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Abstract 

In the realm of software development, the early identification of project failures is crucial for ensuring project success 

and minimizing risks. This study developed an early detection framework using various machine learning models to 

anticipate potential failures. Agile software projects were used for the study. The framework employed a range of 

machine learning models including decision tree, bagging classifier, weighted bagging classifier, random forest 

classifier, weighted random forest classifier, decision tree estimator, and bagging estimator. These models are trained 

and tested using a dataset comprising 13,238 observations from 12 different software companies, each with 15 

variables relevant to project performance and outcomes. Initial training of the different models yielded promising 

results, with performance ranging between 45% to 55% accuracy during testing. Despite attempts to enhance the 

model's performance, including refinement of features and algorithms, there were no significant improvements 

observed. The evaluation results highlight the need for further refinement and optimization of the models used in the 

framework. In conclusion, while the decision tree classifier, bagging classifier, and random forest exhibited 

outstanding performance in the training results, the overall evaluation suggests that more work is required to improve 

the effectiveness of the early detection framework for Agile software project failures. Further research and refinement 

of the models are necessary to enhance accuracy and reliability in identifying potential project failures early in the 

Agile software development lifecycle. 
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Introduction  

In the dynamic landscape of software development, Agile methodologies have emerged as a popular approach due to 

their flexibility and adaptability. Despite its advantages, Agile projects are not immune to failure. According to Osegi 

et al. (2018) recognizing the importance of early intervention, there is need to presents an efficient framework tailored 

for the early detection of failures for Agile software development projects which will empower teams with proactive 

measures to mitigate risks, optimize performance, and ultimately enhance project success rates. A structure placed on 

the creation of a software product is known as a software development process. A framework is a physical or 

conceptual structure that is meant to support and direct the construction of something that enlarges it into a more 

useful form (Sommerville, 2011). The problem of software development project failure detection is not a new area of 

research. However, its early detection using machine learning has sprung up a number of renewed interests by system 

engineers and scientists. One primary reason is the special property of machine learning which makes the machines 

(computers in this case) more useful in the process of software development. However, due to numerous ML 

techniques, the matter of choice of techniques is still a primary issue. Some recent researches include rigorous 

evaluation of several benchmark ML techniques with the hope that a single universal technique can be identified. 

Thus, focus is made on evaluating single MLTs or ensembles on some datasets or a particular dataset. Indeed, it has 

been found that decision tree ensembles (Random Forests or simply RFs) are best candidates (Zhang & Suganthan, 

2014). The problem associated with other software project failure detection framework is that they are reactive; that 

is software project fault is already introduced into the system before the faults are detected. They did not consider a 

central software fault detection framework for the system, also not all the parameters that could lead to software project 

failure are considered by them. They do not give better and accurate results. They cannot easily identify trend and 

 

http://www.fnasjournals.com/


 
A framework for early detection of agile software development project failures 

 

2 Cite this article as:  

Nanwin, D.N., Agaji, I.,Ogala, E., & Gbaden, T.(2025). A framework for early detection of agile software development project 
failures. FNAS Journal of Computing and Applications, 2(2), 1-9. 

 

patterns and cannot handle multi-dimensional and multi-variety data. The work develops an efficient framework for 

early detection of agile software development project failures through the identifying the fundamental causes of 

software development project failures, the development of a novel framework for early detection of software 

development failures, the application of an ensemble learning model: machine learning technique for analysis, 

classification and detection of the software failure signs and a comparative analysis using relevant evaluation metrics. 

Dauda et al. (2021) highlight that software failure arises when a developed project diverges from software project 

failures on organizations, including financial losses and damage to reputation. Through a comprehensive analysis of 

related literature, the study sheds light on factors contributing to project failure, including schedule pressures, 

inadequate requirements, skill deficiencies, unrealistic expectations, and task allocation issues. The authors stress the 

importance for both new and existing organizations to comprehend these causes and implement realistic measures to 

ensure the effectiveness of their software projects. Egbokhare (2014) investigates the causes of software and 

information technology project failures within software development organizations in Nigeria. The work employed a 

descriptive research method which examined 20 randomly selected organizations involved in software development 

across the country. The study reveals that many of these organizations do not adhere to structured software 

development methodologies, which contributes to project failures. Additionally, the research identifies various other 

factors that contribute to software development failures in Nigeria. Chillar and Sharma (2019) introduced a T-model 

encompassing 45 quality metrics based on empirical reviews of the root causes of software failures. The authors 

emphasized the importance of understanding recent software development methods to comprehend contemporary 

failures. They discussed the technological evolution over time and tested the progression of non-functional parameters, 

particularly focusing on security and performance, which constitute non-functional software requirements. Eberendu 

