The Dual Burden of Obesity and Infertility: The Role of Environmental Obesogens in Adipogenesis, Hypogonadism, and Sperm DNA Fragmentation
DOI:
https://doi.org/10.63561/jhssr.v2i3.848Keywords:
Male Infertility, Obesogens, Testosterone, Obesity, SpermatogenesisAbstract
The increasing rates of obesity and male infertility pose major public health challenges, with increasing evidence pointing to environmental obesogens—endocrine-disrupting chemicals (EDCs) that stimulate fat cell development and impaired metabolic function. This review consolidates the extant information on the mechanistic relationship between environmental obesogens and male infertility, highlighting the double role played by obesogens in inducing obesity and compromising reproductive health. Obesogens, a family of environmental chemicals such as bisphenol-A (BPA), phthalates, pesticides, and perfluorinated compounds, compromise the body's fat handling and contribute to male infertility via several inter-related mechanisms. Permanently activating peroxisome proliferator-activated receptor gamma (PPARγ), obesogens increase the development of fat cells and fat storage, upsetting the lipid balance. Concurrently, obesogens compromise the hypothalamic-pituitary-gonadal (HPG) axis, resulting in hypogonadotropic hypogonadism through disrupting hormone signal pathways via estrogenic or anti-androgenic pathways, leptin resistance, and alteration of kisspeptin signaling. The obesity further enhances these by boosting aromatase, converting testosterone to estrogen, which inhibits sperm production and quality, and reducing sex hormone-binding globulin (SHBG) levels, both of which inhibit sperm generation and quality. Moreover, obesogens cause direct testicular damage via oxidative stress, impaired mitochondria, and developmentally induced cell death (apoptosis) of Sertoli and Leydig cells, ultimately compromising blood testis barrier and germ cell survival. Population and laboratory data support the relationship between exposure to obesogens and adverse sperm features, such as diminished sperm movement and concentration, as well as enhanced sperm damage to DNA. Compounding these conditions, the thermal stress and chronic inflammation related to obesity further exacerbate testicular function. This review reflects the multifaceted ways in which environmental obesogens drive male infertility, the importance of minimizing exposure and a series of targeted policies to tackle these related health issues.
References
Agarwal, A., Baskaran, S., Parekh, N., Cho, C. L., Henkel, R., Vij, S., ... & Shah, R. (2021). Male infertility. The Lancet, 397(10271), 319-333.
Andersen, A. N., Jensen, T. K., Carlsen, E., Jørgensen, N., & Skakkebaek, N. E. (2015). Body mass index and semen quality: A study of 1,558 Danish men. Fertility and Sterility, 103(2), 442–449. https://doi.org/10.1016/j.fertnstert.2014.10.023
Bagherpour, H., Malekshah, A. K., Amiri, F. T., & Azadbakht, M. (2019). Protective effect of green tea extract on the deltamethrin-induced toxicity in mice testis: An experimental study. International Journal of Reproductive BioMedicine, 17(5), 337.
Berthaut, I., Guignedoux, G., Kirsch-Noir, F., Ravel, C., Allali, S., Bachir, D., & Galactéros, F. (2008). Influence of sickle cell disease on human sperm parameters. Fertility and Sterility, 90(6), 2083–2088. https://doi.org/10.1016/j.fertnstert.2008.01.055
Chavarro, J. E., Toth, T. L., Wright, D. L., Meeker, J. D., & Hauser, R. (2010). Body mass index in relation to semen quality, sperm DNA integrity, and serum reproductive hormone levels among men attending an infertility clinic. Fertility and Sterility, 93(7), 2222–2231. https://doi.org/10.1016/j.fertnstert.2009.03.078
Darbre, P. D. (2017). Environmental obesogens and their impact on male infertility. Frontiers in Endocrinology, 8, 50. https://doi.org/10.3389/fendo.2017.00050
de Carvalho, P. S. M., de Oliveira, C. A. F., & de Souza, M. A. (2020). Effects of organophosphate pesticides on Sertoli cells and the blood-testis barrier: Implications for male fertility. Toxicology Reports, 7, 156–164. https://doi.org/10.1016/j.toxrep.2020.01.003
Elsharkawy, N., El-Bakary, A. A., & El-Gendy, K. S. (2014). Histopathological and biochemical effects of chlorpyrifos on testicular tissue of rats. Environmental Toxicology and Pharmacology, 37(1), 121–129. https://doi.org/10.1016/j.etap.2013.11.006
Erthal, R. P., Staurengo-Ferrari, L., Fattori, V., Luiz, K. G., Cunha, F. Q., Pescim, R. R., ... & Fernandes, G. S. A. (2020). Exposure to low doses of malathion during juvenile and peripubertal periods impairs testicular and sperm parameters in rats: role of oxidative stress and testosterone. Reproductive Toxicology, 96, 17-26.
