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Abstract 

Understanding how tumour cells interact with the immune system is a key focus in modern mathematical oncology, 

especially given cancer’s continuing global impact. This study presents a mathematical framework designed to explore 

how white blood cell (WBC) activity influences tumour progression. The model uses a coupled nonlinear reaction 

diffusion system to capture both the spatial and temporal dynamics of tumour immune interactions. To solve this 

complex system, the Variational Iteration Method (VIM) is applied, providing efficient semi-analytical 

approximations, while stability analysis identifies conditions for tumour elimination or persistence. Numerical 

simulations show that WBC concentration plays a pivotal role: low immune cell counts lead to rapid tumour growth, 

whereas higher levels slow tumour expansion. The model also reveals a two-phase tumour behaviour, with an initial 

period of immune-mediated suppression followed by gradual mass increase, reflecting the transition from immune 

control to tumour dominance. Overall, this approach highlights the delicate balance between tumour proliferation, 

immune response, and microenvironmental influences. These findings underscore the potential of mathematical 

modelling to inform treatment strategies and contribute to the advancement of precision oncology. 
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Introduction 

The development of cancerous tumours continues to be one of the foremost causes of death worldwide, with 

projections estimating that more than 13 million new cases may occur by the year 2030 (Anderson, 2005). Although 

medical science has made major progress in treatments such as surgery, chemotherapy, radiotherapy, and 

immunotherapy, the biological mechanisms that govern how tumours begin, grow, and regress are still not fully 

understood (Chaplain & Lola 2006). In the past decade, increasing attention has been given to the interactions between 

tumours and the immune system, offering valuable understanding that has improved the effectiveness of modern 

immunotherapies. 

 

Mathematical modelling has become an important tool for studying tumour behaviour. It allows researchers to simplify 

the complexity of biological systems, identify the main interacting cell populations, measure their changing dynamics, 

and predict tumour behaviour under various physiological conditions (Armstrong et al., 2011). Cancer typically results 

from the uncontrolled division of body cells, which may be caused by genetic mutations, exposure to carcinogens, or 

radiation. Over a hundred distinct types of cancer have been identified, often categorized according to the tissue or 

cell type from which they originate for example, gliomas from neural tissue, carcinomas from epithelial cells, and 

meningiomas from the meninges (Fajlul & Uduman, 2016). 

 

Tumour growth generally progresses through two major stages: the avascular and the vascular phases. During the 

avascular stage, expansion is restricted because nutrient diffusion is limited. Once angiogenesis begins driven by 

tumour angiogenic factors (TAF) new blood vessels form, supplying oxygen and nutrients that accelerate tumour 
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growth and metastasis. Structurally, a tumour often consists of a necrotic core at the centre, a layer of quiescent cells, 

and an outer rim of rapidly dividing cells (Domschke & Trucu, 2014; Enderling & Anderson, 2009). Depending on 

environmental and immune system influences, quiescent cells may die, migrate inward, or become active again. Some 

tumours can also remain dormant for long periods before reactivation (Gennadii, 1999; Gerisch & Chaplain, 2008). 

Mathematical models commonly expressed through nonlinear ordinary or partial differential equations (ODEs/PDEs) 

have proven particularly effective in analysing tumour–immune system interactions and evaluating treatment 

outcomes. Several recent studies have focused on parameter estimation and therapeutic optimization. For instance,   

(Elkaranshawy & Makhlouf, 2022) proposed a model combining chemotherapy and immunotherapy, emphasizing the 

vital role of immune stimulation in suppressing tumour growth. Likewise, (Rodriguez et al.,2021) developed a 

mathematical framework for a personalized neoantigen vaccine integrated with immune system dynamics, 

demonstrating the promise of precision immunotherapy in clinical applications. 

 

Further insights were provided by (Sardar et al., 2024), who analysed tumour–immune interactions with time delays 

and revealed the presence of oscillatory and chaotic behaviours that can govern tumour persistence. Similarly, 

(Domschke et al., 2014) investigated how variations in cell adhesion and spatial heterogeneity influence tumour 

invasion patterns, showing that microenvironmental differences significantly affect tumour spread. Despite these 

advances, many existing tumour models still fail to capture random biological fluctuations, spatial diffusion, and the 

competitive interactions between cancer cells and immune components. To overcome these limitations, the present 

study employs a reaction–diffusion partial differential equation based on a ratio-dependent framework that integrates 

both nutrient transport and immune response. Because of its nonlinear nature, this system is solved using the 

Variational Iteration Method (VIM) a robust semi-analytical technique originally developed by( He & Wu  1997) and 

subsequently refined by other researchers. This methodological approach enables analytical approximations that shed 

light on tumour–immune dynamics, system stability, and treatment response. By integrating nonlinear mathematical 

analysis with current biological knowledge, the study aims to enhance understanding of tumour progression, improve 

treatment strategies, and ultimately contribute to better patient outcomes. 

 

Material and Methods 

Mathematical modeling of such tumour dynamics typically incorporates equations grounded in the conservation laws 

of physical quantities, such as the densities of blood cells or the extracellular matrix (Nikos & Terma, 2015). These 

models provide a framework to simulate and analyze the biological and physiological processes involved in tumour 

progression and vascular development. 

