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Abstract 

Agile software development has gained widespread adoption due to its iterative and adaptive approach to project 

management. However, despite its benefits, Agile projects are susceptible to failures that can impede project success. 

This paper focuses on developing effective strategies for early identifying and preventing of these failures in Agile 

software development projects. The aim is to provide project teams and stakeholders with actionable insights to 

mitigate failures and enhance project outcomes. The methodology involves a comprehensive review of literatures on 

Agile project management, early failure detection, and classification analysis using a novel failure detection analysis 

(FDA) model/ framework. Expected results include the formulation of a practical framework comprising proactive 

measures and best practices for early detection and prevention of software project failures. Suggestions for 

implementation include implementing refined machine learning algorithms, exploring performance metrics, 

conducting longitudinal studies, and empirical studies in diverse contexts while leveraging Agile project management 

tools for continuous monitoring and adaptation. In conclusion, by implementing the proposed strategies, Agile 

software development teams can proactively identify and mitigate potential failures, leading to improved software 

project success rates and stakeholder satisfaction. 

Keywords: Failure Detection Analysis, Agile Software Development Lifecycle, Software Failure, Software 

Development 

 

 

Introduction 

A framework or approach applied to the creation of a software product is called a software development process. The 

software life cycle and software process are other names for it. A framework is a physical or conceptual structure that 

is meant to support and direct the construction of something that enlarges it into a more useful form (Lutkevich, 2020).  

There are several models for such processes, each describing approaches to a variety of software development process 

methodologies. Professional dissatisfaction with traditional approaches and the high failure rate of software 

development projects, along with the necessity for speedier software development to keep up with the rapidly changing 

business environment, gave rise to the concept and methodology of agile software development (Elbanna, 2014). It 

has been proposed that software development projects can fail for a variety of reasons. But the majority of the research 

on project failure tends to be quite generic, offering us lists of risk and failure criteria along with an emphasis on the 

detrimental effects of the failure on the company. Few studies have made an effort to thoroughly examine a number 

of unsuccessful initiatives in order to pinpoint the precise causes of the failure (Verner et al., 2008). In this work, we 

develop an architectural framework for early detection of software development project failures. Agile software 

development places regard on working software rather than on comprehensive documentation. 

 

The problem associated with other software project failure detection frameworks is that they are reactive; that is 

software project fault is already introduced into the system before the faults are detected. They did not consider a 

central software fault detection framework for the system, also not all the parameters that could lead to software project 

failure are considered by them. They do not give better and more accurate results. They cannot easily identify trends 

and patterns and cannot handle multi-dimensional and multi-variety data. However, it is a known fact that the No-
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Free-Lunch-Theorem (NFLT) is indeed a major barrier for such solutions as it is not realistic to make conclusions on 

one algorithm over another as no algorithm is inherently superior over another (Wolpert & Macready, 1997). 

 

Relevant Literature  

Song et al. (2019) introduced a system reliability modelling approach for analyzing software failures, particularly 

focusing on aerial support systems. While reliability is crucial for software quality, typical analysis methods may not 

adequately address the complexities of such systems. The proposed approach integrates System Theoretic Accident 

Modeling and Processes (STAMP) with system reliability modelling to address these challenges. The framework 

outlines reliability constraints and control models, offering a method for analyzing anomalies and inadequate control 

measures. Experimental results suggest that this novel approach may more effectively reveal software reliability issues 

in airborne support systems compared to existing methods. Capers (2010) identified several key causes of software 

project failure, including inadequate user input, stakeholder conflicts, vague requirements, poor cost and schedule 

estimation, mismatched skills, hidden costs, lack of planning, communication breakdowns, poor architecture, and late 

warning signals. Also, Zahid et al. (2018) conducted a critical analysis of situational factors contributing to software 

project failure and hindering success. They highlighted issues such as insufficient quality standards, limited 

understanding of development processes, and incorrect utilization of development approaches as primary causes of 

failure.  

