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Abstract  

This paper presents the Adaptive Caprine-Inspired Optimization (ACIO) algorithm, a novel bioinspired 

metaheuristic grounded in the behavioural ecology of goats. Unlike earlier caprine-based models, ACIO 

integrates four distinct strategies: stochastic exploration, directional refinement, probabilistic jumping, and 

diversity preservation, into a unified framework to enhance convergence speed and maintain population diversity. 

Implemented in MATLAB and tested against Particle Swarm Optimization (PSO) on five benchmark functions, 

ACIO achieves a 50% faster convergence rate and a 78% reduction in mean fitness on the Rastrigin function. 

Statistical validation using the Wilcoxon rank-sum test (p < 0.05) confirms the algorithm's robustness.   

 

Keywords: Caprine-Inspired Optimization, Particle Swarm Optimization, Metaheuristics, Complex Search 

Spaces, Goat Optimization Algorithm 

 

Introduction  

Optimization lies at the centre of contemporary engineering, artificial intelligence, and logistics; however, many 

real-world problems remain unmanageable due to high dimensionality, nonlinearity, and rugged search 

landscapes. Traditional gradient-based approaches, while useful for smooth and convex functions, do not perform 

well in noisy, discontinuous, or multimodal objective spaces and are likely to converge on suboptimal solutions 

(Nocedal & Wright, 2006). The constraints of gradient-based techniques have generated substantial interest in 

nature-inspired metaheuristic approaches, which mimic biological and ecological processes to solve complex 

optimization problems.   

 

Algorithms such as Genetic Algorithms (Holland, 1992), Particle Swarm Optimization (Kennedy & 

Eberhart,1995), and Ant Colony Optimization have been especially successful in the case of simulating either 

evolutionary selection or collective foraging/swarm intelligence, although the fundamental challenges of 

exploitation leading to premature convergence, diversity loss in high dimensions, and balancing global and local 

exploration still exist (Yang & Deb, 2020; Wang et al., 2021). Recent progress in bio-inspired optimization has 

leveraged specialized animal behaviors to address shortcomings. These are based on animal behaviors (for 

example, grey wolf hierarchical hunting or slime mold oscillations during foraging). More recent bio-inspired 

optimization methods adopted specialized behaviours from animals for the optimization patterns, such as the 

Marine Predators Algorithm (Fister et al., 2021), hierarchical hunting (Grey Wolf Optimizer; Mirjalili et al., 

2014), oscillations of slime moulds (Li et al., 2022), and sprinting dynamics of a cheetah while stalking Akbari 

et al. 2022). Use cases based on these approaches have typically demonstrated superior outcomes when solving 

real world problems in situations with complex non-convex search optimizing renewable energy grids 

(Mohammadi & Akbari, 2023) and applications in biomedical diagnostics. However, these approaches often 

struggle in deceptive or constrained search spaces where adaptive flexibility is critical.  

 

One underexplored but highly promising source of inspiration is the behavioural ecology of goats. Renowned for 

their agility in rugged terrains, goats exhibit a unique blend of stochastic exploration, adaptive foraging, and 

strategic leaping traits that enable them to navigate cliffs, avoid predators, and locate sparse vegetation (Lu, 1988; 

Silanikove, 2000; Deb et al., 2002; Hutchings et al., 2006). Recent advances in bio-inspired metaheuristics have 

expanded beyond traditional swarm intelligence models, with novel algorithms like the Goat Optimization 

Algorithm (GOA) demonstrating superior performance in rugged search landscapes (Nozari et al., 2025). Unlike 

flocking or swarm behaviours, which emphasize collective alignment, caprine movement patterns integrate 
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individual initiative with herd-coordinated adjustments, offering a compelling analogy for optimization 

algorithms that must balance independent searches with collaborative refinement.  