In light of the aforementioned biological considerations, the following models are proposed: 

 Original System without Drug or White Blood Cell Effect 

 Blood Vessel Density Equation: 

∂𝑛

∂𝑡
= ∇𝛿(∇𝑛) − 𝑥∇(

𝑛

𝑘+𝑐
∇𝑐) − 𝜌∇(𝑛∇𝑡)                                                                        

( 1) 

𝑛 = density of blood vessels 

 𝛿 = diffusion coefficient (random motility) 

 𝜒 = chemotactic sensitivity (movement due to chemical gradient) 

 𝜌 = hepatotactic sensitivity (movement due to matrix structure) 

  𝑘 = saturation constant 

  𝑐 = angiogenic factor concentration 

 𝑓 = extracellular matrix (ECM) density 

Matrix Tissue Equation: 

∂𝑓

∂𝑡
= 𝑤𝑛 − 𝜇𝑛𝑓                                  (2) 
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 𝑤 = growth rate of matrix tissue 

  𝜇 = degradation rate due to interaction with vessels 

 

 

 Angiogenic Factor Equation: 

∂𝑐

∂𝑡
= −𝜆𝑛𝑐                                                                                                                     

(3) 

λ = rate of angiogenic factor degradation by blood vessels 

Inclusion of Drug Effect 

Introducing a drug d with concentration dynamics: 

Modified Blood Vessel Equation with Drug: 

∂𝑛

∂𝑡
= ∇𝛿(∇𝑛) − 𝑥∇(

𝑛

𝑘+𝑐
∇𝑐) − 𝜌∇(𝑛∇𝑡) − 𝑚1𝑑𝑛                                               (4) 

𝑚₁ = drug effectiveness in reducing vessel density 

Modified Matrix Equation: 

∂𝑓

∂𝑡
= 𝑤𝑛 − 𝜇𝑛𝑓 − 𝑚2𝑑𝑓                                            (5) 

𝑚₂ = drug impact on matrix degradation 

Modified Angiogenic Factor Equation: 

∂𝐶

∂𝑡
= −𝜆𝑛𝑐 − 𝑚3𝑑𝑛                                       

(6) 

𝑚₃ = drug inhibition of angiogenic signals 

 

Diffusion Drug Equation: 
∂𝑑

∂𝑡
= ∇𝜖1(∇𝑑) − 𝜖2𝑑 + 𝑢                                                (7) 

  ε₁ = diffusion rate of drug  

  ε₂ = natural decay rate 

 u = drug input function (e.g., injection) 

 

The quadratic form of running the terminal cost in the therapy of angiogenesis which the objective functional  to 

determine optimal drug dosage is given by: 

𝐽(𝑑) =
1

2
∫ 𝑑𝑡

𝑡

0

∫𝑑𝑣
𝑣

(𝑟1𝑛2(𝑣, 𝑡) + 𝑠(𝑑 − 𝑑0)2(𝑥, 𝑡) + ∫𝑑𝑣
𝑣

(𝑟1𝑛2(𝑣, 𝑡) + 𝑠2𝑑 

                                                                                                                                             

( 8) 

(Nikos & Terma, 2009)  

𝐽(𝑑)  = cost of treatment (we seek to minimize this) 

  𝑟₁ = weight of blood vessel suppression 

 𝑠₁ = cost penalty for deviating from baseline dosage d₀ 

 𝑇 = therapy duration 

             𝑉 = volume of tissue 

https://doi.org/10.63561/jmns.v2i4.1119


 

Application of the Variational Iteration Method in Modelling Tumour–Immune System Interactions Involving White Blood Cell Dynamics 

11 Cite this article as:   

Jacob, E., & Durojaye, M.O. (2025) Application of the variational iteration method in modelling tumour–immune system 
interactions involving white blood cell dynamics. FNAS Journal of Mathematical Modeling and Numerical 

Simulation, 2(4), 8-21. https://doi.org/10.63561/jmns.v2i4.1119 
 

  

New Extended Model (Including White Blood Cells) 

American Association for Clinical Chemistry &National Institute of Cancer, (2018) were of the opinion that the 

person with cancer can develop a low white blood cells count from the cancer or from the treatment of the cancer. 

Now, considering the influence of low white blood cell count (denoted as W), the model becomes: 

Blood Vessel Equation with WBC and Drug: 

∂𝑧

∂𝑡
= ∇𝛿(∇𝑧) − 𝑥∇(

𝑧
1

2
𝑘+ℎ

∇ℎ) − 𝜌∇(𝑧∇𝑚) − Ω𝑊𝑧 -𝑞1𝑣𝑧                     (9) 

𝑧 = vessel density 

 ℎ = angiogenic factor 

 𝑚 = matrix tissue 

 𝛺𝑊𝑧 = suppression by white blood cell deficit 

 𝑞₁ = drug suppression rate 

 

 Matrix Equation with WBC and Drug: 

∂𝑚

∂𝑡
= 𝑏𝑧 − 𝜇𝑧𝑚 − Ω𝑊𝑚 − 𝑞2𝑣𝑚                                                      (10) 

 𝑏 = growth rate of tissue 

 𝑞₂ = drug impact on tissue 

Angiogenic Factor Equation with WBC and Drug: 

∂ℎ

∂𝑡
= −𝜆𝑧ℎ − Ω𝑊ℎ − 𝑞3𝑣𝑧                                                                  (11) 