 

Christiansen et al. (2015) introduced a multiple regression model to predict risk factors involved in software 

development projects. Utilizing risk stratification and causal risk factor analysis combined with logistic regression, 

the model aimed to predict the probability of success or failure of software project development. While the model 

effectively grades and identifies risk factors crucial to the development process, it focuses on risk factors rather than 

failure factors. Additionally, it does not demonstrate whether identification occurs early in the software development 

phase. Also, Anju and Judith (2019) presented a data mining technique for predicting software defects, using efficient 

classification algorithms to anticipate errors before they manifest. This model operates by predefining the number of 

defects in a specific software product and predicts defects based on its size. The results are leveraged to enhance 

software quality and optimize resource allocation. However, a limitation lies in the inability to adjust the defect 

prediction model based on different project data, potentially leading to decreased test efficiency when encountering 

variances in training data characteristics. 

 

Reddy and Babu (2013) developed a Logistic Regression Early-Estimation Model for predicting software project 

failure. This model provided accurate parameter estimates during the testing phase, leading to improved software 

reliability. However, a drawback is that failure behaviour detection typically occurs near project completion, during 

the testing and debugging phase, which may not allow sufficient time for cost and time-saving interventions. 

Procacinno et al. (2002) introduced a Case Study Approach for the early prediction of software project success or 

failures, highlighting factors such as weak specifications, lack of managerial support, and limited client engagement 

as influential. The study involved organizational case studies and participant surveys to explore these factors. While 

customer and user engagement were identified as crucial for project performance, a limitation is that the earliest 

prediction or detection occurs during the development phase, potentially limiting the opportunity for timely 

intervention. Fitzgerald et al. (2011) introduced an automated tool-implemented system for building failure prediction 

models, which compares various prediction techniques and their cost-benefit analyses to determine the likelihood of 

success in predicting failures. While the model's results demonstrated that automated prediction models outperform 

baselines for several failures, a limitation is that it focuses on avoiding failures rather than detecting them. 

 

Additionally, Suma et al. (2014) presented a forecast of software project success using the Random Forest Classifier 

model, which employs bagging and feature randomness to build an ensemble of trees. The model's results showed that 

its output significantly differs from other approaches, with Random Forest proving effective across various project 

domains and complexities. This capability enables project managers to forecast project performance based on 

empirical investigations conducted with Random Forest. The model discussed presents a limitation in that it focuses 

solely on the success of software projects rather than failure, lacking insight into early project failure indicators. 

Conversely, Jeon et al. (2015) developed a probabilistic approach to predict the risks associated with software project 

failure by exploring software data repositories. This method generates a catalogue of possible events, their 

probabilities, and associated losses, providing a comprehensive view of future risks beyond historical data. Using 

Markov Chain, the model maps defect attributes across the software development lifecycle to predict future risk levels. 
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While effective in determining risk threat levels in real-world mobile software ventures, the model's drawback lies in 

the absence of clarity regarding how early defects or failures can be predicted. 

 

Wolf et al. (2009) utilized Social Network Analysis to predict build failures by analyzing developers' communication 

patterns. The study aimed to understand developer communities by mapping their relationships and identifying key 

individuals and groups. Investigating communication mechanisms within development teams with high collaboration 

needs, the study used data from IBM's Jazz project. Results showed that developer contact significantly impacted the 

quality of app integrations. Although no single measure could predict build success or failure, a combination of 

communication structure measures enabled the creation of a predictive model. This model achieved recall values 

ranging from 55% to 75% and precision values from 50% to 76% when applied to five project teams. However, the 

model's limitation lies in predicting failure during software application integration, potentially after significant time 

and resources have been invested in the project. Singh and Verma (2015) conducted research on fault prediction in 

the early stages of software development using cross-project data, focusing on design metrics. They performed 

empirical analysis to validate design metrics for cross-project fault prediction, employing the Naïve Bayes machine 

learning technique for evaluation. The study utilized seven datasets from NASA Metrics Data Program, incorporating 

design and code metrics. Software fault prediction models were developed using source code, processed metrics, and 

related fault data from the same or previous versions of code. Results indicated successful cross-project fault prediction 

during the design phase across seven public domain software development datasets. Additionally, the study 

recommended using the Area Under the Curve (AUC) as the primary accuracy indicator for comparative studies in 

software fault prediction, as it effectively separates predictive performance from class and cost distributions. 