Fanny, M., Ghislaine, S., & Bernard, B. (2015). Bisphenol A and human health: A review of the literature. Critical Reviews in Toxicology, 45(9), 701–733. https://doi.org/10.3109/10408444.2015.1033515
Genchi, G., Sinicropi, M. S., Carocci, A., Lauria, G., & Catalano, A. (2022). The impact of obesity on male fertility: A focus on the hypothalamic-pituitary-gonadal axis. International Journal of Molecular Sciences, 23(3), 1520. https://doi.org/10.3390/ijms23031520
Grün, F., & Blumberg, B. (2006). Environmental obesogens: Organotins and endocrine disruption via nuclear receptor signaling. Endocrinology, 147(6), S50–S55. https://doi.org/10.1210/en.2005-1129
Gupta, R. C., Chang, L., & Szekacs, A. (2020). Chapter 24: Atrazine. In R. C. Gupta (Ed.), Handbook of Toxicology of Chemical Warfare Agents (3rd ed., pp. 385–398). Academic Press. https://doi.org/10.1016/B978-0-12-819090-6.00024-9
Hammoud, A. O., Gibson, M., Peterson, C. M., Hamilton, B. D., & Carrell, D. T. (2008). Impact of male obesity on infertility: A critical review of the current literature. Fertility and Sterility, 90(4), 897–904. https://doi.org/10.1016/j.fertnstert.2008.07.002
Harter, P. N., Mahringer, A., & Kallweit, U. (2018). Kisspeptin and its role in the regulation of the hypothalamic-pituitary-gonadal axis in obesity. Frontiers in Endocrinology, 9, 656. https://doi.org/10.3389/fendo.2018.00656
Hassan, A. A., Bel Hadj Salah, K., Fahmy, E. M., Mansour, D. A., Mohamed, S. A., Abdallah, A. A., ... & El-Shaer, N. (2022). Olive leaf extract attenuates chlorpyrifos-induced neuro-and reproductive toxicity in male albino rats. Life, 12(10), 1500.
Hassan, M. A., El Bohy, K. M., El Sharkawy, N. I., Imam, T. S., El‐Metwally, A. E., Hamed Arisha, A., ... & Abd‐Elhakim, Y. M. (2021). Iprodione and chlorpyrifos induce testicular damage, oxidative stress, apoptosis and suppression of steroidogenic‐and spermatogenic‐related genes in immature male albino rats. Andrologia, 53(4), e13978.
Heindel, J. J., Newbold, R., & Schug, T. T. (2015). Endocrine disruptors and obesity. Nature Reviews Endocrinology, 11(11), 653–661. https://doi.org/10.1038/nrendo.2015.163
Irigaray, P., Ogier, V., Jacquenet, S., Notet, V., Sibille, P., Méjean, L., Bihain, B. E., & Yen, F. T. (2006). Benzo[a]pyrene impairs β‐adrenergic stimulation of adipose tissue lipolysis and causes weight gain in mice. FEBS Journal, 273(7), 1362–1372. https://doi.org/10.1111/j.1742-4658.2006.05159.x
Jakab, M. A., Madsen, L., & Kristiansen, K. (2007). Adipogenesis: From stem cell to adipocyte. Journal of Molecular Endocrinology, 38(3), 185–196. https://doi.org/10.1677/JME-07-0041
Jerrold, J. H., & Blumberg, B. (2018). Environmental obesogens: Mechanisms and controversies. Annual Review of Pharmacology and Toxicology, 58, 89–106. https://doi.org/10.1146/annurev-pharmtox-010617-052704
Johnson, S. A., Painter, M. S., Javurek, A. B., Ellersieck, M. R., Wiedmeyer, C. E., Thyfault, J. P., & Rosenfeld, C. S. (2015). Sex-dependent effects of developmental exposure to bisphenol A and ethinyl estradiol on metabolic parameters and voluntary physical activity. Journal of developmental origins of health and disease, 6(6), 539-552.