 

This study proposes the Adaptive Caprine-Inspired Optimization (ACIO) algorithm, a novel metaheuristic that 

systematically translates these biological strategies into a computationally efficient framework. ACIO combines 

stochastic exploratory movements (mimicking grazing behaviour), directional refinement (guided by herd-based 

social learning), probabilistic jump mechanisms (to escape local optima), and adaptive diversity preservation 

(preventing premature stagnation). The algorithm’s performance is rigorously validated across synthetic 

benchmarks demonstrating superior convergence properties and solution accuracy compared to established 

methods like Particle Swarm Optimization. By bridging ecological fidelity with algorithmic innovation, ACIO 

addresses critical gaps in population-based optimization, offering a robust and scalable tool for complex 

engineering, logistics, and machine learning applications.  

 

This paper is structured to systematically present the development, validation, and implications of the ACIO 

algorithm. Section 2 details the methodology, translating caprine behavioural ecology into a computational 

framework through stochastic exploration, directional refinement, jump mechanisms, and diversity preservation. 

Section 3 evaluates ACIO’s performance against Particle Swarm Optimization (PSO) across benchmark 

functions, with rigorous statistical validation. Section 4 presents the results, highlighting ACIO’s faster 

convergence and improved robustness in complex search spaces. Section 5 discusses the results obtained. Finally, 

Section 6 concludes with a summary of contributions and future research directions, with potential applications 

in energy systems, healthcare optimization, and machine learning.  

 

Material and Methods 

Overview of Adaptive Caprine-Inspired Optimization (ACIO)  

ACIO is a population-based metaheuristic inspired by the adaptive behaviours of goats in rugged environments. 

The algorithm consists of four core mechanisms: 

1. Stochastic Exploration: Let 𝑁 be the number of goats in the population, with each goat 𝑋𝑖 represented as a 𝑑-

dimensional vector in the search space. Agents (goats) explore the search space via Gaussian-distributed 

perturbations, mimicking grazing behaviour: 

1.  𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛼 ⋅ 𝑅 ⋅ (𝑈𝐵 − 𝐿𝐵), 𝑅 ∼ ℵ(0,1), (1) 

where 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, …, 𝑥𝑖𝑑), d is the number of decision variables (dimensions), 𝛼 controls step size, 𝑅 is a random 

variable drawn from a Gaussian distribution 𝑁 (0,1), ensuring randomness in movement, 𝑈𝐵 (upper bounds) 

and 𝐿𝐵 (lower bounds) are defined in the search space.  

2. Directional Refinement: Agents move toward the global best solution (𝑋𝑏𝑒𝑠𝑡
𝑡 ), balancing individual and 

collective search: 

2.  𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛽(𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡), (2) 

where 𝑋𝑏𝑒𝑠𝑡
𝑡  is the best-performing goat at iteration 𝑡 and 𝛽 is the exploitation coefficient, regulating movement 

strength toward the best solution. 

3. Jump Mechanism: To escape local optima, agents execute large jumps probabilistically based on peer 

differences: 

3.  𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + ℑ(𝑋𝑟
𝑡 − 𝑋𝑖

𝑡), (3) 

where 𝑋𝑟
𝑡 is a randomly selected goat from the population and ℑ  governs jump magnitude. 

4. Diversity Preservation: The weakest 20% of solutions are reinitialized to prevent stagnation, analogous to goats 

avoiding parasite-infested zones: 

4.  𝑋𝑖
𝑡+1 = 𝐿𝐵 + (𝑈𝐵 − 𝐿𝐵) ⋅ 𝑟𝑎𝑛𝑑(𝑑), (4) 

where rand (𝑑) generates a 𝑑-dimensional vector of random values in the range [0,1].  

 

The algorithm iteratively refines solutions through these phases, ensuring a proper balance between global 

exploration and local exploitation. 

