence of the first, second, third and fourth dimensionless frequencies   

           (𝜆1 = 6.0321, 𝜆2 = 19.3552, 𝜆3 = 43.7817, 𝜆4 = 79.8652)  

 

 

   

Figure 3: The convergence of the fifth, sixth, seventh and eighth dimensionless frequencies  

          (𝜆5 = 127.5952, 𝜆6 = 186.8726, 𝜆7 = 257.5531, 𝜆8 = 339.4438)  
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Figure 4: The first, second, third and fourth vibration modes 

 

   

 

Figure 5: The fifth, sixth, seventh and eighth vibration modes  

 

Discussion 

Figures 2 and 3 (obtained using Tables 1 and 2) show the trend in the convergences of the initial eight 

dimensionless frequencies of an axially FG rotating cantilever tapered Rayleigh beam. It was noted that as the 

number of terms (m) increases, the first eight dimensionless frequencies 𝜆1 𝑡𝑜 𝜆8 converged to 6.0321, 19.3552, 

43.7817, 79.8652, 127.5952, 186.8726, 257.5531 and 339.4438 one after the other without skipping any 

frequencies for 𝜖 = 0.0001, the corresponding number of terms (𝑚) are 32, 33, 38, 40, 45, 54, 65 and 72 

respectively (see Tables 1 and 2). It was noted that the first dimensionless frequency 𝜆1 needed 32 terms to reach 

exact solution, second dimensionless frequency 𝜆2 used 33 terms, third dimensionless frequency 𝜆3 needed 38 

terms to reach exact solution while the fourth dimensionless frequency 𝜆4 took 40 terms to reach the convergence 

point and so on, as shown in Table 1 and 2, as well as Figures 2 and 3. Figures 4 and 5 show the dynamical 

behaviour of axially functionally graded rotating cantilever tapered Rayleigh beam at different dimensionless 

frequencies, thereby leading to various vibration modes. In particular, the first four vibration modes for example, 

are determined using their associated dimensionless frequencies and equations  (65) - (68) respectively. 
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Likewise, the other higher-order vibration modes were determined using their respective dimensionless 

frequencies and the associated vibration mode functions.  

Table 3 presents a comparison of the dimensionless frequencies computed using the differential transform method  

and the variational iteration method, showing that both methods produce identical results. Table 4 shows the 

findings for the initial three dimensionless frequencies   for varied values of inverse of the slenderness ratio ,  

for three distinct values of the tapered ratio c and different values of the rotational speed . It was observed that 

the rotational speed has an increasing effect on the dimensionless frequencies, as the inverse of slenderness ratio 

increases, there was a decrease in the dimensionless frequencies. As the taper ratio rises, the dimensionless 

frequencies, excluding the fundamental ones, tend to decrease. However, the fundamental dimensionless 

frequencies show a slight increase with increasing taper ratio, as evident from the data in Table 4. This indicates 

that the fundamental frequencies exhibit an opposite trend compared to the higher-order frequencies. The key 

findings indicate that increasing the rotational speed of an axially functionally graded rotating clamped-free 

tapered Rayleigh beam results in higher dimensionless frequencies, while increasing the inverse of slenderness 

ratio yields a reduction in its dimensionless frequencies. Additionally, increasing the beam's taper ratio generally 

causes a reduction in its dimensionless frequencies. 

 

Conclusion 

Using the methods proposed in this work, closed-form series solutions for natural vibration problem of an axially 

FG rotating cantilever tapered Rayleigh beam were obtained. By comparing the DTM and the VIM, both methods 

are easy and effective in calculating the dimensionless frequencies with high accuracy and convergence rate. The 

first eight dimensionless  frequencies and the vibration modes are calculated  and  plotted. The DTM and VIM 

processes are simple and easy to follow. All the algebraic calculations are executed speedily by using MAPLE 

18. A comparison between the results of the two methods are carried out and are found to be consistent. Thus, this 

study demonstrated the vibration analysis of FG rotating cantilever tapered Rayleigh beams is performed with 

high computational efficiency and precision using DTM and VIM.  

Recommendation     

The study on free vibration analysis of axially functionally graded rotating cantilever tapered Rayleigh beams can 

be extended by incorporating nonlinear vibration effects, temperature-dependent material properties, aerodynamic 

influences, and FG plates and shells under rotation will further broaden its engineering applications. 

Methodological improvements can be made by developing hybrid numerical methods, applying artificial 

intelligence and machine learning techniques, and conducting experimental validation to verify theoretical 

findings. Additionally, investigating different tapering profiles, axial forces, rotational speeds, and material 

gradation patterns can optimize structural performance. The findings of this study could be relevant in the fields 

of mechanical engineering by designing lightweight materials with optimized vibration properties, in aerospace 

engineering by minimizing vibration of spacecraft structures while maintaining the strength and efficiency, and 

in structural dynamics by having an understanding of how slender beams response to external forces and 

vibrations. 
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