Environmental and Medicinal Impacts of Clay

Authors

  • Ese Queen Umudi Department of Chemical Sciences, University of Delta, Agbor, Nigeria.
  • Ogheneyoma Peter Umudi Department of Biotechnology, Delta State University, Delta State, Nigeria.
  • Lawson Onojake Department of Chemical Sciences, University of Delta, Agbor, Nigeria.
  • Chukwuwuikem Nathanael Ehiedu Department of Chemical Sciences, University of Delta, Agbor, Nigeria.
  • Innocent Erhieyovwe Obukohwo Department of Chemical Sciences, University of Delta, Agbor, Nigeria.
  • Blessing Ese Nwakwanogo

DOI:

https://doi.org/10.63561/jber.v2i3.827

Keywords:

Therapeutic, Clay, Environment, Health Risk, ancient times

Abstract

The use of clay dates back to ancient times for nutritional, healing, and skincare purposes. Different clays are employed for other purposes. In the field of medicine, they are used as foams, binders, and scaffolds; in cosmetics, as absorbents, stabilizers, and emulsifiers; and pharmaceutically, as excipients, carriers, anti-toxins, and flavouring agents. Clays are also used as chemical agents for removing radioactive gases, heavy metals, and organic matter. However, the use of clay has its constraints. When ingested, clays can trap pollutants or toxins, depending on their source. In the case of peloids and ointments, podoconiosis, a disease associated with the long-term effect of bare feet on red clay soil in tropical regions, is a concern. Generally, clay is an important, natural, locally sourced material of great environmental benefit.

References

Adib-Hajbaghery, M., Mahmoundi, M., & Marshajekhi, M. (2014). The effects of bentonite and calendula on the improvement of infantile diaper dermatitis. Journal of Research in Medical Sciences, 19, 314–318.

Barast, G., Razakamantsoa, A.-R., Djeran–Maigre, I., Nicholson, T., & Williams, D. (2017). Swelling properties of natural and modified bentonites by rheological description. Applied Clay Science, 142, 60–68. https://doi.org/10.1016/j.clay.2016.01.008 DOI: https://doi.org/10.1016/j.clay.2016.01.008

Boilar, S. W., & Chambers, T. M. (2006). Inability of kaolin treatment to remove non-specific inhibitors from equine serum for hemagglutination inhibition test against equine H7N7 influenza virus. Journal of Veterinary Diagnostic Investigation, 18(3), 264–267. DOI: https://doi.org/10.1177/104063870601800305

Bozhina, E., Batasheva, S., & Denilushina, A. (2019). Kaolin alleviates the toxicity of a graphene oxide for mammalian cells. MedChemComm, Article 1039IC8md00633d. https://doi.org/10.1039/C8MD00633D DOI: https://doi.org/10.1039/C8MD00633D

Cao, Y. X., Long, L. H., & Ma, Z. (2009). Effect of montmorillonite on diffusion of urea between blood and intestine and absorption of intestine in rats. [Journal name not provided], 32, 249–253.

Carretaro, M., & Gomes, C. S., et al. (2006). Clays and humans. In F. Bergaya & B. K. F. Theng (Eds.), Handbook of clay science (Vol. 1, p. 723). Elsevier. ISBN 0-08-044183-1

Carretero, M. A. (2020). Clays in pelotherapy. Part I: Mineralogy, chemistry, physical and physicochemical properties. Applied Clay Science, 189, 105526. https://doi.org/10.1016/j.clay.2020.105526 DOI: https://doi.org/10.1016/j.clay.2020.105526

Carretero, M. L. (2020). Clays in pelotherapy. Part II: Organic compounds, microbiology and medical applications. Applied Clay Science, 189, 105531. https://doi.org/10.1016/j.clay.2020.105531 DOI: https://doi.org/10.1016/j.clay.2020.105531

Chandler, D. J., Grysen, M. L., & Fullo, L. C. (2021). [Article title]. Dermatology, 237, 238–247. https://doi.org/10.1159/000506045 DOI: https://doi.org/10.1159/000506045

