Insights into the Tectonic Framework of the Benin Basin from Satellite Gravity Data Interpretation
DOI:
https://doi.org/10.63561/japs.v2i3.810Abstract
Satellite gravity data were interpreted to characterise the basement morphotectonic features and architecture beneath the Benin Basin of Nigeria. The Bouguer anomaly data was processed using the high-pass filter to generate the residual anomaly grid, which formed the basis for other edge enhancement techniques like the first vertical derivative (1VD), and tilt angle derivative (TDR) in order to map linear geological features of interest. The interpreted lineaments showed major trends in the NNE-SSW, ENE-WSW, NNW-SSE, N-S, and E-W directions. 2D forward modeling of the basement architecture revealed structural mini basins located offshore of the study region. The mini basins may have accommodated over 4 km thick sedimentary packages, indicating that they have great potentials for hydrocarbon prospectivity if the right conditions for the existence of all the petroleum systems elements are met. It is recommended that future exploration efforts be concentrated on the identified mini basins to ascertain their potential through well test drilling and prospect generation in the Benin Basin of Nigeria.
References
Ajama, O.D., Hammed, O.S., Falade, S.C., Arogundade, A.B., Olasui, O.M., Olayode, F.A., Olurin, O.T., & Awoyemi, M.O. (2017). Hydrocarbon Potentiality of Bida Basin from high resolution Aeromagnetic Data. Petroleum and Coal, 59(6), 991 - 1007.
Akande, S.O., Adekeye, O.A., Adeoye, J.A., Jacob, N., & Lufadeju, G. (2012). Paleoecologic and organic geochemical assessment of cretaceous hydrocarbon source rocks in the Gulf of Guinea: new insights from eastern Dahomey and Benue rift basins with implications for the Cenomanian-Coniacian petroleum system. In: Extended Abstract, AAPG Annual Convention and Exhibition, Long Beach, California, 1-10.
Babangida, J. (2021). Assessing the Hydrocarbon Prospectivity in the Lower Cretaceous Syn-Rift Half-Grabens in the offshore Benin Basin. Journal of Pure & Applied Sciences, 21, 158-165. DOI: https://doi.org/10.5455/sf.100061
Balmino, G., Vales, N., Bonvalot, S., & Briais, A. (2011). Spherical Harmonic Modeling to Ultra-high degree of Bouguer and Isostatic Anomalies. Journal of Geodesy, 86, 499-520. DOI: https://doi.org/10.1007/s00190-011-0533-4
Benkhelil, J., Mascle, J., & Guiraud, M. (1998). Sedimentary and Structural Characteristics of the Cretaceous Along the Côte D’Ivoire-Ghana Transform Margin and In the Benue Trough: A Comparison1. In: Mascle J, Lohmann GP, Moullade M. (Eds.). Proceedings of the Ocean Drilling Program, Scientific Results, 159, 93 - 99. DOI: https://doi.org/10.2973/odp.proc.sr.159.007.1998
Billman, H.G. (1992). Offshore Stratigraphy and Paleontology of Dahomey (Benin) Embayment. NAPE Bull., 70(2), 121-130.
Blakely, R.J. (1995). Potential Theory in Gravity and Magnetic Applications. Published by the press syndicate of the University of Cambridge UK, 81 - 87. DOI: https://doi.org/10.1017/CBO9780511549816
Bonvalot, S., Balmino, G., Briais, A., Kuhn, M., Peyrefitte, A., Vales, N., Biancale, R., Gabalda, G., Reinquin, F., & Sarrailh, M. (2012). World Gravity Map. Commission for the Geological Map of the World, 2012, Eds. BGI CGMW-CNES-IRD, Paris.
Brownfield, M.E., & Charpentier, R.R. (2006). Geology and Total Petroleum Systems of the Gulf of Guinea Province of West Africa. USGS Bull., 2207-C, 1 - 31.