Kumar, N., & Singh, A. K. (2015). Trends of male factor infertility, an important cause of infertility: A review of literature. Journal of Human Reproductive Sciences, 8(4), 191-196.
Lang, J. R., & Galloway, T. S. (2022). Perfluorooctanoic acid (PFOA) and obesity: Epidemiological and mechanistic evidence. Environmental Health Perspectives, 130(5), 56001. https://doi.org/10.1289/EHP10123
Leisegang, K., Sengupta, P., Agarwal, A., & Henkel, R. (2020). Obesity and male infertility: Mechanisms and management. Andrologia, 53(1). https://doi.org/10.1111/and.13617
Li, S., Wang, Y., Zou, C., Zhu, Q., Wang, Y., Chen, H., ... & Ge, R. S. (2022). Cypermethrin inhibits Leydig cell development and function in pubertal rats. Environmental toxicology, 37(5), 1160-1172.
Lui, S., Baker, H. W. G., & Yuen, B. H. (2017). Effects of obesity on male fertility, sperm function and molecular composition. Spermatogenesis, 7(4), e1344082. https://doi.org/10.1080/21565562.2017.1344082
Macdonald, A. A., Herbison, G. P., Showell, M. G., & Farquhar, C. M. (2009). The impact of body mass index on semen parameters and reproductive hormones in human males: A systematic review with meta-analysis. Human Reproduction Update, 15(3), 293–311. https://doi.org/10.1093/humupd/dmn053
Masuno, H., Kidani, T., Sekiya, K., Sakayama, K., Shiosaka, T., Yamamoto, H., & Kidani, Y. (2007). Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes. Journal of Lipid Research, 48(5), 987–997. https://doi.org/10.1194/jlr.M600451-JLR200
Meistrich, M. L., & Shetty, G. (2018). Hormonal suppression for fertility preservation in males and females. Reproduction, 155(5), R121-R134.
Moreira, S., Pereira, S. C., Seco-Rovira, V., Oliveira, P. F., Alves, M. G., & Pereira, M. de L. (2021). Pesticides and Male Fertility: A Dangerous Crosstalk. Metabolites, 11(12), 799. https://doi.org/10.3390/metabo11120799
Mostafalou, S., & Abdollahi, M. (2017). Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicology and Applied Pharmacology, 268(2), 157–177. https://doi.org/10.1016/j.taap.2013.12.018
Nieschlag, E., Behre, H. M., & Nieschlag, S. (2013). Andrology: Male reproductive health and dysfunction (3rd ed.). Springer.
Oliveira, P. F., Sousa, M., Silva, B. M., Monteiro, M. P., & Alves, M. G. (2017). Obesity, energy balance and spermatogenesis. Reproduction, 153(6), R173–R185. https://doi.org/10.1530/rep-17-0018
Rocco, L., Saleh, R., Asli Metin Mahmutoglu, Shah, R., & Agarwal, A. (2025). Obesity and male infertility - a tenuous relationship: Facts discerned for the busy clinicians. Arab Journal of Urology, 1–8. https://doi.org/10.1080/20905998.2025.2473219
Roy, T., Chakraborty, P., & Bhattacharya, S. (2017). Endocrine disrupting pesticides and male reproductive health: A review. Environmental Science and Pollution Research, 24(15), 13030–13042. https://doi.org/10.1007/s11356-017-8868-6
Rubin, B. S., Paranjpe, M., DaFonte, T., Schaeberle, C., Soto, A. M., Obin, M., & Greenberg, A. S. (2017). Perinatal BPA exposure alters body weight and composition in a dose specific and sex specific manner: The addition of peripubertal exposure exacerbates adverse effects in female mice. Reproductive toxicology, 68, 130-144.
