Pyrolysis of Plastics Waste to Diesel Engine Oil: A Review

Authors

  • Kingsley Ezechukwu Okpara Institute of Geosciences & Environmental Management, Rivers State University, Port Harcourt, Nigeria
  • Kuaanan Techato Faculty of Environmental Management, Prince of Songkla University, Hai Yat, Songhla, Thailand.

Keywords:

Pyrolysis Oil, Plastic Waste Eradication, Trash to Wealth Schemes, Renewable Energy

Abstract

Port Harcourt, a major city in Nigeria's Niger Delta region, faces severe environmental challenges, including oil spills, air pollution from industrial activities, gas flaring, and inadequate plastic waste management. With the rising consumption of plastic, there is an urgent need to curb plastic littering. Despite these challenges, Rivers State lacks Waste-to-Energy facilities for converting plastic waste into energy, and there are limited studies on the characteristics and potential applications of different plastic waste types as energy recovery feedstock. This study reviewed various technologies for converting plastic waste into oil for use in diesel engines. The findings indicate that pyrolysis is a viable method for transforming municipal plastic waste—an increasing environmental threat—into diesel engine oil. Pyrolysis presents an environmentally sustainable alternative to incineration and inefficient landfilling. Consequently, this study proposes a pilot reactor for converting plastic waste into diesel engine oil at a production temperature of 600°C.

References

Abnisa, F., & Wan Daud, W. M. A. (2014). A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Conversion and Management, 87, 71–85. https://doi.org/10.1016/j.enconman.2014.07.007

Anjum, M., Miandad, R., Waqas, M., Tarar, I. A., Alafif, Z., Aburiazaiza, A. S., Barakat, M. A., & Akhtar, T. (2016). Solid waste management in Saudi Arabia: A review. Journal of Applied Agricultural Biotechnology, 1(1), 13–26.

Anuar Sharuddin, S. D., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy Conversion and Management, 115, 308–326. https://doi.org/10.1016/j.enconman.2016.02.037

Aremu, M. O., & Vijay, P. S. (2016). Trends in solid waste management: Issues, challenges, and opportunities. In P. S. Vijay (Ed.), Waste Management and Resource Efficiency (pp. 3–21). Springer. https://doi.org/10.1007/978-981-10-2044-6_1

Armenise, S., D'Angelo, T., & Rizzo, G. (2021). Plastic waste recycling: A review on pyrolysis techniques and emerging approaches. Journal of Analytical and Applied Pyrolysis, 156, 105128. https://doi.org/10.1016/j.jaap.2021.105128

Bezergianni, S., Dimitriadis, A., & Meletidis, G. (2017). Alternative diesel from waste plastics. Waste and Biomass Valorization, 8(6), 2229–2234. https://doi.org/10.1007/s12649-016-9720-0

Bharti, P. K., Sharma, B., Singh, R. K., & Tyagi, A. K. (2016). Waste generation and management in Antarctica. Procedia Environmental Sciences, 35, 40–50. https://doi.org/10.1016/j.proenv.2016.07.004

Ecarnot, M., Roux, S., & Chardigny, J. M. (2015). Upcycling of plastic waste: A review. Environmental Technology Reviews, 4(1), 1–17. https://doi.org/10.1080/21622515.2015.1028310

Eze, C. A., Agwu, N. N., & Ezeokonkwo, M. A. (2021). Revolutionizing technological advancement through plastic utilization: A Nigerian perspective. International Journal of Environmental Science and Technology, 18, 379–392. https://doi.org/10.1007/s13762-020-02735-3

Eze, S., Agbo, K. E., & Odo, J. U. (2021). Pyrolysis of plastic waste: A sustainable way to generate energy from waste. Journal of Energy Research and Reviews, 8(1), 1–13. https://doi.org/10.9734/jenrr/2021/v8i130195

Khuenkaeo, N., Phromphithak, S., Onsree, T., Naqvi, S. R., & Tippayawong, N. (2021). Production and characterization of bio-oils from fast pyrolysis of tobacco processing wastes in an ablative reactor under vacuum. PLOS ONE, 16(7), e0254485. https://doi.org/10.1371/journal.pone.0254485