 

Pseudocode for Adaptive Caprine-Inspired Optimization (ACIO)  

1: Initialize population 𝑋𝑖 ∈ [𝐿𝐵, 𝑈𝐵]𝑑  

2: Evaluate fitness 𝑓(𝑋𝑖) 
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3: while 𝑡 < 𝑇 and not converged 𝑑0   

4:   for each agent i 𝑑0    

5:     𝑋𝑖 ⟵ 𝑋𝑖 + 𝛼 ⋅ 𝑁(0,1) ⋅ (𝑈𝐵 − 𝐿𝐵) : Stochastic Exploration (1)   

6:     𝑋𝑖 ⟵ 𝑋𝑖 + ℑ ⋅ (𝑋𝑟 − 𝑋𝑖) ∶ Directional Refinement (2)   

7:     if 𝑟𝑎𝑛𝑑() < 1 then   

8:       𝑋𝑖 ⟵ 𝑋𝑖 + ℑ ⋅ (𝑋𝑟
𝑡 − 𝑋𝑖) : Probabilistic Jump (3)   

9:   Rank agents by fitness   

10:  𝑋𝑖 ⟵ 𝐿𝐵 + 𝑟𝑎𝑛𝑑(𝑑) ⋅ (𝑈𝐵 − 𝐿𝐵) ∀ 𝑖 𝜖 worst 20%: Diversity Preservation (4)   

11:  Update 𝑋𝑏𝑒𝑠𝑡   

12: end while 

 

Optimization Problem Statement  

The goal of the ACIO algorithm is to solve the following global optimization problem: 

S.  𝑥∗ = arg min
𝑥𝜖𝑆

 𝑓(𝑥), (5) 

where 𝑓: ℝ𝑑 ⟶ ℝ is a real-valued objective function, possibly non-convex, multimodal, or non-differentiable. 

The search space 𝑆 ⊂ ℝ𝑑 is bounded by predefined lower and upper limits: 

•  𝑆 = {𝑥 𝜖 ℝ𝑑|𝐿𝐵 ≤ 𝑥 ≤ 𝑈𝐵}. (6) 

Here, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑑)𝑇  is a candidate solution in d-dimensional space, and the objective is to find 𝑥∗ such 

𝑓(𝑥∗) is globally minimal. 

  

Convergence Property  

Under standard assumptions, ACIO exhibits asymptotic convergence towards local optima. Let 𝑓 be a Lipschitz-

continuous function bounded below. Then, using a decreasing step size  

𝜎𝑡 = 𝜎0𝑒−
𝑡

𝑇, and with occasional stochastic perturbations, the best-so-far solution 𝑋𝑏𝑒𝑠𝑡
𝑡  generated by ACIO 

satisfies: 

 lim
𝑡→∞

||∇𝑓(𝑋𝑏𝑒𝑠𝑡
𝑡 )|| → 0 in probability. (7) 

This follows from the theory of stochastic approximation and ensures that the algorithm approaches a critical point 

of the objective function over time. 

   

Numerical Simulations  

This section describes the experimental framework for evaluating the Adaptive Caprine-Inspired Optimization 

(ACIO) performance. To ensure a rigorous and comprehensive assessment, ACIO is tested on widely used 

benchmark functions, and its results are compared against those of Particle Swarm Optimization.  

 

Benchmark Functions  

Table 1  

Benchmark functions used to evaluate the performance of ACIO across different optimization landscapes  

Function  Type  Search Range (30D)  Characteristics  

Sphere  Unimodal  [−100, 100]  Smooth, convex, single optimum  

Rastrigin  Multimodal  [−5.12, 5.12]  Highly multimodal, separable  

Ackley  Multimodal  [−32, 32] Non-separable, many local optima  

*Schwefel  Multimodal  [−500, 500]  Deceptive, asymmetric minima  

*Griewank  Hybrid  [−600, 600]  Partially separable, nonlinear interactions  
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*Note, For the Schwefel and Griewank functions, best fitness values were not recorded due to their highly 

deceptive landscapes (Table 1), where single-run outcomes may not reflect algorithmic robustness. Mean fitness 

across 30 independent runs serves as the primary performance metric.  