Clarke, G., Stilling, R. M., Kennedy, P. J., Stanton, C., Cryan, J., & Dinan, T. G. (2014). Gut microbiota: The neglected endocrine organ. Molecular Endocrinology, 28, 1221–1238. https://doi.org/10.1210/me.2014-1108 DOI: https://doi.org/10.1210/me.2014-1108

Cruz-Guzman, M., Celis, R., & Hermosin, M. C. (2005). Adsorption of pesticides from water by functionalized organobentonites. Journal of Agricultural and Food Chemistry, 53, 7502–7511. DOI: https://doi.org/10.1021/jf058048p

Dalbert, S., Ganter, M. T., Furrer, L., Klaghofer, R., Zollinger, A., & Hofer, C. K. (2006). Effects of heparin, haemodilution and aprotinin on kaolin-based activated clotting time: In vitro comparison of two different point-of-care devices. Acta Anaesthesiologica Scandinavica, 50, 461–468. https://doi.org/10.1111/j.1399-6576.2006.00990.x DOI: https://doi.org/10.1111/j.1399-6576.2006.00990.x

Delgado, M. E., Kishi–Suho, C. V., & Albores de la Riva, X. N. (2014). Topical usage of kaolin-impregnated gauze as a hemostatic in tonsillectomy. Journal of Surgical Research, 192, 678–685. https://doi.org/10.1016/j.jss.2014.05.040 DOI: https://doi.org/10.1016/j.jss.2014.05.040

Florez, I. D., Veroniki, A. A., & Alkhalifah, R. (2018). Competitive effectiveness and safety of interventions for acute diarrhea and gastroenteritis in children: A systematic review and network meta-analysis. PLoS ONE, 13, e0207701. DOI: https://doi.org/10.1371/journal.pone.0207701

Fowler, J. F., Jr. (2001). A skin moisturizing cream containing quaternium-15 causes hand dermatitis. Journal of Cutaneous Medicine and Surgery, 5, 201–205. DOI: https://doi.org/10.1177/120347540100500302

Geugen, R. (2019). Organoclay applications and limits in the environment. Comptes Rendus Chimie, 22, 132–141. DOI: https://doi.org/10.1016/j.crci.2018.09.004

Ghosh, S., Mukhopadhyay, J., & Chakraborty, A. (2019). Clay mineral and geochemical proxies for intense climate change in the Permian Gondwana rock record from eastern India. Research, Article 88740781. https://doi.org/10.34133/2019/88740781 DOI: https://doi.org/10.34133/2019/8974075

Gomer, C., Rautureau, M., Poustic, J., & Gomer, J. (2024). Benefits and risks of clays and clay minerals to human health from ancestral to current times: A synoptic overview. Clays and Clay Minerals, 69(5), [pages]. Cambridge University Press.

Gomes, C. S. F. (2013). Neurotherapies based on minerals. Geomaterials, 3, 1–14. DOI: https://doi.org/10.4236/gm.2013.31001

Gomes, C., Michel, R., Julia, P., & Gomes, J. (2024). Benefits and risks of clay and clay minerals to human health from ancestral to current times: A synoptic overview. Clays and Clay Minerals, 69, 612–632. https://doi.org/10.1007/s42860-021-00160-7 DOI: https://doi.org/10.1007/s42860-021-00160-7

Gomes, C. S. F. (2017). Healing and edible clays: A review of basic concepts, benefits and risks. Environmental Geochemistry and Health, 40, 1739–1765. https://doi.org/10.1007/s10653-016-9903-4 DOI: https://doi.org/10.1007/s10653-016-9903-4

Gomes, J. H. C., & Silva, E. A. F. (2020). Bacteriostatic and bactericidal clay: An overview of environmental geochemistry and health. https://doi.org/10.1007/s10653-020-0068-w DOI: https://doi.org/10.1007/s10653-020-00628-w

Haydel, S. E., Rennenkamp, C. M., & Williams, L. B. (2008). Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. Journal of Antimicrobial Chemotherapy, 61, 353–361. DOI: https://doi.org/10.1093/jac/dkm468