 

Golnoush and Selamat (2015) introduced the majority-ranking fuzzy Clustering method to enhance the accuracy of 

software fault prediction by addressing the impact of irrelevant and inconsistent modules. Their study aimed to 

mitigate this effect by clustering all project modules within a new framework. Results demonstrated that fuzzy 

clustering reduced the negative impact of irrelevant modules on prediction performance. Evaluation using eight 

datasets from NASA and Turkish white-goods software showcased the model's superiority in terms of false positive 

rate, false negative rate, and overall error compared to other prediction models. Specifically, the approach achieved a 

3% to 18% improvement in false negative rate and a 1% to 4% improvement in overall error across more than half of 

the testing cases when compared with other proposed models (ACF and ACN). However, the model's limitation lies 

in its failure to specify how early software faults can be detected and clustered to prevent losses. Hu et al. (2009) 

proposed an intelligent model to predict and manage risks inherent in software projects, recognizing the high failure 

rates associated with software development. The model employed machine learning algorithms such as Artificial 

Neural Networks (ANN) and Support Vector Machine (SVM) to identify risks by gathering real-life instances from 

software development companies. Data collected through questionnaires informed risk prediction across various 

projects, although the model did not specify the timing of risk identification or the project phase in which risks were 

identified. Conversely, Batarsch & Gonzalez (2015) presented a data analytics model for predicting failures in agile 

software development, utilizing mean-time between failures and regression modelling, powered by Analytics Driven 

Testing (ADT). The model leveraged R statistical language for data analysis and mining, providing graphical 

representations and machine-learning approaches to aid decision-making. However, the model did not explicitly detail 

the phase of the agile software development life cycle in which failures are detected or how early they can be identified. 

Ibraigheeth & Fadzli (2020) developed a Logistic Regression Model for software project failure prediction by 

collecting real-life data from reports, case studies, and surveys. The model estimated project outcomes and provided 

probabilities of failure to aid decision-making, although it did not specify the phase of failure detection or how early 

it occurred. Kaur & Senlgupta (2011) presented a research method for software project failure analysis, analyzing 

current process models during development, but did not conduct the analysis at appropriate phases, making it 

challenging to determine early failure detection. Bicer et al. (2011) proposed defect prediction using social network 

analysis on issue repositories, aiming to understand developer interactions and their impact on product quality. While 

the model effectively lowered false alarm rates or increased detection rates, it did not specify the timing of predictions 

or the phase of failure detection.  

 

Pandey and Kumar (2023) conducted a survey on recent developments in software project failure detection for 

imbalanced data, addressing issues prevalent in analysis with such datasets. They found SMOTE to be a commonly 

used sampling technique to address data quality issues. However, the study mainly focused on reviewing existing 

literature rather than proposing new models or methods. 
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Batool and Khan (2022) conducted a systematic literature review using data mining, deep learning, and machine 

learning approaches to detect software project failure. They analyzed previously published surveys, reviews, and 

related work to extract and respond to questions that were either unanswered or needed further exploration. However, 

their focus was on developing and answering new questions rather than examining the various phases of the software 

development life cycle (SDLC). 