𝑞3  = drug suppression on angiogenic signaling 

Drug Diffusion Equation                                                    
∂𝑣

∂𝑡
= ∇𝜖1(

𝜕2𝑣

𝜕𝑥2) − 𝜖2𝑣 + 𝑢                                                                                                     

(12)     

 Simplified Equations for VIM Application 

The simplified system for applying the Variational Iteration Method is: 

Tumor vasculature: 
∂𝑧

∂𝑡
= ∇𝛿(∇𝑧) − 𝑥∇(

𝑧
1

2
𝑘+ℎ

∇ℎ) − 𝜌∇(𝑧∇𝑚) −Ω𝑊𝑧 − 𝑞1𝑉𝑧          (13)  

Reducing to 1D and expanding divergence term 

𝝏𝒛

𝒅𝒕
= 𝜹

𝝏𝟐𝒛

𝝏𝒙𝟐 − 𝒙
𝝏

𝝏𝒙
(

𝒛
𝟏

𝟐
+𝒉

 .
𝝏

𝝏𝒙
𝒉) − 𝝆 (

𝝏𝒎

𝝏𝒙
.

𝝏𝒛

𝝏𝒙
+ 𝒛

𝝏𝟐𝒎

𝝏𝒙𝟐 ) − 𝛀𝐖𝐳 − 𝒒𝟏𝑽𝒛                 (14) 

Expanding the chemotactic term: 

𝝏𝒛

𝒅𝒕
= 𝜹

𝝏𝟐𝒛

𝝏𝒙𝟐 − 𝒙
𝝏

𝝏𝒙
(

𝒛
𝟏

𝟐
+𝒉

 .
𝝏

𝝏𝒙
𝒉) − 𝒙.

𝒛
𝟏

𝟐
+𝒉

 .
𝝏𝟐𝒉

𝝏𝒙𝟐 − 𝝆 (
𝝏𝒎

𝝏𝒙
.

𝝏𝒛

𝝏𝒙
+ 𝒛

𝝏𝟐𝒎

𝝏𝒙𝟐 ) − 𝛀𝐖𝐳 − 𝒒𝟏𝑽𝒛                (15)      

 

Drug Diffusion Equation: 

Original form: 
∂𝑣

∂𝑡
= ∇𝜖1(∇𝑣) − 𝜖2𝑑 + 𝑢          (16) 

In 1D  
∂𝑣

∂𝑡
= 𝜖1

∂2𝑣

∂𝑥2 − 𝜖2𝑣 + 𝑢           (17) 

Coupled System to Solve with VIM 

Tumor Vasculature Dynamics 
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𝝏𝒛

𝒅𝒕
= 𝜹

𝝏𝟐𝒛

𝝏𝒙𝟐 − 𝒙
𝝏

𝝏𝒙
(

𝒛
𝟏

𝟐
+𝒉

 .
𝝏

𝝏𝒙
𝒉) − 𝒙.

𝒛
𝟏

𝟐
+𝒉

 .
𝝏𝟐𝒉

𝝏𝒙𝟐 − 𝝆 (
𝝏𝒎

𝝏𝒙
.

𝝏𝒛

𝝏𝒙
+ 𝒛

𝝏𝟐𝒎

𝝏𝒙𝟐 ) − 𝛀𝐖𝐳 − 𝒒𝟏𝑽𝒛              (18) 

Matrix tissue: 
∂𝑚

∂𝑡
= 𝑏𝑧 − 𝜇𝑧𝑚 −Ω𝑊𝑧 − 𝑞2𝑣𝑚                                                               

(19)                     

 𝐴𝑛𝑔𝑖𝑜𝑔𝑒𝑛𝑖𝑐 𝑓𝑎𝑐𝑡𝑜𝑟𝑠:
∂ℎ

∂𝑡
= −𝜆𝑧ℎ − 𝑞3𝑣𝑧 −Ω𝑊ℎ                                    (20)                                

   

 Drug distribution: 
∂𝑣

∂𝑡
= 𝜖1

∂2𝑣

∂𝑥2 − 𝜖2𝑣 + 𝑢                                                                        

(21)        

To obtain the solution of model (2.36) we construct the correction functional, 

𝜕𝑧

𝜕𝑡
= 𝐿(𝑧) + 𝑁(𝑧)  where  𝐿(𝑧) = 𝜹

𝝏𝟐𝒛

𝝏𝒙𝟐 = Linear Operator and 𝑁(𝑧)  includes all nonlinear and coupling terms 

involving ℎ, 𝑚, 𝑉, 𝑊 

Using the standard form of VIM  

𝒁𝒏+𝟏(𝒙, 𝒕) = 𝒁𝒏(𝒙, 𝒕) +∫ 𝝀(𝝉) [
𝝏𝒛𝒏

𝝏𝝉
− 𝜹

𝝏𝟐𝒁𝒏

𝝏𝒙𝟐 − 𝑵(𝒛𝒏)] 𝒅𝝉
𝟏

𝟎
                                               (22) 

λ(τ)= −1 

𝒁𝒏+𝟏(𝒙, 𝒕) = 𝒁𝒏(𝒙, 𝒕)  - ∫ [
𝝏𝒛𝒏

𝝏𝝉
− 𝜹

𝝏𝟐𝒁𝒏

𝝏𝒙𝟐 − 𝑵(𝒛𝒏)] 𝒅𝝉
𝟏

𝟎
                                                         

(23) 

Expand the Nonlinear Operator 𝑁(𝑧𝑛) 

𝑁(𝑧𝑛 ) = −𝒙
𝝏

𝝏𝒙
(

𝒛
𝟏

𝟐
+𝒉

 .
𝝏

𝝏𝒙
𝒉) − 𝒙.