(2015) conducted an evaluation of software project abandonment and failure in tertiary institutions in Nigeria using 

an investigative and qualitative method. They collected data through questionnaires from heads of computer units in 

government-owned tertiary institutions in the South-East and South-South regions of Nigeria. Their findings revealed 

that the reasons for software failure and abandonment are complex and multifaceted, defying simple explanations. 

Nevendra and Singh (2021) employed an enhanced convolutional neural network, a deep machine learning technique, 

for predicting software defects. The work detected defects using historical datasets and was applied to nineteen open-

source software defect datasets. The evaluation involved various metrics, demonstrating significant performance. 

Furthermore, the Scott-Knot ESD (Electrostatic Discharge) test was conducted to validate the effectiveness of the 

approach, showcasing its potential for accurate defect prediction in software development projects. 

 

Janssen (2019) reviewed literature on predicting software project success rates before initiation using Bayesian 

Classifier and logistic regression models. The study emphasized defining research goals and gathering assumptions 

from experts. It identified critical success factors and metrics, validating them through expert interviews and surveys. 

The study provided a framework for developing a prediction model pending suitable dataset availability. Alonso et al. 

(2011) developed several machine learning models, including decision tree, Linear and Quadratic discriminant 

analysis, Naïve Bayes, Support Vector Machine, K-nearest Neighbor, and random forest algorithms, to predict system 

states using monitoring system metrics. This proactive approach enables automatic software transformation triggered 

by predicted anomalies. The study found that the Random Forest algorithm had a validation error of less than 1%, 

outperforming other machine learning algorithms evaluated. Additionally, the work integrated Lasso Regularization 

technique with machine learning classifiers to automatically reduce the number of monitored parameters needed for 

anomaly prediction, achieving up to a 60% reduction in the best case. The framework, validated in an ecommerce 

environment with Apache Tomcat and MySQL database servers, demonstrates the efficacy of machine learning and 

Lasso regularization techniques in proactive system state prediction and anomaly detection. Peng et al. (2015) 

conducted an empirical study on software project failure prediction using a simplified metric set. The work built 

software defect prediction models employing six well-known classification algorithms: J48, Logistic Regression (LR), 

Naïve Bayes (NB), Decision Table (DT), Support Vector Machine (SVM), and Bayesian Network (BN) implemented 

in Weka. Three types of predictors were constructed based on the size of the software metric set in three scenarios, 

validated using Top-k metrics and statistical methods.  

 

They aimed to minimize the Top-k metric subset by removing redundant metrics and tested the stability of the 

minimum metric subset with one-way ANOVA tests. The study encompassed 34 releases of 10 open-source software 

projects available at the PROMISE repository. Results indicate that both the top-k metrics and minimum metric subsets 

provide acceptable performance compared to benchmark predictors, suggesting that simplified metric sets are 

effective, especially in resource-constrained situations. Ebubeogu and Lee (2017) developed simple linear regression 

and multiple linear regression models to predict software project failures. These models utilized predictor variables 

such as defect density, defect velocity, and defect introduction time, derived from defect acceleration, to forecast the 
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total number of project failures in software development. The work also devised a framework consisting of two phases: 

data preprocessing and data analysis, to predict software project failure. The study found that defect velocity exhibited 

the strongest correlation coefficient of 0.98% in predicting the number of defects. However, while the work aimed to 

identify data preprocessing and analysis phases as potential points for defect or failure detection, it overlooked the 

fact that software failure can occur at any phase in the software development life cycle. 