Hwang, G., Lee, J. W., Won, E., & Han, S. H. (2019). Prospective randomized controlled study of hemostatic efficiency with kaolin-impregnated dressing in diabetic foot ulcers taking anticoagulants undergoing debridement in an outpatient clinic. Journal of Diabetes Research, 2019, 9316380. https://doi.org/10.1155/2019/9316380 DOI: https://doi.org/10.1155/2019/9316380

Kim, S. G., Dai, W., Xu, Z., & Li, G. (2011). Effects of montmorillonite on alleviating dietary Cd-induced oxidative damage in carp (Carassius auratus). Biological Trace Element Research, 141, 200–206. DOI: https://doi.org/10.1007/s12011-010-8735-9

Kwan, C. C., Chu, W. H., & Shimabayashi, S. (2006). Effect of polyvinylpyrrolidone and sodium lauroyl sarcosinate on kaolinite suspension in an aqueous phase. Chemical & Pharmaceutical Bulletin, 54, 1082–1087. https://doi.org/10.1248/cpb.54.1082 DOI: https://doi.org/10.1248/cpb.54.1082

Lynda, B. W. (2019). Natural antibacterial clays: Historical uses and modern advances. Clays and Clay Minerals, 67, 7–24. https://doi.org/10.1007/s42860-018-0002-8 DOI: https://doi.org/10.1007/s42860-018-0002-8

Ma, H., & Nang, B. (2006). Multifunctional microsized modified kaolin and its application in wastewater treatment. Journal of Hazardous Materials, 136, 365–370. DOI: https://doi.org/10.1016/j.jhazmat.2005.12.024

Mahmoud, K. P., Hassan, A. M., Radwan, H. A., & Mahmoud, M. A. (2015). Inhibition of cadmium-induced genotoxicity and histopathological changes in Nile tilapia fish by Egyptian and Tunisian montmorillonite clay. Ecotoxicology and Environmental Safety, 119, 140–147. DOI: https://doi.org/10.1016/j.ecoenv.2015.04.054

Malebetja, M. F., Morcoagae, B. R., Mathuthu, M. M., & Oluwafemi, O. O. (2024). Chemical composition of clay soil analysis and potential health risk: Experimental study in Tshwane District, Gauteng Province. Journal of Applied Sciences, 14, 9152. https://doi.org/10.3390/app14199152 DOI: https://doi.org/10.3390/app14199152

Mitchell, N. J., Kumi, J., & Johnson, N. M. (2013). Reduction in the urinary aflatoxin M1 biomarker as an early indicator of reduced exposure to aflatoxins. Biomarkers, 18, 391–398. DOI: https://doi.org/10.3109/1354750X.2013.798031

Montazavi, S. M., Atefi, A., & Roshone, Shomal. (2009). Development of a novel mineral-based haemostat agent consisting of a combination of bentonite and zeolite minerals. Journal of Ayah. Med. Coil Abbottabad, 21(1).

Moosavi, M. (2017). Bentonite clay as a natural remedy: A brief review. Iranian Journal of Public Health, 46, 1176–1183.

Moraes, J. D. D., Bertolino, S. R. A., Cuffini, S. L., Ducart, D. F., Bretzke, P. E., & Leonardi, G. R. (2017). Clay minerals: Properties and applications to dermocosmetic products and perspective of natural raw materials for therapeutic purposes—A review. International Journal of Pharmaceutics, 534, 213–219. DOI: https://doi.org/10.1016/j.ijpharm.2017.10.031

Nadziakiewicz, M., Kehoe, S., & Micek, P. (2019). Physico-chemical properties of clay minerals and their use as a health-promoting feed additive. Animals, 9, 714. https://doi.org/10.3390/ani9100714 DOI: https://doi.org/10.3390/ani9100714

New Direction Aromatics. (2018). SPA 2: An all-inclusive guide to French clay varieties and their benefits.