𝒛
𝟏

𝟐
+𝒉

 .
𝝏𝟐𝒉

𝝏𝒙𝟐 − 𝝆 (
𝝏𝒎

𝝏𝒙
.

𝝏𝒛

𝝏𝒙
+ 𝒛

𝝏𝟐𝒎

𝝏𝒙𝟐 ) − 𝛀𝐖𝐳 − 𝒒𝟏𝑽𝒛               (24) 

The full correction functional is: 

𝒁𝒏+𝟏 = 𝒁𝒏 + ∫ 𝝀𝟏(𝒔) [
𝝏

𝝏𝒔
𝒁𝒏 + 𝜹

𝝏𝟐

𝝏𝒙𝟐
𝒁𝒏 − 𝒙

𝝏

𝝏𝒙
[

𝒁𝒏

𝟏
𝟐

𝒌 + 𝒉𝒏

 
𝝏

𝝏
𝒉𝒏] − 𝒙 [

𝒁𝒏

𝟏
𝟐

𝑲 + 𝒉𝒏

] .
𝝏𝟐

𝝏𝒙𝟐
𝒉𝒏

𝟏

𝟎

− 𝝆 [
𝝏

𝝏𝒙
𝒎𝒏.

𝝏

𝝏𝒙
𝒁𝒏 + 𝒁𝒏

𝝏𝟐

𝝏𝒙𝟐
𝒎𝒏] − 𝛀𝐖𝒁𝒏 − 𝒒𝟏𝒗𝒏𝒛𝒏] 𝒅𝒔 

(25) 

Hence the iteration formula becomes: 

𝒁𝒏+𝟏 = 𝒁𝒏 + ∫ 𝝀𝟏(𝒔) [
𝝏

𝝏𝒔
𝒁𝒏 + 𝜹

𝝏𝟐

𝝏𝒙𝟐 𝒁𝒏 + 𝒙
𝝏

𝝏𝒙
[

𝒁𝒏
𝟏

𝟐
𝒌+𝒉𝒏

 
𝝏

𝝏
𝒉𝒏] + 𝒙 [

𝒁𝒏
𝟏

𝟐
𝑲+𝒉𝒏

] .
𝝏𝟐

𝝏𝒙𝟐 𝒉𝒏 + 𝝆 [
𝝏

𝝏𝒙
𝒎𝒏.

𝝏

𝝏𝒙
𝒁𝒏 + 𝒁𝒏

𝝏𝟐

𝝏𝒙𝟐 𝒎𝒏] +
𝒕

𝟎

𝛀𝐖𝒁𝒏 + 𝒒𝟏𝒗𝒏𝒛𝒏] 𝒅𝒔                                                        (26)                                  

                                      

 Numerical Examples 

1.Consider the condition with the following model parameters and initial conditions: Assuming a low white blood 

cell count (W) and a drug effect parameter q₁ = 0.004, analyze the behavior of the tumor progression under these 

conditions. What influence do these parameters have on the tumor-immune interaction and treatment outcome? 

Initial condition: 𝑧(0, 𝑡) = 0.05,  

Diffusion Coefficient: 𝛿 = 0.025,  

Angiogenic factor at boundary: ℎ(0, 𝑡) = 0.00055,  
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Hepatotactic Sensitivity: 𝜌 = 0.5,  

We obtain the following iterates: 

 

First Iteration 

𝑧1 = 0.05 − 0.0002𝑡 +
0.05𝑥𝑡

0.5𝑘+0.0055
− 0.00011𝑊𝑡                                 (27)                      

Second iteration 

𝑧2 = 0.05 − 0.0002𝑡 +
0.00275𝑥𝑡

0.5𝑘+0.0055
− 𝑥 [

11

2000
.

0.05
1

2
 𝐾+

11

2000

] 𝑡 − 0.052𝑊𝑡 − 0.0002𝑡         (28)  

Third iteration 

𝑧3 = 0.05 − 0.0002𝑡 +
0.0055𝑥𝑡

0.5𝑘+0.0055
− 𝑥 [

11

2000
.

0.05
1

2
 𝐾+

11

2000

] 𝑡 − 0.0002𝑊𝑡 − 0.0004𝑡       (29)  

Fourth iteration 

𝑧4 = 0.05 − 0.0002𝑡 +
0.00275𝑥𝑡

0.5𝑘+0.0055
− 𝑥 [

11

2000
.

0.05
1

2
 𝐾+

11

2000

] 𝑡 − 0.0001𝑊𝑡 − 0.0002𝑡          (30) 

2 Consider the initial conditions and parameter settings for the tumor-immune interaction model at the spatial 

boundary 𝑥 = 0 and t≥ 0 Specifically, the initial matrix tissue density is prescribed as 𝑚(0, 𝑡) = 0.1. the initial 

tumor vasculature density is given by 𝑧(0, 𝑡) =  0.005, and the initial concentration of the therapeutic drug is 

𝑣(0, 𝑡) =1. The drug-induced suppression rate is characterized by the parameter 𝛺 = 0.002, while the secondary drug 

interaction coefficient is set as 𝑞2 = 0.001. These baseline conditions and parameters will be utilized to analyze the 

dynamic behavior and stability properties of the tumor suppression model. 