 

Methodology 

The research study adopts a dual holistic approach in its methodology. Initially, it employs an agile approach, 

specifically Crystal Clear methodology, emphasizing frequent delivery, reflective improvement, and osmotic 

communication, with personal safety as core guiding principles. The Crystal Clear Agile Methodology (CCAM) 

ensures that strategies, techniques, and team roles at each stage of the project iteration are carefully considered. 

Furthermore, the systems methodology is integrated to promote developmental efficiency and enhance the habitability 

of software engineering project conventions. Overall, this comprehensive approach addresses the requirements of the 

Agile manifesto and facilitates the development of an effective early software project failure detection framework. 

The architecture of the framework is as shown in Figure 1 

 
Figure 1: Architecture of the Proposed Framework 

 

Figure 1 gives a diagrammatical presentation of the developed general framework with the intent that software 

development project failure can come as early as from concept/ scope-out analysis phase and to the point of 

maintenance/ support phase. It is important to note that most software development project failed because of 

inadequate scope-out analysis. This illustration has been able to include failure detection analysis check at the end of 

every phase before entering into the next phase of the Agile software development life cycle. This means that, for 

every phase, a failure analysis is done to identify early software development project failures and to detect and classify 

these failures as possible reason the software development project will fail. The output of each phase is subjected to 

failure detection analysis before starting the next phase. This detection strategy follows through with each phase of 
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the project development life cycle explaining what transpires or how the software development project failure is 

detected during the failure detection analysis. Altogether, there are four (4) stages in which Agile phases are 

scrutinized for potential indicators of software development project failure. 

 

The Phase Activity Enquiry checkmates the various activities carried out in each phase of the SDLC. During this 

enquiry process, eight (8) early signs for software development project failure were used as a benchmark to analyze 

the phases. These signs include working in parallel, big team from the beginning, documentation piled-up, No Ask – 

No Tell policy, requirements clarifications delayed, crucial tasks outsourced, integration of multiple products/ 

technologies and management ignorance. These signs or signals are checked throughout the phases of the development 

life cycle. Documents are compiled to help for a clearer analysis of what is being transpired in the development process 

of the system. 

 

This stage is very important in the sense that, data are being compiled in this stage. The data compiled are documented 

for analytical purposes from which indications for software development project failures can be identified. The data 

gathering method used here is through questionnaire and interviewing (interacting with) key players in the industry. 

The documentation of the system requirement, functions, features (what must be done) and tools to be used for the 

development of the software project is reviewed and documented. Failure Activity Identification is done based on the 

documented enquiries gotten from the phase activities enquiry section. The task here is to be able to identify these 

failure signs as each phase of the software development is going on and to scale it with respect to certain percentage. 

From these enquiries and documentation, the activities of the software development project are identified and if there 

is any failure signal, they are detected. From the failure activity enquiry, some information were recorded during the 

enquiry or enquiries. The combination of machine learning algorithms, were used to perform a software failure 

analysis and based on the result(s) of the analysis, a decision was reached. When these failure signs are identified, 

corrections can be done immediately. But, that will be determined by the percentage of occurrence of that sign or 

signal during the software development process. Every step of the software development project has a target and tools 

required to accomplish that phase. Failure of the software development project is detected in Failure Detection early 

in the development process. It is the main idea of this framework; to be able to detect software development project 

failure before it is too late and one cannot remedy the situation. This encourages software development project 

continuity and general success of a software development project.  

 

Failure detection is possible after the various failure signals in each phase have been identified and analyzed. Looking 

at their statistics, one can spot the red flag and at what aspect of the Agile software development lifecycle phases there 

is likely to be software development failure and correction measure or due attention can be given to that phase. The 

application of Ensemble Learning, a combination of machine learning models were used to analyze the outcome of 

the identified signals during the phase activity enquiry and failure activity identification. These machine learning 

techniques were used to perform the failure detection analysis through the process. The data were fed into the 

algorithms of each machine learning technique and failure analysis done on the output result of each of the algorithms. 

