Catalytic Conversion of Municipal Waste into Clean Energy: Optimizing Hydrogen and Syngas Production with Acid-Functionalized Bottom Ash

Authors

  • Kingsley Ezechukwu Okpara Institute of Geosciences & Environmental Management, Rivers State University, Port Harcourt, Nigeria / Faculty of Environmental Management, Prince of Songkla University, Hai Yat, Songhla, Thailand.
  • Kuaanan Techato Faculty of Environmental Management, Prince of Songkla University, Hai Yat, Songhla, Thailand.

Keywords:

Municipal solid waste, Gasification, Syngas, Hydrogen, Incineration ash

Abstract

Municipal Solid Waste (MSW) management presents a critical environmental challenge. This study investigates a transformative approach: the catalytic steam gasification of MSW using acid-functionalized bottom ash. Employing Response Surface Methodology (RSM) within a modified TG-MS setup enriched with steam, we meticulously analyze key parameters, including temperature, particle size, and catalyst content. Temperature proves the most influential factor in hydrogen and syngas production, revealing a crucial avenue for efficiency enhancement. Acid-treated incineration ash, with active sites and the SO3H functional group, exhibits remarkable catalytic prowess, promising sustainable waste-to-energy conversion. Through rigorous experimentation, we establish optimal conditions for hydrogen and syngas yields: 684°C temperature, 0.84 mm particle size, and 0.65 wt% catalyst content. This parametric study advances our understanding of MSW gasification and offers a promising route to sustainable energy generation from waste. Our research underscores the pivotal role of catalysis in waste management, addressing environmental concerns while unlocking the latent energy within municipal waste. The outcomes have profound implications for sustainable fuel production, emission control, and our broader mission to create a greener, more energy-efficient future. This study pioneers a sustainable approach to MSW management, demonstrating the potential to transform waste into valuable energy resources, contribute to emission control, and shape a more sustainable future.

References

Ahamed, A., Liang, L., Chan, W.P., Tan, P.C.K., Yip, N.T.X., Bobacka, J., Veksha, A., Yin, K. & Lisak, G. (2021) In situ catalytic reforming of plastic pyrolysis vapors using MSW incineration ashes. Environmental Pollution, 276:116681. doi:https://doi.org/10.1016/j.envpol.2021.116681.

Ali, A.M., Shahbaz, M., Inayat, M., Shahzad, K., Al-Zahrani, A.A. & Mahpudz, A.B. (2023). Conversion of municipals waste into syngas and methanol via steam gasification using CaO as sorbent: An Aspen Plus modelling. Fuel, 349:128640.

Awasthi, S.K., Sarsaiya, S., Kumar, V., Chaturvedi, P., Sindhu, R., Binod, P., Zhang, Z., Pandey, A.& Awasthi, M.K. (2022). Processing of municipal solid waste resources for a circular economy in China: An overview. Fuel, 317:123478. doi:https://doi.org/10.1016/j.fuel.2022.123478.

Ayeleru, O.O., Dlova, S., Akinribide, O.J., Ntuli, F., Kupolati, W.K., Marina, P.F., Blencowe, A., Olubambi, P.A. (2020). Challenges of plastic waste generation and management in sub-Saharan Africa: A review. Waste Management. 110:24-42.

Debrah, J.K., Teye, G.K., Dinis, M.A.P. (2022). Barriers and challenges to waste management hindering the circular economy in Sub-Saharan Africa. Urban Science, 6 (3):57.

Hauserman, W.B. (1994). High-yield hydrogen production by catalytic gasification of coal or biomass. International Journal of Hydrogen Energy, 19 (5):413-419. doi:http://dx.doi.org/10.1016/0360-3199(94)90017-5.

Karimipour, S., Gerspacher, R., Gupta, R. & Spiteri, R.J. (2013). Study of factors affecting syngas quality and their interactions in fluidized bed gasification of lignite coal. Fuel, 103 (0):308-320. doi:http://dx.doi.org/10.1016/j.fuel.2012.06.052.

Khan, A.H., López-Maldonado, E.A., Khan, N.A., Villarreal-Gómez, L.J., Munshi, F.M., Alsabhan, A.H. & Perveen, K. (2022). Current solid waste management strategies and energy recovery in developing countries - State of art review. Chemosphere, 291:133088. doi:https://doi.org/10.1016/j.chemosphere.2021.133088

Khan, Z., Yusup, S., Ahmad, M.M. & Chin, B.L.F. (2014). Hydrogen production from palm kernel shell via integrated catalytic adsorption (ICA) steam gasification. Energy Conversion and Management, 87:1224-1230. doi:10.1016/j.enconman.2014.03.024.