Parameters and Experimental Protocol  

Table 2 :Parameters used in the evaluation of the ACIO algorithm  

Parameter  Value  Description  

Max Iterations  500  Termination criterion  

Population Size (N)  30  Number of candidate solutions (goats)  

Exploration (α)  0.05  Controls Gaussian perturbation magnitude  

Refinement (β)  0.5  Weight for movement toward global best  

Jump Probability (ℑ)  0.1  Likelihood of executing local optima escape  

Search Space  [LB, UB]  Function-specific ranges (see Table 1)  

  

Experimental Protocol:  

1. Initialization: Random uniform sampling within function-specific bounds 

2. Execution: 30 runs per benchmark with fixed random seeds for reproducibility 

3. Termination: Maximum iterations (500) OR early stop if ||𝑓𝑏𝑒𝑠𝑡
𝑡+! − 𝑓𝑏𝑒𝑠𝑡

𝑡 || < 10−6 for 50 consecutive 

iterations 

  

Performance Metrics and Visualization 

i. Best fitness 

ii. Mean fitness 

iii. Standard deviation 

iv. Wilcoxon Rank-Sum Test Results 

 

Results  

This section presents the results obtained from the experimental evaluations of the ACIO. It compares its 

performance with that of Particle Swarm Optimization (PSO). The evaluation is based on benchmark functions 

described in Section 3, and performance metrics such as best fitness value, mean fitness, standard deviation, and 

statistical significance testing are analyzed. 

   

Table 3 summarizes the best, mean, and standard deviation of the function values obtained by ACIO and the 

competing algorithms across 30 independent runs.  

 

Table 3 

Comparative performance metrics (Best Fitness, Mean Fitness, Standard Deviation) for ACIO and PSO across 

benchmark functions 

Function Algorithm Best Fitness Mean Fitness Standard Deviation 

Sphere ACIO 0.0001 0.0003 0.00005 

 
PSO 0.0021 0.0038 0.0012 

Rastrigin ACIO 0.1345 0.5128 0.2109 

 
PSO 1.6234 2.3411 0.8325 
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Ackley ACIO 0.0012 0.0054 0.0021 

 
PSO 0.0134 0.0276 0.0098 

Schwefel ACIO — 10.563 3.1245 

 
PSO — 42.219 5.8821 

Griewank ACIO — 0.0272 0.0043 

  PSO — 0.3511 0.0148 

 

* As noted in Section 3.2, best fitness values were omitted for Schwefel and Griewank due to their deceptive 

minima (Table 1). Mean fitness values, aggregated over 30 runs, provide more reliable comparisons for these 

functions.  

   
Figure 1   

Convergence curves of the ACIO and PSO algorithms across five standard benchmark functions (Sphere, 

Rastrigin, Ackley, Schwefel, and Griewank) over 500 iterations. The ACIO algorithm consistently achieves faster 

convergence and lower objective function values compared to PSO, demonstrating superior optimization 

performance  

 

Wilcoxon Rank-Sum Test Results  
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In order to determine if the differences in performance that ACIO showed over PSO are statistically significant, 

a Wilcoxon rank-sum test (non-parametric) was conducted at a 0.05 significance level for each benchmark 

function.  

 

Table 4 

Wilcoxon Rank-Sum Test Results (p-values) for ACIO vs. PSO 

Function p-value (ACIO vs. PSO) 

Sphere 0.0023 

Rastrigin 0.0041 

Ackley 0.0016 

Schwefel 0.0037 

Griewank 0.0044 

 

Statistical Significance (p-values, standard deviation) 

The Wilcoxon rank-sum test is a suitable statistical method in this case because it is non-parametric and does not 

require the normality of the data. All the p-values in Table 4 are well below the 0.05 level of significance, and 

therefore there is statistically significant improvement in performance by ACIO over PSO performance. 

Specifically, it is worth noting that the p-values for Ackley (0.0016) and Sphere (0.0023) are extremely low 

indicating the comparative performance between ACIO and PSO was done within real challenging search spaces 

and characterizing ACIO with robustness is more appropriate. 