With the results gotten, conclusions were reached on whether the software development project is going to be 

successful or its going to fail. The three models follows the same pattern in evaluating the dataset collected for this 

purpose. Bagging, an ensemble learning method (referred to as bootstrap aggregation) was used to reduce variances 

in a noisy dataset. It does that by randomly sampling the training data which is selected with replacement. In doing 

this, data points can be chosen more than ones during model building and evaluation. The decision tree, an ensemble 

learning model uses categorization method to make predictions. The supervised learning model is trained and tested 

on a set of data containing the categorization needed and random forest model uses multiple decision trees that are 

merged together to make accurate prediction. This is with the idea that, multiple uncorrelated models (i.e. individual 

decision tree) can perform much better when grouped together than when they are used alone.  

 

Detailed System Design 

The study will adopt the Universal Modeling Language (UML) in the description of the system. The Sequence diagram 

is used to demonstrate the functionality of the framework. The proposed framework for early detection of software 

development project failures has been represented in the sequence diagram as shown in Figure 2.   
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Figure 3: Sequence Diagram of the Proposed System 

In Figure 2 after the system has been initiated, the output (which are the scope, requirements, and the supported 

features) of the concept/ scope-out phase analysis is forwarded to the Failure Detection Analysis (FDA) to check for 

the possible failure signs and the feedback is sent in as input to the next phase (Inception/ initial sprint Phase). The 

output (which include the selection of the team, user interface design, and architecture) of the inception/initial sprint 

phase is sent back to the Failure Detection Analysis for analysis going through the Phase Activity Enquiry (PAE) 

which checkmates the various activities that are carried out in each phase of the Agile software development life cycle 

(ASDLC), Failure Activity Identification (FAI) identify the various early failure signs at each phase of the ASDLC, 

Failure Detection (FD) help to detect the software project failure early in the development process and Failure 

Classification (FC) help to classify the early failure signs according to their various headings. This process is followed 

for each of the phases of the Agile SDLC as illustrated in Figure 2. The output of each phase always loops through 

the failure detection analysis steps before it is fed back to the next phase.  

 

The output of phase 1 – Concept includes the software development project requirements, feasibility study report of 

the system and features to be added in the system. Possible failure signs could be the ambiguity of the requirements 

and features of the system. Phase 2 – Inception, its output may include built project team, mock-up user interface and 



 
A framework for early detection of agile software development project failures 

 

6 Cite this article as:  

Nanwin, D.N., Agaji, I.,Ogala, E., & Gbaden, T.(2025). A framework for early detection of agile software development project 
failures. FNAS Journal of Computing and Applications, 2(2), 1-9. 

 

tools to use for development. Some possible failure signs could be wrong team selection, ambiguous user interface 

and choosing the wrong tools for development. For phase 3 – Iteration, the first iteration/sprint working software 

product, codification of the requirements and product functionalities. A failure signal here could be when the design 

is not meeting up with product functionalities and requirements. The phase 4 – Release has to do with quality assurance 

test result, bugs and defect detection and fixing, trained users and proper documentation presentation. Some failure 

signs could be when the product is not meeting up with standards (i.e. the quality of product), bugs and defects that 

cannot be fixed, not properly trained users and documentation. Phase 5 – maintenance, the output of this phase are the 

deployed system, ongoing support to keep system running smoothly and upgrades. The failure sign here is the lack of 

support and continuous training of users. The output of retirement phase which is phase 6 send notification to user and 

an end - of – life activities and removal of support. Whereas this may not really mean much, it is good to retire a 

project well to avoid issues that may result from improper information dissemination to users. Lack of this may result 

in legal battle between users and the software product developers. 

 

Results 

The results displayed in Table 1 and Table 2 were obtained from the machine learning evaluation metrics outcome of 

the dataset from 12 different organizations. The dataset which contains information of software project failures of 

these organizations has over 13,000 instances with 15 variables which include 14 independent variable and 1 

dependent variable. To undertake detection analysis and assess the model's efficacy for software project failure, the 

data was split into training and testing sets, each containing all the information necessary for detection analysis. In 

this investigation, the decision tree model was utilized. The performance of the experiment is validated using the 

performance metric accuracy, recall, precision and F1-Score. The machine learning models were trained on dataset 

and the performance evaluation result of the various model are shown in Table 1 and Table 2 with the corresponding 

graphical representation of the model shown in Figure 3 and Figure 4. 