We obtain the following iterates: 

𝑚1 = 0.1 + 0.0214𝑡 − 0.005𝜇𝑡 − 0.0011𝑊𝑡                                         

(31) 

𝑚2 = 0.2 + 0.02165𝑡 − 0.005𝜇𝑡 − 0.0001𝑊𝑡                                         

(32) 

𝑚3 = 0.32 − 0.1571𝑡 − 0.01𝜇𝑡 − 0.002𝑊𝑡                                          

(33) 

𝑀4 = 0.45 + 0.23565𝑡 − 0.01𝜇 − 0.003𝑤𝑡           (34)  

   

 

3.We consider the initial and boundary conditions governing the evolution of the angiogenic factor ℎ(𝑥, 𝑡) 

at the spatial boundary 𝑥 = 0 and for t≥ 0, The system is initialized with: 

ℎ(0, 𝑡) = 0.0055 initial angiogenic factor concentration, 

𝑧(0, 𝑡) =0.05 initial tumor vasculature density 

𝑣(0, 𝑡) = 1, initial therapeutic drug concentration 

𝑞3 = 0.003 drug-tumor interaction coefficient specific to angiogenesis, 

𝛺 = 0.002 = WBC-mediated suppression rate on the angiogenic factor. 

 

The evolution of ℎ(𝑡)  is governed by the following iterative formulation using the 

Variational Iteration Method (VIM): 

ℎ𝑛+1 = ℎ𝑛 + ∫ 𝜆3
𝑙

0
(𝑠)(

∂

∂𝑠
ℎ𝑛 − 𝜆2𝑛ℎ𝑛 − 𝑞3𝑣𝑛𝑧𝑛 −Ω𝑊ℎ𝑛)𝑑𝑠           

The Lagrange Multiplier is 

𝜆3(𝑠) =
(−1)𝑛

(𝑛−1)!
(𝑠 − 𝑥)𝑛−1, where 𝑛 = 1 becomes 

𝜆3(𝑠) = −1  

This formulation captures the dynamic suppression of the angiogenic signal in the tumor microenvironment 

due to drug interaction, immune response, and inherent degradation. 
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We get these iterates 

ℎ1 = 0.0055 − 0.00015𝑡 − 0.000275𝜆𝑡 − 0.0011𝑤𝑡                        (35)     

ℎ2 = 0.065 − 0.00535𝑡 − 0.000275𝜆𝑡 − 0.0023𝑊𝑡                        (36)          

  

ℎ3 = 0.523 − 0.0107𝑡 + 0.00055𝜆𝑡 − 0.022𝑊𝑡                                     (37)     

    

ℎ4= 0. 553 − 0.02675𝑡 − 0.001375𝜆𝑡 − 0.000055𝑊𝑡                               (38) 

 

 

4.Examine the evolution of the drug concentration 𝑣(𝑥, 𝑡) within the tumor microenvironment, with the following 

initial and parameter conditions specified at the boundary 𝑥 = 0 

V(0,t)=1. initial drug concentration, 

𝑒1 = 0.25  

𝑒2 = 0.25 drug degradation rate, 

u: external drug input function. 

 

 

Solution 

The governing equation is solved using the Variational Iteration Method (VIM), with the iterative formulation defined 

as: 

𝑉𝑛+1 = 𝑉𝑛(𝑡) + ∫ 𝜆4(𝑠)
𝑡

0
(

∂

∂𝑠
𝑣𝑛 + 𝜖1

∂2

∂𝑥2 𝑣𝑛 − 𝜖2𝑣 + 𝑢)𝑑𝑠                                    (39)    

   

Then the Lagrange Multiplier is 

𝜆4(𝑠) =
(−1)𝑛

(𝑛−1)!
(𝑠 − 𝑥)𝑛−1, sin𝑐𝑒 𝑛 = 1 𝑏𝑒𝑐𝑜𝑚𝑒𝑠                                                    (40) 

Stationarity condition gives Lagrange multiplier  𝜆4(𝑠) = −1  

Then we have the following iterates; 

No diffusion term 𝑉𝑥𝑥 , 0 = 0 

𝑣1(𝑡) = 1 + 𝑡(𝑢 − 𝑡𝜖2) = 𝑡(𝑢 − 𝑡𝜖2) + 1                                                              (41)                     

From here diffusion contributes −𝑐𝑡 per step, keeping only linear terms in 𝑡, 

Each iteration gives: 𝑣𝑛(𝑡) = 1 + 𝑛𝑡(𝑢 − 𝜖2) − 𝑛𝑐𝑡       𝑛 ≥ 1, 𝑐 = 𝜖1𝑘               (42) 

Plugging 𝐶 =  1.2 

𝑣2(𝑡) = 1 + 2𝑡(𝑢 − 𝜖2) − 2(1.2)𝑡 = 1 + 2𝑡𝑢 − 2𝑡𝜖2 − 2.4𝑡              (43)                  

𝑣3(𝑡) = 1 + 3𝑡(𝑢 − 𝜖2) − 3(1.2)𝑡 = 1 + 3𝑡𝑢 − 3𝑡𝜖2 − 3.6𝑡                               (44)                 

𝑣4(𝑡) = 1 + 4𝑡(𝑢 − 𝜖2) − 4(1.2)𝑡 = 1 + 4𝑡𝑢 − 5𝑡𝜖2 − 4.8𝑡                               (45)                  

𝑣5(𝑡) = 1 + 5𝑡(𝑢 − 𝜖2) − 5(1.2)𝑡 = 1 + 5𝑡𝑢 − 5𝑡𝜖2 − 6.0𝑡                               (46)                  

 

 

Results  

Table 1. dataset showing the relationship between density of blood vessels (k), white blood cell count (W), and a 

corresponding modeled output variable (Z). 

