Biosynthesis, Characterization, and Antimicrobial Activity of Silver Nanoparticles Derived from the Stem Bark Extract of Persea americana
DOI:
https://doi.org/10.63561/japs.v2i4.1027Keywords:
Characterization, Biosynthesis, Antimicrobial, Nanoparticles, Stem barkAbstract
The increasing resistance of disease-causing bacteria to the traditional antibiotics is a strong factor indicating the necessity of the environmentally friendly alternatives, and silver nanoparticles (AgNPs) produced using the plant extracts are a potential remedy. Silver nanoparticles (AgNPs) in this paper were produced through the biosynthesis process of aqueous stem bark extract of Persea Americana (avocado) and their properties measured through UV- Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR) and X ray diffraction (XRD). Phytochemical screening assay identified alkaloids, tannins, saponins and cardiac glycosides whereas quantitative analysis identified 27 major bioactive compounds, most of them flavonoids and phenolic acids. Flavone (17.797 µg/mL), flavon 3 ol (17.092 µg/mL) as well as ellagic acid (15.596 µg/mL) and gentisic acid (11.397 µg/mL) were also identified, as well as daidzin, luteolin and myricetin. These plant-based constituents were reducing and stabilizing in the formation of nanoparticles. Strong surface Plasmon resonance at 425 nm was observed in the UV- Vis, FTIR validated the presence of functional groups (-OH, C=O, C -O), and XRD identified crystalline AgNPs with face centered cubic planes. Antimicrobial assays showed that AgNPs had better inhibitory effects on Escherichia coli (29.26 mm), Salmonella typhi (27.01 mm) and Staphylococcus aureus (24.18 mm), that were in most cases better than the crude extract and comparable to chloramphenicol. Such results point to P. Americana mediated AgNPs as a viable and sustainable antimicrobial approach with great biomedical and pharmaceutical prospects
References
Ahmed, S., Saifullah, M., Ahmad, M., Swami, B. L., & Ikram, S. (2016). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences, 9(1), 1–7. https://doi.org/10.1016/j.jrras.2015.06.006
Akinmoladun, F. O., Akinrinlola, B. L., & Komolafe, T. O. (2007). Phytochemical constituents and antioxidant activity of extracts from the leaves of Ocimum gratissimum. Scientific Research and Essays, 2(5), 163–166.
Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri industrial by products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191–203. https://doi.org/10.1016/j.foodchem.2005.07.042
Barbour, E. K., Al Sharif, M., Sagherian, V. K., Habre, A. N., Talhouk, R. S., & Talhouk, S. N. (2004). Screening of selected indigenous plants of Lebanon for antimicrobial activity. Journal of Ethnopharmacology, 93(1), 1–7. https://doi.org/10.1016/j.jep.2004.03.016
Baranwal, A., Srivastava, A., Kumar, P., Bajpai, V. K., Maurya, P. K., & Chandra, P. (2018). Prospects of nanostructure materials and their composites as antimicrobial agents. Frontiers in Microbiology, 9, 422. https://doi.org/10.3389/fmicb.2018.00422
Borges, A., Abreu, A. C., Dias, C., Saavedra, M. J., Borges, F., & Simoes, M. (2016). New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules, 21(7), 877. https://doi.org/10.3390/molecules21070877
Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582. https://doi.org/10.1128/cmr.12.4.564
David, A. V. A., Arulmoli, R., & Parasuraman, S. (2016). Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacognosy Reviews, 10(20), 84–89. https://doi.org/10.4103/0973-7847.194044
Doughari, J. H., & Manzara, S. (2008). In vitro antibacterial activity of crude leaf extracts of Mangifera indica Linn. African Journal of Microbiology Research, 2(1), 67–72.
Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., & Galdiero, M. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20(5), 8856–8874. https://doi.org/10.3390/molecules20058856
Gul, R., Jan, S. U., Faridullah, S., Sherani, S., & Jahan, N. (2017). Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia. The Scientific World Journal, 2017, Article 5873648. https://doi.org/10.1155/2017/5873648
Harborne, J. B. (1998). Phytochemical methods: A guide to modern techniques of plant analysis. Springer.