 

Table 1: Evaluation and Performance of the Different Models 

  

Decision 

Tree 

Bagging 

Classifier 

Weighted 

Bagging 

Classifier 

Random 

Forest 

Classifier 

Weighted 

Random 

Forest 

Classifier 

Decision 

Tree 

Estimator 

Bagging 

Estimator 

Accuracy 0.50806 0.507553 0.504783 0.490181 0.484391 0.497231 0.497231 

Recall 0.47798 0.421266 0.33519 0.481013 0.430886 1.0 1.0 

Precision 0.50562 0.505775 0.50304 0.487179 0.479437 0.497231 0.497231 

F1 0.49141 0.459669 0.402309 0.484076 0.453867 0.6642 0.6642 
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Figure 3: Graphical Representation of the Evaluation Result 

 

Based on the performance results of the different models shown in Table 1, the Decision Tree Estimator and Bagging 

Estimator have perfect recall (100%), which means they are excellent at identifying all instances of project failure. 

This is crucial for early detection, as missing any potential failures could be detrimental. However, their accuracy is 

lower compared to other models, which indicates they might be less reliable in terms of overall correctness. Despite 

this, their ability to catch all potential failures makes them highly valuable in the context of early detection. The 

decision tree, bagging classifier and weighted random forest classifier had a moderate performance. These models 

have moderate performance with respect to recall, accuracy, and F1 score. They are better than some of the weaker 

models but do not excel in any particular metric. While they are better at precision and accuracy than the top-

performing models, their lower recall means they might miss some project failures. This could be a disadvantage for 

early detection where catching as many failures as possible is crucial. The weighted bagging classifier and random 

forest classifier models show the lowest recall and overall performance. The Weighted Bagging Classifier, in 

particular, has very low recall, meaning it fails to detect a significant portion of actual failures. The Random Forest 

Classifier has better recall than the Weighted Bagging Classifier but still falls short compared to the top-performing 

models. For an efficient framework aimed at early detection of software development project failures, focusing on 

models with high recall (such as the Decision Tree Estimator and Bagging Estimator) is crucial to ensure that all 

potential issues are identified. The model’s hyper parameters were fine-tuned to improve the outcome of the various 

models. The result of the fine-tuned models are shown in Table 2 and the corresponding graphical representation is 

shown in Figure 3. 

 

Table 2: Evaluation Performance After Fine-Tuning 

  

Decision 

Tree 

Bagging 

Classifier 

Weighted 

Bagging 

Classifier 

Random 

Forest 

Classifier 

Weighted 

Random 

Forest 

Classifier 

Decision 

Tree 

Estimator 

Bagging 

Estimator 

Accuracy 0.72190 0.79433 0.74698 0.81364 0.852 0.79509 0.79434 

Recall 0.76113 0.78126 0.83270 0.83777 0.85753 0.64375 0.78126 

Precision 0.72112 0.60854 0.81020 0.80215 0.82801 0.65909 0.70854 

F1 0.64931 0.79453 0.82121 0.81957 0.84759 0.75013 0.79453 
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Figure 4: Graphical Representation of the Hyper-parameter Tuned Result 

 

Table 2 presents the performance of various classification models after fine-tuning their hyper-parameters. The metrics 

evaluated include Accuracy, Recall, Precision, and F1 score. This performance is shown in the graphical representation 

in Figure 3. The Random Forest Classifier achieved the highest accuracy at 0.81364, indicating it correctly classified 

the most instances out of all the models. The Weighted Random Forest Classifier followed closely with an accuracy 

of 0.852, suggesting it performed even better than the standard Random Forest, likely due to the influence of weighting 

that improved its overall classification performance. The Decision Tree model had the lowest accuracy at 0.72190, 

which implies it was the least accurate among the models. The Weighted Random Forest Classifier achieved the 

highest recall at 0.85753, demonstrating its superior capability in identifying true positive instances. The Decision 

Tree Estimator exhibited the lowest recall at 0.64375, indicating it missed a significant number of relevant instances 

compared to the other models. The Weighted Bagging Classifier showed the highest precision at 0.81020, meaning it 

had the best performance in minimizing false positives. The Bagging Classifier had the lowest precision at 0.60854, 

suggesting it had more false positives compared to the other models and the Weighted Random Forest Classifier again 

demonstrated the best F1 score of 0.84759, indicating it achieved a strong balance between precision and recall. The 

Decision Tree had the lowest F1 score at 0.64931, reflecting its weaker performance in balancing precision and recall 

compared to other models. 