Lopez-Urionabarrenechea, A., & Olazar, M. (2012). Waste-to-energy technologies: A review. Renewable and Sustainable Energy Reviews, 16(6), 3836–3851. https://doi.org/10.1016/j.rser.2012.03.031

Maceiras, R. (2016). Diesel fuel from plastic waste. International Journal of Energy and Environmental Engineering, 7(4), 377–382. https://doi.org/10.1007/s40095-016-0214-2

Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S. (2016). Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts. Waste Management, 69, 66–78. https://doi.org/10.1016/j.wasman.2017.07.043

Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S. (2016a). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822–838. https://doi.org/10.1016/j.psep.2016.06.022

Násner, M. S., & de Oliveira, N. L. (2017). Upcycling of plastic waste: A review. Environmental Technology Reviews, 6(1), 1–15. https://doi.org/10.1080/21622515.2017.1345920

Nizami, A. S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O. K. M., & Shahzad, K. (2015). Pyrolysis of waste materials for energy recovery. Renewable and Sustainable Energy Reviews, 43, 573–586. https://doi.org/10.1016

Onwudili, J. A., Insura, N., & Williams, P. T. (2009). Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. Journal of Analytical and Applied Pyrolysis, 86(2), 293–303. https://doi.org/10.1016/j.jaap.2009.07.008

Ouda, O. K. M., Raza, S. A., Nizami, A. S., Rehan, M., Al-Waked, R., & Korres, N. E. (2016). Waste-to-energy potential: A case study of Saudi Arabia. Renewable and Sustainable Energy Reviews, 61, 328–340. https://doi.org/10.1016/j.rser.2016.04.005

Rehan, M., Nizami, A. S., Shahzad, K., Ouda, O. K. M., Ismail, I. M. I., Almeelbi, T., Iqbal, T., & Demirbas, A. (2017). Pyrolytic liquid fuel: A source of renewable energy in Makkah. Energy Sources, Part A, 38, 2598–2603. https://doi.org/10.1080/15567036.2016.1153753

Sadef, Y., Nizami, A. S., Batool, S. A., Chaudhary, M. N., Othman, M. H., Rehan, M., & Khan, M. Z. (2016). Waste-to-energy and recycling value for developing integrated solid waste management plan in Lahore. Energy Sources, Part B: Economics, Planning, and Policy, 11(7), 569–579. https://doi.org/10.1080/15567249.2015.1052595

Sriningsih, W., Ariyani, D., Trisunaryanti, W., & Triyono, S. (2014). Fuel production from LDPE plastic waste over natural zeolite supported Ni, Mo and Ni-Mo metals. Procedia Environmental Sciences, 20, 215–224. https://doi.org/10.1016/j.proenv.2014.03.028

Valkenburg, C., Walton, C. W., Thompson, B. L., Gerber, M. A., Jones, S. B., & Stevens, D. J. (2008). Municipal solid waste (MSW) to liquid fuels synthesis, Volume 1: Availability of feedstock and technology (PNNL-18144, 962858). https://doi.org/10.2172/962858

Vandecasteele, C., Block, C. B., & Van Langenhove, H. (2007). Waste incineration: The science and the controversy. Waste Management & Research, 25(6), 593–594. https://doi.org/10.1177/0734242X07082991

Zaman, C. Z., Pal, K., Yehye, W. A., Sagadevan, S., Shah, S. T., Adebisi, G. A., Marliana, E., Rafique, R. F., & Johan, R. B. (2017). Pyrolysis: A sustainable way to generate energy from waste. In M. Samer (Ed.), Pyrolysis. InTech.

Downloads

Published

2025-03-31

How to Cite

Okpara, K. E., & Techato, K. (2025). Pyrolysis of Plastics Waste to Diesel Engine Oil: A Review . Faculty of Natural and Applied Sciences Journal of Basic and Environmental Research, 2(2), 25–31. Retrieved from https://fnasjournals.com/index.php/FNAS-JBER/article/view/706