Burke, K., MacGregor, D.S., & Cameron, N.R. (2003). In Arthur, T.J., MacGregor, D.S.N., & Cameron, N.R. (Edition), Petroleum Geology of Africa: New Themes and Developing Technologies. Geol. Soc., London, Special Publ., 207, 21 - 60. DOI: https://doi.org/10.1144/GSL.SP.2003.207.3
Cordell, L., & Grauch, V.J.S. (1985). Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico. In: Hinze WJ, editor. The Utility of Regional Gravity and Magnetic Anomaly Maps, Tulsa (OK, USA). Society of Exploration Geophysicists, 181 - 197. DOI: https://doi.org/10.1190/1.0931830346.ch16
Davison, I., Faull, T., Greenhalgh, J., Beirne, E.O., & Ian, S. (2015). Transpressional structures and hydrocarbon potential along the Romanche Fracture Zone: a review. In: Nemčok, editor. Transform Margins: Development, Controls and Petroleum Systems. Geological Society (London): Special Publications, 431, 1 - 14. DOI: https://doi.org/10.1144/SP431.2
Fairhead, J.D., Green, C.M., Masterton, S.M., & Guiraud, R. (2013). The role that plate tectonics, inferred stress changes and stratigraphic unconformities have on the evolution of the West and Central African rift system and the Atlantic continental margins. Tectonophysics, 594, 118 - 127. DOI: https://doi.org/10.1016/j.tecto.2013.03.021
Falebita, D., Folawewo, T., Olorunfemi, A., Falade, A., Aderoju, A., & Adepelumi, A. (2020). Upper crustal tectono structural geomorphology inferred from satellite gravity and aeromagnetic anomalies beneath a basement sedimentary transition region, southwestern Nigeria. Arabian Journal of Geosciences, 13, 1 - 11. DOI: https://doi.org/10.1007/s12517-020-06186-w
Kaki, C., d’Almeida, G.A.F., Yalo, N., & Amelina, S. (2013). Geology and Petroleum Systems of the offshore Benin Basin. Oil and Gas Science and Technology-rev. IFP Energies Nouvelles, 68(2), 363 - 381. DOI: https://doi.org/10.2516/ogst/2012038
Li, J., & Morozov, I.B. (2006). Structural Styles of the Precambrian Basement underlying the Williston Basin and Adjacent Regions - an interpretation from geophysical mapping. In Summary of Investigations. Saskatchewan Geological Survey, 1, 1 - 18.
Mascle, J., Blarez, E., & Marinho, M. (1988). The Shallow Structures of the Guinea and Ivory Coast-Ghana Transform Margins - Their Bearing on the Equatorial Atlantic Mesozoic Evolution. Tectonophysics, 155, 193 - 209. DOI: https://doi.org/10.1016/0040-1951(88)90266-1
Mustapha, M., Amponsah, P., Bernard, P., & Bekoa, A. (2019). Active Transform Faults in the Gulf of Guinea: Insights from geophysical data and implications for seismic hazard assessment. Canadian Journal of Earth Sciences, 56(12), 1398 - 1408. DOI: https://doi.org/10.1139/cjes-2018-0321
Nabighian, M.N., Grauch, V.J.S., Hansen, R.O., LaFehr, T.R., Li, Y., Peirce, J.W., Philips, J.D., & Ruder, M.E. (2005) The historical development of the magnetic method in exploration. Geophysics, 70, 33 - 61. DOI: https://doi.org/10.1190/1.2133784
Nemčok, M., Henk, A., Allen, R., Sikora, P.J., & Stuart, C. (2012). Continental break-up along strike slip fault zones; observations from Equatorial Atlantic. In: Mohriak, W.U., Danforth, A., Post, P.J., Brown, D.E., Tari, GM, Nemčok, M., Sinha, S.T., editors. Conjugate Divergent Margins. Geological Society (London): Special Publications, 369, 537-556. DOI: https://doi.org/10.1144/SP369.8
Okoro, E.M., & Onuoha, K.M. (2019). Structural Styles and Basement Architecture of the Dahomey Basin from Geophysical Data. Extended Abstracts, NAPE Special Workshop on Cretaceous Basins in Nigeria, 110 - 114.