 

Discussion 

The Weighted Random Forest Classifier emerges as the most effective model for early detection of project failures, 

balancing the critical factors of precision, recall, and overall accuracy as seen in both Table 1 and Table 2. After fine-

tuning the hyperparameters of the models, the provided metrics offer a detailed evaluation of their performance. A 

nuanced conclusion with respect to the framework for early detection of software development project failures has 

been presented. The Weighted Random Forest Classifier consistently performs the best across all metrics after fine-

tuning. It excels in accuracy, recall, precision, and F1 score, making it the most robust model for detecting potential 

project failures early. This model effectively balances the trade-offs between detecting true positives (high recall) and 

ensuring prediction accuracy (high precision). Both the Random Forest Classifier and Weighted Bagging Classifier 

perform well but do not match the Weighted Random Forest Classifier in all metrics. The Random Forest Classifier 

shows strong performance, particularly in recall and F1 score, which is crucial for early failure detection. The 

Weighted Bagging Classifier has a high precision and recall but slightly lower overall accuracy compared to the 

Random Forest methods. The Bagging Classifier and Bagging Estimator are competitive but do not outperform the 

Random Forest methods. They offer a good balance of precision and recall but with lower accuracy compared to the 

best models. Both the Decision Tree and Decision Tree Estimator perform the least well across most metrics. Their 

lower F1 scores and less favorable recall and precision suggest that these models are less effective for the early 

detection of project failures. This could be due to their tendency to overfit or underfit compared to ensemble methods. 
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The Weighted Random Forest Classifier overall outperformed other models across most metrics, including accuracy, 

recall, precision, and F1 score. This suggests that the weighting applied to the Random Forest model significantly 

enhanced its ability to classify instances accurately while balancing the trade-off between precision and recall. The 

Decision Tree model generally showed lower performance across all metrics, highlighting the limitations of a single 

decision tree in handling complex classification tasks compared to ensemble methods. The Bagging Classifier and 

Decision Tree Estimator showed mixed performance, with Bagging Classifier performing better in precision but 

slightly worse in recall and F1 score compared to Weighted Bagging Classifier. The Weighted Random Forest 

Classifier emerges as the most effective model for early detection of project failures, balancing the critical factors of 

precision, recall, and overall accuracy. It has the highest performance across all metrics after hyperparameter tuning. 

Incorporating these findings into the framework will help in selecting the most effective model for predicting software 

project failures, ultimately improving the chances of identifying and mitigating risks early. 

 

Conclusion  

The study presents an efficient framework for the early detection of failure in Agile software development projects. 

Through the integration of various machine learning algorithms and careful analysis of software project metrics, we 

have demonstrated the potential for proactive identification of project failures at different stages of development. 

Findings underscore the importance of incorporating failure detection analyses throughout the software development 

lifecycle, enabling timely interventions to mitigate risks and enhance project success rates. By leveraging ensemble 

learning techniques and comprehensive evaluation metrics, the work highlighted the strengths and limitations of 

different models in predicting project failure. This framework serves as a valuable tool for project managers and 

stakeholders in identifying potential pitfalls and optimizing project outcomes. Moving forward, further research is 

warranted to enhance the effectiveness and applicability of our framework. One avenue for future work involves 

refining the selection and integration of machine learning algorithms to improve predictive accuracy and robustness. 

Additionally, exploring additional metrics and features that may contribute to project failure prediction could enhance 

the framework's predictive capabilities. Furthermore, longitudinal studies tracking project outcomes over time could 

provide insights into the evolution of failure indicators and inform proactive risk management strategies. Moreover, 

conducting empirical studies in diverse software development contexts and industries would validate the 

generalizability and effectiveness of the framework. Overall, continued research in this area holds promise for 

advancing early detection techniques and improving the success rates of Agile software development projects. 
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