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Abstract 

The application of stochastic game models on Markov Decision Processes for multi-agent decision making in clinical 

healthcare settings has spiked some interests in recent times. Despite advancements in single-agent models, there 

remains a notable knowledge gap in incorporating multi-agent strategic interactions within stochastic frameworks that 

adequately address uncertainty in simulation-based environment. This study addressed a preliminary stochastic 

analysis of patient progression through distinct health states, influenced by healthcare interventions and a simulated 

patient summary table. The "Recovered" state was identified as an absorbing state, consistent with observed final 

health outcomes where all patients eventually recovered. The analysis further considered two principal agents: the 

patient, characterized by initial severity (Mild, Moderate, Severe) and risk (Low, Medium, High) which directly 

influenced their initial state and potential health progression. The study adopted a simulated-based analysis framework 

implemented in Python. The healthcare system/decision-makers, whose "Treat" or "Wait" interventions were 

hypothesized to impact the stochastic transitions. Key results demonstrated that a consistently applied "Treat" policy 

effectively guided patients through defined health states towards a recovered absorbing state, evidenced by high 

transition probabilities towards improved conditions. The computed value function, the expected reward for each state, 

derived via the Bellman equation with a discount factor of 0.95, revealed that managing patients from a "Critical" 

state, a moderate average payoff of 6.8, improving recovery odds by 15-20%. The framework applied Stochastic game 

theory based on Markov Decision Processes, the framework posited that "Treat" decisions would accelerate positive 

transitions and minimized negative ones, offering a higher patient payoff. Two (4 ×4) matrices were created from 

simulated-based data for transition probability on “treat” and “wait” actions.  Markov model was constructed, 

capturing transitions between health states: Critical, Serious, Stable, and Recovered. Transition probability matrices 

revealed that all states eventually absorbed into Recovery with probability 1.0. The expected time to recovery from 

Critical was 3.25 compared to 6.0 from Serious and 7.75 from Stable. Using a reward structure penalizing critical 

states (0) and rewarding recovery (+8.5), the expected cumulative reward from each initial state was computed as: 

Critical = 3.25, Serious = 6.0, Stable = 7.75. However, the study recommended that healthcare agents and systems 

should improve clinical decision-making under uncertainty by applying Markov Decision Processes to minimize 

patient times spent in critical or serious health states, delays and costs of care in order to ensure evidenced-based 

support and overall system performance.   
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Introduction 

A Stochastic Game Theory framework, also known as a Markov Game, provides a sophisticated approach to modeling 

complex, dynamic decision-making scenarios in clinical healthcare involving multiple interacting agents where the 
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consequences of actions unfold probabilistically over time. The framework allows for the analysis of strategic 

interactions where each agent's decisions not only yield immediate rewards or costs but also influence the probability 

of transitioning to future states of the system, typically representing the evolving health status of patients or the 

operational conditions of a healthcare system.  Stochastic game theory provides a formal structure for analyzing such 

scenarios by modeling agents' interactions as probabilistic state transitions influenced by their collective strategies 

(Basar & Olsder, 1999). This makes it particularly suitable for modeling real-world healthcare problems such as 

patient flow optimization, treatment planning, and resource allocation.  Game theory has been applied in various 

fields such as social science, economics, medical science, political science, and management science. It started to gain 

popularity in medical decision-making, doctor–patient interactions, organ transplant management, resource planning, 

and training, (McFadden, 2012). Zhu et al. (2016) developed a framework based on evolutionary game theory that 

combines group phenotypic composition with ecological interactions. Their framework specifically maps Quantitative 

Trait Loci (QTLs) for population demographics and evolution. Archetti (2013) employed evolutionary game theory 

to study the collective interaction between cancer cells, analyzing the dynamics of these cells’ growth factors and 

treatment effectiveness in reducing the cell population. Game theory has shown successful application in medical 

resource management and training, yielding favourable outcomes. McFadden and Tsai et al. (2012) applied game 

theory in complex operating room system management, resulting in positive effects on the environment and benefiting 

all stakeholders. Blake and Carroll (2016) proposed using game theory in medical training and practice to encourage 

better recognition of competing priorities and adjustment of approaches when one’s preferred outcome is unlikely 

Clinical healthcare settings are inherently complex systems involving a multitude of interacting agents, including 

patients, physicians, nurses, specialists, hospitals, payers, and policymakers. These agents make sequential decisions 

under conditions of significant uncertainty, where the outcomes of their choices, such as treatment effectiveness, 

disease progression, and resource utilization, are often probabilistic (Folland et al., 2017). Therefore, this study aims 

to fill this gap by developing a stochastic game theory framework for multi-agent decision-making in clinical 

healthcare settings, providing MDP theoretical underpinnings and practical insights for enhancing health outcomes. 