 

Methodology 

The methodology used in the identification of software failures in an Agile Software development project is the failure 

detection analysis (FDA) method a novel approach to early detection of software failure and classification. Given that, 

failure can occur in any phase of the software development process and project, this methodology helps to scan through 

the process in each phase of the Agile software development life cycle.  The architecture is shown in Figure 1 

 

 
Figure 1 System Structural Framework for Identification of Failures in Agile Software Development Projects 

Figure 1 provides a structural overview of the developed general framework, emphasizing the potential occurrence of 

software project failure from the concept/scoping phase to the retirement phase. Notably, inadequate scope-out 

analysis is a significant contributing factor to most software project failures. The illustration incorporates a failure 

detection analysis check during and at the conclusion of each phase before transitioning to the next phase of the Agile 

software development lifecycle. This ensures that failure analysis is conducted at every phase to identify early 

indicators of failure and classify potential reasons for project failure. Each phase's output undergoes rigorous failure 

detection analysis before proceeding to the next phase. 

 

Components and Strategy of the Methodology  

Concept Phase 

The failure detection analysis is carried out during the concept/ scope-out phase to determine if the scope of the project, 

the priority list and the requirement analysis of the software project is feasible. The FDA carried out, a check mates 

the features and the proposed results and estimated the time and cost potentials of the software project to see if it is 

attainable. Where there is any lag in the cycle the FDA detects the possible failure and classifies it.  

The failure detection analysis is done at the end of the concept phase. Making sure that everything is in place and no 

detail is neglected can cause possible failure of the software project and if any is identified it is quickly classified as a 

possible failure sign. Some of the signs to look out for are to make sure that there is no "ambiguity in system 

requirement" and the definitions and clarifications of the requirement must be made available. 

 

Inception Phase 

In the inception phase, when carrying out the FDA, a check is done to make sure that the right team has been selected 

and their available for the development of the software project. The team makes sure that all the necessary tools and 

resources are available to carry out the project. The user interface mock-up and the built architecture are also 

scrutinized. All stakeholders of the system must be fully involved to determine the product's functionality. 

During the project, regular check-ins are done with the failure detection analysis module or steps to ensure that the 

requirements are followed through with the design process. Every step of the failure detection analysis is duly followed 

to ensure a successful software project. 
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Iteration Phase 

In this phase of the Agile software development life cycle, the developers, using the Design Document Specification 

(DDS); the actual coding of the system is started. The FDA ensures that the product requirements and customer 

feedback are met during the code development. By the end of the iteration or sprint, the FDA ensures that the 

functionality goals are met. The FDA team works together with the software development team to ensure a working 

software is produced. 

The failure detection analysis is done throughout the entire iteration phase because it is the longest phase since the 

bulk of the work is done in this phase. During the various rounds of revision, the FDA is used to scan the process and 

as the project requirements expand. 

 

Release Phase 

The release phase is very important in that, the software product is about to be released into the world. Hence, there 

is a need to carry out system testing, and to finalize the system and user documentation before the software is released 

to the world. During the system testing, the FDA is used to scan for bugs that may arise during the running of the 

system and can possibly lead to failure. The functionality of the software is also analyzed. Detected defects are 

addressed and tested again to finalize system and user documentation. 

 

Maintenance 

To make sure the deployed system is functioning as required, the FDA team monitors the maintenance/ support team 

to make sure they provide the required support and maintenance working on user feedback and complaints. The 

software project product ends at this stage. But, if there is any plan for retirement of the software product, then the 

next phase comes in.  

 

 

Retirement Phase 

The retirement phase of the software is also very important, especially, when it is a migration to an updated version 

of the system. The FDA is used to check that the various activities or major functions of the older version is also 

domiciled on this new version except for the part that is being dropped entirely. The FDA also checks that no data is 

lost during migration before retiring the older version of the system and before support is removed entirely from the 

system, end-of-life activities is carried out. 