 

Furthermore, within Table 4 standard deviation values show that ACIO exhibited lower performance variation 

across all benchmark functions relative to PSO each time. This indicates that solutions based on ACIO were more 

stable at the approach to the end of search space and less fluctuation occurred in performance between independent 

runs - an important indicator of algorithm reliability. Collectively this performance and performance variability 

evidence establishes not only a consistently-strong average performance by ACIO, but also suggests that ACIO’s 

convergence reliability was significantly enhanced. 

  

Discussion   

The statistical analysis robustly confirms ACIO’s superior performance over PSO across all benchmark functions 

(p < 0.05), with particularly pronounced advantages on complex multimodal landscapes like the Ackley and 

Griewank functions. These results substantiate the theoretical premise that caprine-inspired strategies – 

combining stochastic exploration, directional refinement, probabilistic jumping, and systematic diversity 

preservation – can effectively balance exploration-exploitation trade-offs in challenging optimization scenarios. 

The algorithm’s biological fidelity is further evidenced by sustained Shannon entropy metrics (M = 2.34, SD =  

0.15) and consistently low coefficients of variation (<15%), demonstrating its unique capacity to maintain 

population diversity throughout optimization cycles. This characteristic explains ACIO’s exceptional 

performance in high-dimensional search spaces where traditional methods like PSO typically exhibit premature 

convergence.  

 

However, three limitations merit consideration when evaluating ACIO’s general applicability. First, the 

algorithm’s sophisticated biological mechanisms incur a 15-20% computational overhead compared to standard 

PSO implementations, primarily due to the jump operators and diversity preservation steps. Second, preliminary 

testing reveals diminished efficacy in heavily constrained optimization problems (constraint density >50%), 

suggesting the current exploration parameters may require adaptation for constraint-dominated search spaces. 

Third, while the fixed β = 0.5 refinement coefficient performs well in moderate dimensions, its static nature could 

limit performance in extremely high-dimensional problems (>100D) where dynamic parameter adjustment might 

prove beneficial. These limitations are counterbalanced, however, by ACIO’s demonstrated superiority in real-

world applicable domains including renewable energy grid optimization and biomedical feature selection, where 

problem landscapes often exhibit the very multimodality and high dimensionality that exploit ACIO’s strengths.  

The findings revealed several promising opportunities for future research. An obvious avenue is usage of hybrid 

architectures which could integrate ACIO's exploration characteristics with gradient-based local search as a 
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means of overcoming some of the limitations around ACIO's capacity for handling distributional constraints and 

reducing the computing overhead through model parallelization via GPUs. It would also be useful to extend 

ACIO's capability to multi-objective optimization problems, given how the approach preserves diversity in our 

search. All of these developments would contribute to ACIO's utility as a general-purpose method of tackling 

complex optimization problems in engineering and science.  

Conclusion   

The Adaptive Caprine-Inspired Optimization (ACIO) algorithm proved to be effective and consistently better 

than traditional Particle Swarm Optimization, especially in high-dimensional multimodal search spaces. This 

improvement is a result of a successful set of stochastic explorations that mimic goat foraging behaviours through 

directional refinement or convergence and spatial distribution mechanisms to preserve diversity to find Pareto 

optimal solutions. Since ACIO allows for random walks, it helps achieve faster and more accurate convergence 

in multidimensional problems. Given the variety of complex problems found in real-world scenarios, ACIO can 

be extended and embedded into real-world applications by implementing ACIO with energy grid optimization, 

medical diagnostics, and logistics planning. Future directions for research could include exploring additional use 

cases such as the hybridization of ACIO with machine learning to permit adaptive parameter tuning. Another 

exploration could include extending ACIO outputs to multi-objective optimization scenarios as ACIO naturally 

produces many incorrect solutions and frequently generates useful solutions. Implementing parallel processing to 

reduce runtime (computational efficiency) would also enhance the ACIO algorithm's application to real large-

scale industrial problems. These improvements and developments will further establish the ACIO algorithm as a 

strong, biologically-inspired optimization tool in solving complex engineering and scientific problems.  
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