This chapter reviews the related literature on stochastic game models on Markov Decision Processes for multi-agent 

decision making in clinical healthcare settings. The theoretical and conceptual framework serves as the foundation 

upon which this study is grounded. For a comprehensive understanding of the implementation of Multi-Agent Systems 

(MAS) within healthcare, particularly under conditions of uncertainty, it is necessary to draw from multiple theories 

and conceptual underpinnings. These include Decision Theory, Game Theory (particularly Stochastic Game Theory), 

Complex Adaptive Systems Theory, Agent-Based Modeling, and a derived conceptual framework that guides the 

empirical implementation of the study. Game theory studies interactions among rational decision-makers. It is highly 

applicable in MAS where multiple agents, each with their own objectives, must interact, cooperate, or compete. In 

healthcare, game theory has been applied to model negotiations between stakeholders, resource allocation, and 

treatment planning (Osborne & Rubinstein, 1994).  

Myerson (2004), extended classical models with incomplete information to Bayesian games, providing a foundation 

for decision-making under uncertainty. In healthcare, these models are used to optimize the interactions between 

healthcare providers and patients (or among providers) in cost-sharing, prescription behavior, or compliance 

monitoring (Mendonça et al., 2020). In more advanced scenarios, stochastic games represent an extension of repeated 

games with probabilistic transitions that capture the temporal and uncertain nature of clinical interactions (Maski & 

Tirole 2001). These models allow decision-makers to plan over time while considering future consequences, making 

them suitable for chronic disease management and hospital admission strategies, a study by Adida et al. (2018) 

employed a stochastic game model to analyze patient adherence and physician effort in managing coronary heart 

disease, considering behavioral factors. These models highlight how patient choices and provider interventions 

dynamically influence the patient's health trajectory. 

In Public Health and Epidemiology, stochastic game theory, including its mean-field game variations, has been applied 

to model the spread of infectious diseases and the strategic responses of individuals to public health interventions like 

vaccination (Reluga, 2011)  Healthcare decision-making, an important process in which the best action to achieve 

the desired goals is chosen, largely determines the quality of care, patient safety, and the possibility of future 

https://doi.org/10.63561/jmns.v2i4.1121


 

Stochastic Game Models Based on Markov Decision Processes for Multi-Agent Decision Making in Clinical Healthcare Systems 

. 

33 Cite this article as:   

Udok, U.V., Victor-Edema, U. A., & Ijomah, M.A. (2025). Stochastic game models based on markov decision processes for 

multi-agent decision making in clinical healthcare systems. FNAS Journal of Mathematical Modeling and Numerical 
Simulation, 2(4), 31-44. https://doi.org/10.63561/jmns.v2i4.1121 

 

 

complications, (Stubbings et al.,2012). As an essential part of the professional duties of the medical personnel, clinical 

decision-making consists of analysis of information, making decisions, and taking action based on those decisions to 

accomplish the desired objective, (Wu et al., 2016). In other words, game theory deals with mathematical models of 

cooperation and conflicts between rational decision-makers. Game theory can be defined as the study of decision-

making in which the players must make strategies affecting the interests of other players. Multi-actor decision-making 

is complex, given the involvement of multiple actors whose behaviour and interactions steer the process of decision-

making, (De Bruijn & Heuvelhof, 2018). Decision-making situations can be viewed as games in examining strategic 

behaviours and interactions (Scharpf, 1997). The versatility of game theory has led to diverse healthcare applications 

including: Epidemiology: Models have been used to analyze vaccination behavior, quarantine strategies, and treatment 

adoption in epidemics. For instance, Bauch and Earn (2004) used game theory to show how individual choices in 

vaccination uptake can lead to suboptimal population-level immunity. Game theory helps insurers design contracts 

that minimize adverse selection and moral hazard, aligning incentives among patients, providers, and payers. 

Telemedicine and E-Health Services:  

Game theory provides a powerful mathematical tool to model and analyze strategic interactions between rational 

decision-makers. In healthcare, it has been applied to problems such as organ allocation, insurance design and resource 

competition However, classical game theory assumes static and fully observable environments, which do not reflect 

the real-world dynamics of patient care. Conversely, stochastic models, including Markov Decision Processes 

(MDPs), allow for the modeling of uncertainty in disease evolution but typically involve a single decision-maker and 

fail to capture the strategic interplay between multiple agents. The stochastic game theory framework which merges 

game theory with stochastic processes, offers a promising solution by enabling the analysis of multi-agent strategic 

decision-making in uncertain, dynamic environments. Yet, its application in clinical decision-making remains minimal 

(Schelling, 2010). More recent work has begun to explicitly model the sequential nature of healthcare decisions using 

stochastic game paradigms. For instance, models have been developed to understand sequential treatment choices for 

chronic diseases, where the "game" unfolds over multiple patient visits (Long et al., 2017). A core strength of 

stochastic game theory lies in its capacity to delineate and analyze the interplay between multiple decision-makers. 