Hollman, P. C. H., & Katan, M. B. (1999). Dietary flavonoids: Intake, health effects and bioavailability. Food and Chemical Toxicology, 37(9–10), 937–942. https://doi.org/10.1016/S0278-6915(99)00075-8
Iravani, S., Korbekandi, H., Mirmohammadi, S. V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: Chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9(6), 385–406. https://doi.org/10.4103/1735-5362.143360
Jayachandran, M., & Qu, S. (2023). Non-alcoholic fatty liver disease and gut microbial dysbiosis: Underlying mechanisms and gut microbiota-mediated treatment strategies. Reviews in Endocrine and Metabolic Disorders, 24(6), 1189–1204. https://doi.org/10.1007/s11154-023-09801-8
Kora, A. J., & Rastogi, L. (2021). Green synthesis of silver nanoparticles: Characterization and optimization using response surface methodology. Materials Today: Proceedings, 44, 2325–2329. https://doi.org/10.1016/j.matpr.2020.12.608
Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013, Article 162750. https://doi.org/10.1155/2013/162750
Lara, H. H., Ayala-Nunez, N. V., Ixtepan-Turrent, L., & Rodriguez Padilla, C. (2020). Mode of antiviral action of silver nanoparticles against HIV-1. Journal of Nano biotechnology, 18(1), 1–10. https://doi.org/10.1186/s12951-020-00638-1
Logaranjan, K., Raiza, A. N., Gopinath, S. C. B., & Al-Dhabi, N. A. (2020). Biogenic synthesis of silver nanoparticles using fruit extract of Ficus carica and their antibacterial activity. Journal of Photochemistry and Photobiology B: Biology, 199, 111621. https://doi.org/10.1016/j.jphotobiol.2019.111621
Loo, Y. Y., Chieng, B. W., Nishibuchi, M., & Radu, S. (2018). Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis and their antimicrobial activity. Journal of Chemistry, 2018, Article 4060780. https://doi.org/10.1155/2018/4060780
Mbagwu, F. N., Okafor, C. N., & Eze, C. N. (2022). Green synthesis of silver nanoparticles using Persea americana extracts and their antimicrobial activity. Journal of Applied Sciences and Environmental Management, 26(4), 633–640. https://doi.org/10.4314/jasem.v26i4.9
Moteriya, P., & Chanda, S. (2020). Phytochemical-assisted synthesis of silver nanoparticles and their application as anticancer agents against human lung cancer cells. Journal of Photochemistry and Photobiology B: Biology, 210, 111978. https://doi.org/10.1016/j.jphotobiol.2020.111978
Mirza, M. A., Mahmood, S., Hilles, A. R., Ali, A., Khan, M. Z., Zaidi, S. A. A., Iqbal, Z., & Ge, Y. (2023). Quercetin as a therapeutic product: Evaluation of its pharmacological action and clinical applications — a review. Pharmaceuticals, 16(11), 1631. https://doi.org/10.3390/ph16111631
Mulvihill, E. E., & Huff, M. W. (2012). Naringenin metabolism: Redox reactions and biological properties. Oxidative Medicine and Cellular Longevity, 2012, Article 530154. https://doi.org/10.1155/2012/530154
Nair, R., Kalariya, T., & Chanda, S. (2005). Antibacterial activity of some selected Indian medicinal flora. Turkish Journal of Biology, 29(1), 41–47. https://doi.org/10.3906/biy-0405-3
Njerua, S. N., Matasyoh, J., Mwaniki, C. G., Mwendia, C. M., & Kobia, G. K. (2013). A review of some phytochemicals commonly found in medicinal plants. International Journal of Medicinal Plants, 105, 135–140. https://doi.org/10.9735/2231-4490.105.135-140
Noman, M. T., Shahid, M., & Nawaz, M. (2023). Bio functionalization of metallic nanoparticles using natural polymers: A sustainable route. Materials Science and Engineering: C, 146, 114729. https://doi.org/10.1016/j.msec.2023.114729
Nna, P. J., Legborsi, J., & Orie, K. J. (2020). Comparative study on the phytoconstituents and antimicrobial analysis of Jatropha curcas leaf and stem bark. Direct Research Journal of Chemistry and Material Science, 7(3), 37–43. https://doi.org/10.26765/drjcmas.v7i3.18472