Khan, Z., Yusup, S., Ahmad, M.M. & Rashidi, N.A. (2014). Integrated catalytic adsorption (ICA) steam gasification system for enhanced hydrogen production using palm kernel shell. International Journal of Hydrogen Energy, 39 (7):3286-3293. doi:10.1016/j.ijhydene.2013.12.020.

Khan, Z., Yusup, S.S., Ahmad, M.M., Fui, L. & Chin, B. (2014). Performance Study of Ni Catalyst with Quicklime (CaO) as CO2 Adsorbent in Palm Kernel Shell Steam Gasification for Hydrogen Production. In: Advanced Materials Research. Trans Tech Publ, pp 292-300

Lathiya, D.R., Bhatt, D.V. & Maheria, K.C. (2019). Sulfated Fly‐Ash Catalyzed Biodiesel Production from Maize Acid Oil Feedstock: A Comparative Study of Taguchi and Box‐Behnken Design. ChemistrySelect, 4 (14):4392-4397

Li, J., Li, L., Tong, Y.W. & Wang, X. (2023.) Understanding and optimizing the gasification of biomass waste with machine learning. Green Chemical Engineering, 4 (1):123-133. doi:https://doi.org/10.1016/j.gce.2022.05.006

Li ,J., Xiao, B., Yan, R. & Xu, X. (2009). Development of a supported tri-metallic catalyst and evaluation of the catalytic activity in biomass steam gasification. Bioresource Technology, 100 (21):5295-5300. doi:http://dx.doi.org/10.1016/j.biortech.2009.05.030

Mohammed, M.A.A., Salmiaton, A., Wan Azlina, W.A.K.G., Mohammad Amran, M.S. & Fakhru’l-Razi, A. (2011) Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor. Energy Conversion and Management 52 (2):1555-1561. doi:http://dx.doi.org/10.1016/j.enconman.2010.10.023

Muheirwe, F., Kombe, W. & Kihila, J.M. (2022). The paradox of solid waste management: A regulatory discourse from Sub-Saharan Africa. Habitat International, 119:102491.

Orhorhoro, E. & Oghoghorie, O. (2019). Review on solid waste generation and management in sub-Saharan Africa: A case study of Nigeria. Journal of Applied Sciences and Environmental Management, 23 (9):1729-1737.

Patrick, D.O. (2020). Treatment of coal bottom ash as catalyst for palm kernel shell pyrolysis. Universiti Teknologi Petronas,

Patrick, D.O. (2022). Influence of coal bottom ash treatment parameters on methane and carbon dioxide yield from palm kernel shell gasification. fuw Trends In Science & Technology Journal, 7 (3):275 – 282.

Patrick, D.O., Yusup, S., Osman, N.B., Zabiri, H. & Shahbaz, M. (2017). Performance of Water-Leached Coal Bottom Ash as Catalyst in Thermogravimetric Analyser (TGA) Biomass Gasification. Chemical Engineering Transactions, 61:1681-1686. doi:10.3303/CET1761278.

Russo, P.A., Antunes, M.M., Neves, P., Wiper, P.V., Fazio, E., Neri, F., Barreca, F., Mafra, L., Pillinger, M. & Pinna, N. (2014). Mesoporous carbon–silica solid acid catalysts for producing useful bio-products within the sugar-platform of biorefineries. Green Chemistry, 16 (9):4292-4305.

Sajid, M., Raheem, A., Ullah, N., Asim, M., Ur Rehman, M.S. & Ali, N. (2022). Gasification of municipal solid waste: Progress, challenges, and prospects. Renewable and Sustainable Energy Reviews, 168:112815. doi:https://doi.org/10.1016/j.rser.2022.112815

Serge, Kubanza, N (2021). The role of community participation in solid waste management in Sub-Saharan Africa: a study of Orlando East, Johannesburg, South Africa. South African Geographical Journal, 103 (2):223-236.

Shahbaz, M., Yusup, S., Al-Ansari, T., Inayat, A., Inayat, M., Zeb, H. & Alnarabiji, M.S. (2019). Characterization and Reactivity Study of Coal Bottom Ash for Utilization in Biomass Gasification as an Adsorbent/Catalyst for Cleaner Fuel Production. Energy & Fuels, 33 (11):11318-11327.