𝑲(blood vessel density) 𝑾 (WBC Count) 𝒁(Tumour Suppression Output) 

9500 0.032 0.0468 

10500 0.038 0.0476 

11500 0.045 0.0484 

12500 0.053 0.0493 

13500 0.063 0.0501 

Across increasing K and W, 𝑍2 declines markedly (0.04794→0.04684), indicating highest sensitivity to vascular and 

immune effects. 𝑍3 , and 𝑍4  remain near 0.0494 – 0.0498 with slight downward drift, suggesting stable iterates. 
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Overall, the sequence hints at convergence, with 𝑍2 approximating observed targets while higher iterates fine-tune 

around a steady level. 

 

 

 

 

 

Table 2. showing the relationship between matrix tissue density (μ), white blood cell count (W), and the corresponding 

tumor mass indicator (m), with altered values while preserving a logical and gradually increasing trend: 

μ (Matrix Tissue Density) W (WBC Count) m (Tumor Mass Indicator) 

0.25 0.028 0.0483 

0.50 0.036 0.0475 

0.75 0.044 0.0479 

1.0 0.052 0.0483 

1.25 0.060 0.0486 

1.50 0.068 0.0490 

1.75 0.076 0.0493 

2.0 0.084 0.0497 

2.25 0.092 0.0500 

2.50 0.100 0.0504 

The tumour mass indicator (m) exhibits a gradual but slight increase from 0.0475 to 0.0500 as μ rises from 0.25 to 

2.25. This behaviour implies that while enhanced immune activity (higher W) contributes to tumour suppression, the 

overall tumour mass remains relatively stable, reflecting a dynamic equilibrium between tumour proliferation and 

immune-mediated control. 

 

Table3. Interaction of Parameter λ with W and h 

Parameter (λ) White Blood Cell Count (𝐖) Tissue Density (𝐡) 

0.2 0.030 0.0480 

0.4 0.004 0.0485 

0.6 0.005 0.0490 

0.8 0.006 0.0495 

1.0 0.007 0.5000 

The results show that as the parameter (λ) increases from 0.2 to 1.0, the white blood cell count (W) initially decreases 

sharply and then gradually increases, indicating a nonlinear immune response to variations in λ. This suggests that λ, 

which may represent an external regulatory or therapeutic influence, modulates immune activation in a threshold-

dependent manner a low λ enhances immune presence, whereas higher λ values may initially suppress and then 

stabilize immune activity. 

 

Table 4. Drug Application and effects on tumoral cells 

μ ε𝟏 ε𝟐  W  𝒗 

2 0.28 0.030 0.032 950 

4 0.38 0.080 0.038 1900 

6 0.47 0.130 0.045 2850 

8 0.58 0.180 0.053 3900 

10 0.68 0.235 0.061 4950 

The data demonstrate that as the matrix tissue density (μ) increases from 2 to 10, all other parameters diffusion 

coefficients (ε₁, ε₂), white blood cell count (W), and velocity of tumour propagation exhibit a progressive rise. This 

indicates a synergistic coupling between matrix density, immune dynamics, and tumour spread. 
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Fig1. Across all (K, W) settings, the sequences 𝒁𝟏 → 𝒁𝟒 show a small damped under-over oscillation that 

quickly converges by n ≈ 4 to a common fixed point near 0.04960 

 
Fig2: The graph illustrates a steady linear increase in tumour suppression output (𝑍) over time (𝑡), indicating that as 

the carrying capacity (𝐾 ) and white blood cell response (𝑊 ) rise, tumour inhibition progressively strengthens, 

reflecting an enhanced immune-mediated suppression effect. 
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Fig3. Shows tumour suppression 𝒁𝟏- 𝒁𝟒 over time where 𝒁𝟐 steadily declines while 𝒁𝟏. 𝒁𝟐, 𝒁𝟑, 𝒁𝟒 stay nearly 

flat around  

≈ 0.0495 the lower panel shows 𝑲 and 𝑾 increasing with time, indicating stable suppression dynamics amid 

rising vascularity and immune activity. 