Ovincy, C., Babel, S., Baral, S., Poudel, S., & Jain, S. (2023). Clay therapy in wound healing: A brief review of the literature. Journal of Wound Management and Research, 20, 1–8. https://doi.org/10.22467/jwmr.2023.02558 DOI: https://doi.org/10.22467/jwmr.2023.02558

Roselli, D., Desideri, D., Cantaluppi, C., Mattioli, M., Fasson, A., & Meli, M. A. (2015). Essential and toxic elements in clays for pharmaceutical and cosmetic uses. Journal of Toxicology and Environmental Health, Part A, 78, 1–9. DOI: https://doi.org/10.1080/15287394.2014.964430

Sandra, C. L., & Lynda, B. W. (2016). Unraveling the antibacterial mode of action of a clay from the Colombian Amazon. Environmental Geochemistry and Health, 38, 363–379. https://doi.org/10.1007/s10653-015-9769-6 DOI: https://doi.org/10.1007/s10653-015-9723-y

Sandri, G., Bonferoni, M. C., & Ferrari, F. (2014). Montmorillonite-chitosan-silver sulfadiazine nanocomposite for topical treatment of chronic skin lesions: In vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydrate Polymers, 102, 970–977. DOI: https://doi.org/10.1016/j.carbpol.2013.10.029

Sandri, G., Faccendini, A., Longo, M., Rossi, S., Bonferoni, M. C., Miele, D., Prina-Mello, A., Aguzzi, C., Viseras, C., & Ferrari, F. (2020). Halloysite and montmorillonite loaded scaffolds as enhancers of chronic wound healing. Pharmaceutics, 12, 179. DOI: https://doi.org/10.3390/pharmaceutics12020179

Southern, L. L., Ward, T. L., Bidner, T. D., & Hebert, L. G. (1994). Effect of sodium bentonite or hydrated sodium calcium aluminosilicate on growth performance and tibia mineral concentration in broiler chicks fed nutrient-deficient diets. Poultry Science, 73, 848–854. DOI: https://doi.org/10.3382/ps.0730848

Tian, G., Wang, Z., Zongwang, H., Zuyan, X., Xia, L., & Zhang, Y. (2024). Clay and wound healing. Materials, 17, 1691. https://doi.org/10.3390/ma17071691 DOI: https://doi.org/10.3390/ma17071691

Tu, D. Y., Li, X. L., & Li, W. F. (2008). Effect of montmorillonite superfine composite on growth performance and tissue lead level in pigs. Biological Trace Element Research, 125, 229–235.

Umudi, E. Q., & Awatafe, K. J. (2018). Leachate treatment using clay-stone filter. Journal of the Chemical Society of Nigeria, 43, 155–158.

Umudi, E. Q., Umudi, O. P., & Igere, O. F. (2024). Evaluation of physicochemical properties and heavy metal content of domestic waste after being treated with clay-stone formulation from Urovie and Agbor in Delta State and Abia State, Nigeria. Journal of Applied Sciences and Environmental Management, 28, 2449–2454. https://doi.org/10.4314/jasem.v28i8.22

Young, S. I., Sherman, P. W., Luck, J. B., & Pelto, G. H. (2011). Why on earth? Evaluating hypotheses about the physiological functions of human geophagy. Quarterly Review of Biology, 86, 97–120. DOI: https://doi.org/10.1086/659884

Yu, D. Y., Li, X. L., & Li, W. F. (2008). Effect of montmorillonite superfine composite on growth performance and tissue lead level in pigs. Biological Trace Element Research, 125, 228–235. DOI: https://doi.org/10.1007/s12011-008-8173-0

Zhuo, Q., Ma, H., Wang, B., & Gu, L. (2007). Catalyst decolorization of aza-stuff with electrocoagulation method assisted by cobalt phosphomolybdate modified kaolin. Journal of Hazardous Materials, 142, 81–87. https://doi.org/10.1016/j.jhazmat.2006.07.063. DOI: https://doi.org/10.1016/j.jhazmat.2006.07.063

Downloads

Published

2025-05-30

How to Cite

Umudi, E. Q., Umudi, O. P., Onojake, L., Ehiedu, C. N., Obukohwo, I. E., & Nwakwanogo, B. E. (2025). Environmental and Medicinal Impacts of Clay. Faculty of Natural and Applied Sciences Journal of Basic and Environmental Research, 2(3), 72–78. https://doi.org/10.63561/jber.v2i3.827