Shahbaz, M., Yusup, S., Inayat, A., Ammar, M., Patrick, D.O., Pratama, A. & Naqvi, S.R. (2017). Syngas Production from Steam Gasification of Palm Kernel Shell with Subsequent CO2 Capture Using CaO Sorbent: An Aspen Plus Modeling. Energy & Fuels, 31 (11):12350-12357.

Shahbaz, M., Yusup, S., Inayat, A., Patrick, D.O., Pratama, A. & Ammar, M. (2017). Optimization of hydrogen and syngas production from PKS gasification by using coal bottom ash. Bioresource Technology, 241:284-295. doi:https://doi.org/10.1016/j.biortech.2017.05.119.

Shahbaz, M., Yusup S, Inayat DA, Patrick DO, Ammar M, Herman AP (2017) Cleaner production of hydrogen and syngas from catalytic steam palm kernel shell gasification using CaO sorbent and coal bottom ash as a catalyst. Energy & Fuels 31:13824−13833

Shahbaz, M. Y. S., Inayat, A., Patrick, D. & Herman, A. (2016). System Analysis of Poly-Generation of SNG, Power and District Heating from Biomass Gasification System. Chemical engineering transactions, 52. doi:DOI: 10.3303/CET1652131

Su, S., Chi, Y., Chang, R., Hu, R. & Li, N. (2015). Analysis of the catalytic steam gasification mechanism of biomass. International Journal of Hydrogen Energy, 40 (2):935-940. doi:http://dx.doi.org/10.1016/j.ijhydene.2014.11.081

Su, X., Jin, H., Guo, S. & Guo, L. (2015). Numerical study on biomass model compound gasification in a supercritical water fluidized bed reactor. Chemical Engineering Science, 134:737-745.

Tang, Y., Chen, D., Feng, Y., Hu, Y., Yin, L., Qian, K., Yuan, G. & Zhang, R. (2023). MSW pyrolysis volatiles’ reforming by incineration fly ash for both pyrolysis products upgrading and fly ash stabilization. Chemosphere, 313:137536. doi:https://doi.org/10.1016/j.chemosphere.2022.137536

Xiong, R., Dong, L., Yu, J., Zhang, X., Jin, L. & Xu, G. (2010). Fundamentals of coal topping gasification: Characterization of pyrolysis topping in a fluidized bed reactor. Fuel Processing Technology, 91 (8):810-817.

Xu, G., Murakami, T., Suda, T., Kusama, S. & Fujimori, T. (2005). Distinctive effects of CaO additive on atmospheric gasification of biomass at different temperatures. Industrial & engineering chemistry research, 44 (15):5864-5868.

Yang, Y., Liew, R.K., Tamothran, A.M., Foong, S.Y., Yek, P.N.Y., Chia, P.W., Van Tran, T., Peng, W. & Lam, S.S. (2021). Gasification of refuse-derived fuel from municipal solid waste for energy production: a review. Environmental Chemistry Letters, 19 (3):2127-2140. doi:10.1007/s10311-020-01177-5

Yong, K.T.L. (2009) Gasification Of Oil Palm Biomass In Hot Compressed Water (HCW) For Production Of Synthesis Gas. Universiti Sains Malaysia,

Zhang, H., Shen, Z., Dong, Z., Yang, Y., Xu, J., Liang, Q. & Liu, H. (2023). Experimental study on the effect of temperature and oxygen on pyrolysis-gasification decoupling characteristics of Yili coal. Journal of Analytical and Applied Pyrolysis, 172:106007. doi:https://doi.org/10.1016/j.jaap.2023.106007

Zhang, L.X., Kudo, S., Tsubouchi, N., Hayashi, J.I., Ohtsuka, Y. & Norinaga, K. (2013) Catalytic effects of Na and Ca from inexpensive materials on in-situ steam gasification of char from rapid pyrolysis of low rank coal in a drop-tube reactor. Fuel Processing Technology 113 (0):1-7. doi:http://dx.doi.org/10.1016/j.fuproc.2013.03.009.

Downloads

Published

2025-03-31

How to Cite

Okpara, K. E., & Techato, K. (2025). Catalytic Conversion of Municipal Waste into Clean Energy: Optimizing Hydrogen and Syngas Production with Acid-Functionalized Bottom Ash. Faculty of Natural and Applied Sciences Journal of Basic and Environmental Research, 2(2), 10–24. Retrieved from https://fnasjournals.com/index.php/FNAS-JBER/article/view/705