Rundle, A., Hoepner, L., Hassoun, A., Oberfield, S., Freyer, G., Holmes, D., ... & Perera, F. (2012). Association of childhood obesity with maternal exposure to polycyclic aromatic hydrocarbons during pregnancy. Environmental Health Perspectives, 120(8), 1171–1176. https://doi.org/10.1289/ehp.1104576
Salas-Huetos, A., Bulló, M., Salas-Salvadó, J., & Godoy-Matos, A. F. (2021). Obesity and male infertility: A comprehensive review. Reproductive Biology and Endocrinology, 19(1), 1–15. https://doi.org/10.1186/s12958-021-00789-7
Saleh, H., Nassar, A. M., Noreldin, A. E., Samak, D., Elshony, N., Wasef, L., ... & El-Sayed, Y. S. (2020). Chemo-protective potential of cerium oxide nanoparticles against fipronil-induced oxidative stress, apoptosis, inflammation and reproductive dysfunction in male white albino rats. Molecules, 25(15), 3479.
Salma, U. (2018). Obesity and male infertility: A review. International Journal of Reproductive BioMedicine, 16(5), 297–304. https://doi.org/10.29252/ijrm.16.5.297
Sardar, A., David, M., Jahan, S., Afsar, T., Ahmad, A., Ullah, A., ... & Razak, S. (2023). Determination of biochemical and histopathological changes on testicular and epididymis tissues induced by exposure to insecticide Imidacloprid during postnatal development in rats. BMC Pharmacology and Toxicology, 24(1), 68.
Shayeb, A., Killick, S. R., & Lewis, S. E. (2011). The impact of body mass index on semen parameters and reproductive hormones in men. Fertility and Sterility, 95(5), 1702–1706. https://doi.org/10.1016/j.fertnstert.2010.12.020
Shiraishi, K., Matsuyama, H., & Takahashi, T. (2010). Effect of increased scrotal temperature on sperm quality and testicular function. Andrologia, 42(3), 210–215. https://doi.org/10.1111/j.1439-0272.2009.00985.x
Tontonoz, P., Hu, E., & Spiegelman, B. M. (2008). Regulation of adipocyte gene expression and differentiation by peroxisome proliferator-activated receptor gamma. Current Opinion in Genetics & Development, 8(5), 571–576. https://doi.org/10.1016/S0959-437X(98)80027-6
Trasande, L. (2018). Environmental obesogens: Mechanisms and controversies. Annual Review of Pharmacology and Toxicology, 58, 89–106. https://doi.org/10.1146/annurev-pharmtox-010617-052712
Tre, S. L., Wang, Y., & Wang, J. (2021). Phthalates in consumer products and their health risks. Environmental Research, 197, 111035. https://doi.org/10.1016/j.envres.2021.111035
Wang, X., Sun, Z., Liu, Q. S., Zhou, Q., & Jiang, G. (2024). Environmental Obesogens and Their Perturbations in Lipid Metabolism. Environment & Health, 2(5), 253–268. https://doi.org/10.1021/envhealth.3c00202
World Health Organization. (2020a). Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
World Health Organization. (2020b). Infertility. https://www.who.int/news-room/fact-sheets/detail/infertility
Xu, J., Chen, H., & Wang, Y. (2017). The hypothalamic-pituitary-gonadal axis in male reproduction. Endocrinology and Metabolism Clinics of North America, 46(3), 497–511. https://doi.org/10.1016/j.ecl.2017.04.001
Zhu, S., Zhang, T., Wang, Y., Zhou, X., Wang, S., & Wang, Z. (2021). Meta-analysis and experimental validation identified atrazine as a toxicant in the male reproductive system. Environmental Science and Pollution Research, 28, 37482-37497.