 
Fig4: The graph illustrates a progressive increase in tumour mass indicator (m) with time (𝑡), showing that as matrix 

tissue density (μ) and white blood cell count (W) rise, tumour mass gradually increases. The initial decline at  

𝑡 = 2 suggests an early immune suppression phase, followed by a sustained growth trend, indicating that tumour 

proliferation eventually overcomes immune inhibition. Overall, the plot reflects a dynamic balance between immune 

response and tumour expansion, consistent with nonlinear tumour–immune interaction behaviour in reaction–

diffusion models. 
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Fig6:The graph shows that tumor mass indicators 𝑚1, 𝑚2, 𝑚3, 𝑚4 all decline gradually over time, with 𝑚4 

maintaining the highest values and 𝑚1 the lowest, indicating consistent suppression of tumor mass as time progresses 

 

 

 
Fig7: The graph shows 𝑣1 − 𝑣5 rising almost linearly with μ(time), with 𝑣5 the steepest, indicating stable, monotonic 

growth of drug concentration. 
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Fig8: As μ increases from 2 to 10, both ε₁ and ε₂ rise approximately linearly, with ε₁ staying higher and growing at 

roughly twice the rate of ε₂ 

 

Discussion 

The results from the graphical and numerical analyses provide meaningful insights into the complex nonlinear 

interactions between tumour cells and the immune system, modeled through the reaction diffusion framework and 

analyzed using the Variational Iteration Method (VIM). The pattern of the tumour mass indicator (𝑚) reveals a two-

phase behaviour an initial phase of suppression followed by a gradual and sustained increase. This pattern reflects a 

biologically realistic transition from immune control to tumour dominance, consistent with experimental and 

theoretical studies on tumour–immune competition (Domschke et al., 2014; Elkaranshawy & Makhlouf, 2022).  At 

the early stage of tumour development ( 𝑡 = 1–2 ), the decline in 𝑚 suggests an effective immune-mediated 

suppression, most likely due to the heightened activity of white blood cells (WBCs) and restricted nutrient diffusion 

within the tumour microenvironment. As time progresses, the tumour mass begins to rise steadily in parallel with 

increases in matrix tissue density (𝜇) and WBC count (𝑊). This simultaneous increase may represent an adaptive 

immune response that, paradoxically, coexists with tumour expansion. Such coexistence is a characteristic feature of 

tumour–immune equilibrium, where the immune system controls but does not completely eliminate tumour cells. This 

observation reinforces the idea that immune surveillance alone may not be sufficient to eradicate tumours, particularly 

once angiogenesis and tissue remodeling processes become predominant. 

 

The positive correlation between 𝜇and 𝑚emphasizes the critical role of the extracellular matrix (ECM) in tumour 

growth and invasion. As the tissue becomes denser, it provides structural and biochemical support for cancer cells, 

enhancing their ability to migrate and invade surrounding tissues (Gerisch & Chaplain, 2008). This behaviour 

corresponds with clinical evidence linking high stromal density with aggressive tumour progression. Furthermore, the 

approximately linear increase in both 𝑊and 𝑚implies that while immune infiltration intensifies, it does not translate 

into proportional tumour suppression  possibly due to immune exhaustion or evasion mechanisms, as previously 

discussed by  Sardar et al. (2024). 

 

The reaction diffusion model used here demonstrates strong predictive capability, owing to its ability to capture spatial 

heterogeneity and nonlinear ratio-dependent interactions. These features make it well-suited to describe the localized 

competition between tumour proliferation and immune suppression. The corresponding rise in tumour suppression 

output shown in the complementary figure further supports the notion that effective treatment strategies should address 

not only the proliferative capacity of tumour cells but also the underlying microenvironmental conditions that sustain 

https://doi.org/10.63561/jmns.v2i4.1119


 

Application of the Variational Iteration Method in Modelling Tumour–Immune System Interactions Involving White Blood Cell Dynamics 

20 Cite this article as:   

Jacob, E., & Durojaye, M.O. (2025) Application of the variational iteration method in modelling tumour–immune system 
interactions involving white blood cell dynamics. FNAS Journal of Mathematical Modeling and Numerical 

Simulation, 2(4), 8-21. https://doi.org/10.63561/jmns.v2i4.1119 
 

their growth. 

 

Primary outcome suggest that tumour persistence results from a delicate and dynamic balance between proliferation, 

immune activity, and microenvironmental adaptation. This behaviour aligns with the concept of tumour dormancy 

and reactivation cycles described by Enderling and Anderson (2009). The application of the VIM offers a robust semi-

analytical framework capable of capturing these intricate dynamics with high efficiency, providing analytical 

approximations where conventional numerical techniques may be computationally demanding. Future extensions of 

this work could incorporate stochastic influences, angiogenic signalling pathways, and immunotherapeutic dynamics 

to further refine the model. Such enhancements would improve its ability to represent patient-specific tumour 

responses, ultimately contributing to the advancement of precision oncology and the design of optimized, 

combination-based cancer treatment strategies. 

 

Conclusion 

This study developed a reaction–diffusion model to investigate tumour–immune interactions, with particular focus on 

the role of white blood cells in modulating tumour progression. The Variational Iteration Method (VIM) was applied 

to efficiently approximate the nonlinear dynamics, providing clear analytical insight supported by numerical 

simulations. The findings demonstrate a two-phase tumour response, beginning with an initial period of immune-

mediated suppression, followed by a gradual increase in tumour mass, consistent with known tumour–immune 

equilibrium states. The positive correlation between tumour mass and extracellular matrix density emphasizes the 

significance of the microenvironment in facilitating tumour invasion, while the limited impact of increasing immune 

cell concentration suggests potential immune exhaustion or evasion mechanisms. Overall, the results highlight the 

delicate balance among cellular proliferation, immune activity, and tissue adaptation that governs tumour persistence. 