Ochor, N. O., Ngwuli, C. P., Egu, E. C., Ogbonna, P. C., & Chima, C. G. (2024). A comparative study of cosmetics properties of neem (Azadirachta indica) and avocado pear (Persea americana). Nigeria Agricultural Journal, 55(2), 361–371. https://doi.org/10.36108/naj/124.55.0224.20
Okocha, B. I., Orie, K. J., Duru, R. U., & Ngochindo, R. L. (2023). Analysis of the active metabolites of ethanol and ethyl acetate extract of Justicia carnea. African Journal of Biomedical Research, 26(1), 109–117. https://doi.org/10.4314/ajbr.v26i1.13
Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41
Pandey, A., & Tripathi, S. (2014). Concept of standardization, extraction and pre-phytochemical screening strategies for herbal drug. Journal of Pharmacognosy and Phytochemistry, 2(5), 115–119. https://doi.org/10.22271/phyto.2014.v2.i5c.15
Peteros, N. P., & Uy, M. M. (2010). Antioxidant and cytotoxic activities and phytochemical screening of four Philippine medicinal plants. Journal of Medicinal Plants Research, 4(5), 407–414. https://doi.org/10.5897/JMPR.9000040
Podschun, R., & Ullmann, U. (1998). Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical Microbiology Reviews, 11(4), 589–603. https://doi.org/10.1128/CMR.11.4.589
Prabhu, N., Divya, C., Yamuna, G., & Rajeswari, R. (2010). Phytochemical screening of Indigofera aspalathoides (Shivanar Vembu) and its antibacterial activity. International Journal of Pharma and Bio Sciences, 1(4), 1–11. https://doi.org/10.2174/2210303101001040001
Rai, M., Yadav, A., & Gade, A. (2012). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002
Raj, C. T. D., Muthukumar, K., Dahms, H.U., James, R. A., & Kandaswamy, S. (2023). Structural characterization, antioxidant and anti uropathogenic potential of biogenic silver nanoparticles using brown seaweed Turbinaria ornata. Frontiers in Microbiology, 14, Article 1072043. https://doi.org/10.3389/fmicb.2023.1072043
Rautela, A., Rani, J., & Debnath, M. (2021). Green synthesis of silver nanoparticles using leaf extract of medicinal plant: A biological approach to combat antimicrobial resistance. Materials Today: Proceedings, 46, 10423–10428. https://doi.org/10.1016/j.matpr.2020.12.789
Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., & Yoga Latha, L. (2011). Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African Journal of Traditional, Complementary and Alternative Medicines, 8(1), 1–10. https://doi.org/10.4314/ajtcam.v8i1.7
Sharma, G., Kumar, D., & Kumar, S. (2022). Green synthesis of silver nanoparticles and their applications in nanomedicine and nanotechnology. Materials Science for Energy Technologies, 5, 236–249. https://doi.org/10.1016/j.mset.2021.12.010
Sparg, S. G., Light, M. E., & Van Staden, J. (2004). Biological activities and distribution of plant saponins. Journal of Ethnopharmacology, 94(2–3), 219–243. https://doi.org/10.1016/j.jep.2004.05.012
Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2022). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 40(3), 327–339. https://doi.org/10.1016/j.tibtech.2021.07.009
Sodipo, O. A., Akiniyi, J. A., & Ogunbamosu, J. U. (2000). Studies on certain characteristics of extracts of bark of Pansinystalia macruceras (K. Schemp) Pierre Exbeille. Global Journal of Pure and Applied Sciences, 6(1), 83–87. https://doi.org/10.4314/gjpas.v6i1.10
Umesalma, S., & Sudhandiran, G. (2010). Ellagic acid reduces colon carcinogenesis induced by 1,2-dimethylhydrazine through inhibition of cell proliferation and Wnt/β-catenin signaling. European Journal of Pharmacology, 637(1–3), 22–32. https://doi.org/10.1016/j.ejphar.2010.04.036
Yao, Q., Lin, M., Wang, Y., Wang, J., & Huang, L. (2004). Structural modification and synthesis of polymethoxylated flavones as anti-inflammatory agents. Bioorganic & Medicinal Chemistry, 12(18), 4577–4583. https://doi.org/10.1016/j.bmc.2004.06.020.