Okoro, E.M., Onuoha, K.M., & Oha, A.I. (2021). Aeromagnetic Interpretation of Basement Structure and Architecture of the Dahomey Basin, Southwestern Nigeria. NRIAG Journal of Astronomy & Geophysics, 10(1), 93 - 109. DOI: https://doi.org/10.1080/20909977.2021.1880817
Oladele, S., & Ayolabi, E.A. (2014). Geopotential imaging of the Benin Basin for Hydrocarbon Prospectivity. NAPE Bulletin, 26(1), 101 - 112.
Oladele, S., Ayolabi, E.A., & Dublin-Green, C.O. (2016). Structural Characterization of the Nigerian Sector of Benin Basin using Geopotential Field Attributes. Journal of African Earth Science, 121, 200 - 209. DOI: https://doi.org/10.1016/j.jafrearsci.2016.05.021
Oluyide, P.O. (1988). Structural trends in the Nigerian basement complex. In: P.O. Oluyide, W.C. Mbonu, A.E. Ogezi, I.G. Egbuniwe, A.C. Ajibade, A.C. Umeji (Eds), Precambrian Geology of Nigeria. Geological Survey of Nigeria, Kaduna, 93 - 98.
Omatsola, M.E., & Adegoke, O.S. (1981). Tectonic Evolution and Cretaceous Stratigraphy of the Dahomey Basin. Journal of Mining and Geology, 8, 30 - 137.
Onuoha, K.M., & Ofoegbu, C.O. (1988). Subsidence and Evolution of Nigeria’s Continental Margin: Implications of Data from Afowo-1 well. Marine and Petroleum Geology, 5, 175 - 181. DOI: https://doi.org/10.1016/0264-8172(88)90022-0
Opara, A.I., Ekwe, A.C., Okereke, C.N., & Nosiri, O.P. (2012). Integrating Airborne Magnetic and Landsat Data for Geologic Interpretation Over Part of the Benin Basin Nigeria. Pac. J. Sci. Technol., 13(1), 556 - 571.
Osinowo, O.O., & Olayinka, A.I. (2013). Aeromagnetic Mapping of Basement Topography around the Ijebu-Ode Geological Transition Zone, Southwestern Nigeria. Acta Geodesy and Geophysics, 48, 451 - 470. DOI: https://doi.org/10.1007/s40328-013-0032-6
Reeves, C.V. (2005). Aeromagnetic Surveys, Principles, Practice and Interpretation. Geosoft, 155.
Saibi, H., Azizi, M., & Mogren, S. (2016). Structural investigations of Afghanistan deduced from remote sensing and potential field data. Acta Geophysica, 64(4), 978 - 1008. DOI: https://doi.org/10.1515/acgeo-2016-0046
Semere, S., & Woldai, G. (2006). Lineament characterization and their tectonic significance using Landsat TM data and field studies in the central highlands of Eritrea. Journal of African Earth Science, 46, 371 - 378. DOI: https://doi.org/10.1016/j.jafrearsci.2006.06.007
Verduzco, B., Fairhead, J.D., Green, C.M., & MacKenzie, C. (2004). New insights into magnetic derivatives for structural mapping. The Leading Edge, 23(2), 116 - 119. DOI: https://doi.org/10.1190/1.1651454
Whitehead, N., & Musselman, C. (2008). Montaj Grav/Mag Interpretation: Processing, Analysis and Visualization System for 3D Inversion of Potential Field Data for Oasis montaj v6.3. Geosoft Incorporated, 85 Richmond St. W., Toronto, Ontario, M5H 2C9, Canada.