Failure Detection Analysis 

The proposed system is an efficient framework for the early detection of software development project failure and in 

order to achieve this early detection, we have to look into the various stages in the development life cycle from which 

attention is given can detect if the software project is failing or there is reasonable progress with the process. The 

failure detection analysis can run side by side with the development process and/ or at the end of each phase using the 

SDLC stages as a guide. Figure 2 is a sub-framework from the general architectural framework that carries out the 

failure detection analysis of the proposed system. 

 

Phase Activity Enquiry  

Phase activity enquiry checks the various activities carried out in each Agile phase. During this enquiry process, eight 

(8) early signs of software project failure were used as a benchmark to analyze the phases. These signs include working 

in parallel, a big team from the beginning, documentation piled up, a No Ask – No Tell policy, requirements 

clarifications delayed, crucial tasks outsourced, integration of multiple products/ technologies and management 

ignorance. These signs or signals are checked for throughout all the phases of the development life cycle. Documents 

are compiled to help for a clearer analysis of what is being transpired in the development process of the system. 

This stage is very important in the failure detection analysis in the sense that, data are being compiled in this stage. 

The data compiled are documented for analytical purposes from which indications for failures can be identified. The 

data gathering method used here is through questionnaire and interviewing (interacting with) key players in the 

industry. The documentation of the system requirement, functions, features (what must be done) and tools to be used 

for the development of the software project is reviewed and documented.  

 

Failure Activity Identification 

The section of the failure detection analysis is done based on the documented enquiries from the phase activities 

enquiry section. The task here is to be able to identify these signs as each phase of the software development is going 
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on and to scale it with respect to a certain percentage. From these enquiries and documentation, the activities of the 

software project are identified and if there is any failure signal, they are detected. 

From the failure activity enquiry, some information were recorded during the enquiry or enquiries. The machine 

learning algorithm, and decision tree were used to perform an analysis and based on the result(s) of the analysis, a 

decision was reached. When these activities are identified, corrections can be made immediately. But, that will be 

determined by the percentage of their occurrence of that sign or signal during the software development process. Every 

step of the software project has a target and tools required to accomplish that phase.  

 

Failure detection  

This section discusses how the failure of the software project can be detected early in the development process. It is 

the main idea of this framework; to be able to detect software project failure before it is too late and one cannot remedy 

the situation. This will encourage software project continuity and the general success of a software development 

project. 

Failure detection is possible after the various failure signals in each phase have been identified and analyzed. Looking 

at their statistics, one can spot the red flags and at what aspect of the Agile software development lifecycle phases 

there is likely to be failure and correction measures or due attention can be given to that phase. 

The application of the Ensemble learning model, Bagging, Decision Tree, Random Forest and Gini Impurity machine 

learning techniques are used to analyze the outcome of the identified signals during the phase activity enquiry and 

failure activity identification. These machine learning techniques were used to perform the failure detection analysis 

throughout the process. The data are fed into the algorithms of each machine learning technique and a comparison is 

done on the output result of each of the algorithms. With the results obtained, conclusions were reached on whether 

the software is going to be successful or it's going to fail. 

 

Failure Classification 

Classification or categorization is done to keep things under certain headings to be able to attach a name or identity to 

a given failure. This section helps us to achieve this purpose of giving the failure signal an identity; to know where 

the failure is coming from in each phase of the software development life cycle. 

The detected signal can be classified to be a requirement gathering/ analysis problem, user/ customer problem, top-

level management problem, technical problem and/ or development problem. Classifying it this way will further help 

to segment and isolate the solution process so that it can be tackled on time. 

During the failure detection analysis of each phase of the system, we look out for the failure sign or signal as stated 

earlier in this work and classify the detected failure signal with respect to the different failure signals as expected in 

each phase of the Agile software development lifecycle.  

 

Detailed System Design 

The proposed framework will adopt the flowchart diagram in the description of the system. A flowchart diagram is 

used to demonstrate the functionality of the framework. The proposed framework for early identification of software 

development project failures has been represented in the flowchart diagram as shown in Figure 2.   