This model provides a strong foundation for exploring therapeutic strategies, and future extensions incorporating 

angiogenesis, stochastic effects, and immunotherapy could enhance its applicability in precision oncology. 

 

Recommendations 

1. Integrate additional biological mechanisms: Future models should include angiogenesis, immune exhaustion 

pathways, and tumour–immune feedback loops to better capture the complexity of tumour progression. 

2. Include stochastic and patient-specific parameters: Incorporating variability in immune responses, 

randomness, and patient-specific data would improve predictive accuracy and relevance for individualized 

treatment planning. 

3. Extend the framework to therapy dynamics: Including chemotherapy, radiotherapy, immunotherapy, or 

combination treatments would allow assessment of optimal dosing and timing strategies. 

4. Refine microenvironment representation: Modelling heterogeneous extracellular matrix properties and 

nutrient diffusion limitations could provide deeper insight into tumour invasion patterns. 

5. Validate with experimental and clinical data. Collaboration with biomedical laboratories or oncology clinics 

is recommended to calibrate the model and confirm the biological plausibility of simulated outcomes. 

References 

Anderson, A. R. A. (2005). A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion. 

Mathematical Medicine and Biology,22(1),163–186. https://doi.org/10.1093/imammb/dqi005 

Armstrong, N. J., Painter, K. J., & Sherratt, J. A. (2006). A continuum approach to modelling cell–cell adhesion. 

Journal of Theoretical Biology, 243(1), 98–113. https://doi.org/10.1016/j.jtbi.2006.05.030 

Chaplain, M.A.J., & Lolas, G. (2006). Mathematical Modelling of Cancer Invasion of Tissue Dynamic Heterogeneity, 

American Institute of mathematical Sciences 3(1):399-439. doi: 10.3934/nhm.2006.1.399 

Domschke, P., & Trucu, D. (2014). Mathematical modelling of cancer invasion: Implications of cell adhesion 

variability for tumour infiltrative growth patterns. Journal of Theoretical Biology, 361, 41–60. 

https://doi.org/10.1016/j.jtbi.2014.07.012 
Elkaranshawy, H., & Makhlouf, A. M. (2022). A mathematical model of tumour-immune interaction incorporating 

chemotherapy and immunotherapy. Computational and Applied Mathematics, 41(8), 1–20. 

https://doi.org/10.1007/s40314-022-01842-1 

Enderling, H., & Anderson, A. R. A. (2009). Mathematical modelling of tumour growth and treatment. Current 

Pharmaceutical Design, 15(11), 1225–1230. https://doi.org/10.2174/138161209787846728 

https://doi.org/10.63561/jmns.v2i4.1119
https://doi.org/10.1093/imammb/dqi005
https://doi.org/10.1016/j.jtbi.2006.05.030
https://doi.org/10.3934/nhm.2006.1.399
https://doi.org/10.1016/j.jtbi.2014.07.012
https://doi.org/10.1007/s40314-022-01842-1
https://doi.org/10.2174/138161209787846728


 

Application of the Variational Iteration Method in Modelling Tumour–Immune System Interactions Involving White Blood Cell Dynamics 

21 Cite this article as:   

Jacob, E., & Durojaye, M.O. (2025) Application of the variational iteration method in modelling tumour–immune system 
interactions involving white blood cell dynamics. FNAS Journal of Mathematical Modeling and Numerical 

Simulation, 2(4), 8-21. https://doi.org/10.63561/jmns.v2i4.1119 
 

Fajlul, I., & Uduman, M. (2016). A review on mathematical modeling of cancer growth and its treatments. 

International Journal of Applied Engineering Research, 11(5), 3571–3576. 

Gennadii, K. (1999). Mathematical models of tumor–immune system interactions. Mathematical and Computer 

Modelling, 30(5–6), 23–33. https://doi.org/10.1016/S0895-7177(99)00133-4 

Gerisch, A., & Chaplain, M. A. J. (2008). Mathematical modelling of cancer cell invasion of tissue: Local and non-

local models and the effect of adhesion. Journal of Theoretical Biology, 250(4), 684–704. 

https://doi.org/10.1016/j.jtbi.2007.10.026 

Rodriguez, B. L., Yogurtcu, O. N., & McGill, J. (2021). Mathematical modeling of personalized neoantigen cancer 

vaccines and immune response dynamics. Frontiers in Immunology, 12,1234. 

https://doi.org/10.3389/fimmu.2021.689354 

Sardar, T., Khajanchi, S., Biswas, S., & Ghosh, D. (2024). Complex dynamics in a delayed  tumor-immune interaction 

model. Chaos, Solitons & Fractals, 178, 114305.  https://doi.org/10.1016/j.chaos.2023.114305 

He, J. H., & Wu, X. H. (1997). Variational iteration method for nonlinear differential equations  with applications. 

Computers & Mathematics with Applications, 34(9–10), 73–79. https://doi.org/10.1016/S0898-

1221(97)00131-8 

 

 

 

https://doi.org/10.63561/jmns.v2i4.1119
https://doi.org/10.1016/S0895-7177(99)00133-4
https://doi.org/10.1016/j.jtbi.2007.10.026
https://doi.org/10.3389/fimmu.2021.689354
https://doi.org/10.1016/j.chaos.2023.114305
https://doi.org/10.1016/S0898-1221(97)00131-8
https://doi.org/10.1016/S0898-1221(97)00131-8