 

System Flowchart Diagram 

The system flowchart presents the flow of control during the failure detection analysis process. The controls scan 

through the different phases of the SDLC. This is demonstrated in Figure 2. 
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Figure 2: System Flowchart for the Proposed Framework. 

Figure 2 demonstrates the flow of instructions on how the system scans through the various phases of the ASDLC 

using a WHILE loop construct. The 'while loop' for each phase runs the FDA and returns the result of the analysis. 

The returned result is the output result of each phase and could be either a positive or negative response to the failure 

detection analysis. This is because, at each phase, the FDA analyzes the phase looking for any failure signal. In the 

event of any detected failure signal, it will be outputted to show the class of failure it belongs for correction. 

 

From the flowchart in Figure 2, the system is initiated and scans for the first phase "Concept/ Scope-out Phase" of the 

Agile software development life cycle, the FDA steps as seen in the flowchart are followed and the result is returned 

to the next step. The output returned at each iteration is the presence or absence of failure signs of each phase of the 

Agile development life cycle which may include ambiguity of the requirement and features, wrong team selection, 

wrong tool selection, ambiguous mock-ups, low-quality product, unfixable bugs or defect and so on. The return goes 

to the beginning of the WHILE LOOP and scans for the next phase. The WHILE LOOP will terminate only when it 

has been checked or scanned through all the phases of the Agile software development life cycle. It starts from the 

first phase to scan, if it is not that phase it follows the false direction to the next phase and if it is that phase it performs 
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the FDA steps and returns the result to the next phase. When it gets to the final phase, it returns the result and stops to 

signify the end of the process. The FDA follows through the flow of control while performing the failure detection 

analysis during the various phases of the agile software development lifecycle. The FDA starts with the phase activity 

enquiry and tries to identify failure activity(ies) and during the process, if any of the failure signal is spotted, the failure 

detection step detects the signal and is classified by the failure classification step of the FDA. The failure signal for 

the particular phase is returned if the condition is positive.  

 

Technical Suggestions 

Refine Machine Learning Algorithms: Future research should focus on refining the selection and integration of 

machine learning algorithms within our framework or strategy. Improving the predictive accuracy and robustness of 

these algorithms will enhance the effectiveness of our framework in identifying software project failures. 

Explore Additional Metrics: Exploring additional metrics and features that may contribute to project failure 

prediction could further enhance the predictive capabilities of our framework. By considering a broader range of 

factors, we can better anticipate and mitigate potential failures throughout the software development lifecycle. 

Conduct Longitudinal Studies: Longitudinal studies tracking project outcomes over time would provide valuable 

insights into the evolution of failure indicators. This data could inform proactive failure management strategies and 

help refine our framework to better adapt to changing project dynamics. 

Empirical Studies in Diverse Contexts: Conducting empirical studies in diverse software development contexts and 

industries would validate the generalizability and effectiveness of our framework. By testing our approach across 

various scenarios, we can ensure its applicability across different organizational settings. 

Overall, continued research in these areas holds promise for advancing early detection techniques and improving the 

success rates of Agile software development projects. 

 

Conclusion 

This paper addresses the importance of early identification and prevention of failures in Agile software development 

projects. Despite the widespread adoption of Agile methodologies, project failures remain a concern. The paper's focus 

on developing effective strategies for early detection aims to provide actionable insights for project teams and 

stakeholders. The methodology involves a thorough review of the literature, culminating in the formulation of a 

practical framework for failure detection and prevention. A novel failure detection analysis has been introduced which 

is the main engine for identifying faults in the Agile software process. Suggestions for implementation include refining 

machine learning algorithms, exploring performance metrics, and conducting longitudinal and empirical studies. By 

leveraging Agile project management tools for continuous monitoring and adaptation, teams can proactively identify 

and mitigate potential failures, ultimately leading to improved project success rates and stakeholder satisfaction. 
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