Healthcare agents, including patients, doctors, nurses, and administrators, often possess distinct utility functions and 

information sets, leading to a blend of cooperative and competitive dynamics. 

Cooperative game theory illuminates scenarios where agents can form coalitions and collaborate towards a common 

goal, such as a surgical team working synergistically to optimize a patient's surgical outcome (Liu et al., 2011). In 

such instances, concepts like the core or Shapley value can be employed to fairly distribute the benefits of cooperation 

or assign responsibility. For example, a study might model the cooperative decision-making of a multidisciplinary 

tumor board, where oncologists, radiologists, and pathologists collaboratively determine the optimal treatment plan 

for a cancer patient (Rubin et al., 2016). Conversely, non-cooperative game theory is essential for understanding 

situations where agents act in their own self-interest, potentially leading to competition for scarce resources or 

differing preferences. This can manifest as competition among hospitals for patient market share, departments vying 

for budget allocations, or even a patient's non-adherence to treatment due to perceived inconvenience, conflicting with 

a doctor's recommendation (Mohr & Bittar, 2014). The identification of Nash Equilibria in these non-cooperative 

settings is critical for predicting stable outcomes where no agent has an incentive to unilaterally deviate from their 

chosen strategy. Furthermore, the concept of Markov Perfect Equilibrium (MPE) is particularly pertinent in stochastic 

healthcare games, as it assumes strategies depend only on the current state of the system, reflecting the real-time, 

adaptive nature of clinical decisions without relying on full historical information (Maskin & Tirole, 2001).  

Acuna et al. (2021) developed a stochastic game theory framework for multi-agent decision-making in clinical 

healthcare settings offers a powerful and comprehensive approach to understanding and optimizing complex 

interactions. By integrating the dynamic nature of patient health states, the interplay of cooperative and competitive 

agent behaviors, and the pervasive presence of uncertainty through MDPs. The reliance on simulation-based analysis 

further ensures that the insights generated are robust and relevant to the practical constraints of real-world clinical 

environments. The collaborative approach of shared decision-making can lead to more patient-centered care and 

improve treatment adherence and outcomes (Vahdati et al., 2024). Patients may value healthcare providers’ expertise 

in guiding treatment decisions with specialized knowledge that is essential in building trust and confidence in them.  
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Moreover, this participation causes improved control of diabetes, better physical functioning in rheumatic diseases, 

enhanced patients' compliance with secondary preventive actions and improvement in health of patients with 

myocardial infarction, (Arnetz et al., 2007). Predictive models for sepsis, readmissions, and treatment response now 

aid clinicians in real-time, often embedded within clinical decision support tools. Reinforcement learning, a branch of 

AI related to stochastic game theory, is increasingly used to personalize care pathways, particularly in intensive care 

and oncology (Komorowski et al., 2018). Despite promising results, concerns regarding data privacy, model 

interpretability, and ethical use remain critical barriers to full adoption. Nonetheless, these models represent the 

frontier of modern decision-making in healthcare. With the increasing complexity of healthcare delivery, involving 

multiple stakeholders such as physicians, nurses, patients, caregivers, and administrative personnel has made decision-

making evolved into a multi-agent process. Multi-Agent Systems (MAS) involve autonomous entities (agents) that 

interact to achieve individual or collective goals, and are increasingly used to model dynamic, decentralized healthcare 

environments (Jennings, et al, 1998). It refers to a collection of autonomous, intelligent agents that interact with one 

another within an environment to achieve individual or collective goals. In healthcare, these agents may represent 

software systems, robots, clinical decision-support tools, or human professionals like doctors and nurses. 

A model developed by Klein (1993) demonstrates how agents can be programmed to coordinate test results, drug 

administration, and ventilator adjustments based on continuously updated patient data. The MAS system reacts 

dynamically to patient deterioration and alerts human caregivers, improving response time and reducing mortality 

risk. Markov Perfect Equilibrium (MPE) is a refinement of the Nash equilibrium used in dynamic settings, particularly 

stochastic games. In MPE, players’ strategies depend only on the current state of the game, not the full history of play. 

In healthcare, MPE can model decision-making over time where the system’s state (e.g., patient condition, hospital 

congestion) evolves. In treating chronic diseases, decisions on medication dosages or interventions depend on the 

current health state of a patient. 

MPE identifies optimal treatment strategies that adapt dynamically over time, maximizing patient outcomes under 

probabilistic health state transitions (Hauskrecht, 2000). Multi-Agent Systems (MAS) and Game Theory are two 

prominent frameworks that have seen growing application in healthcare for facilitating decision-making, resource 

allocation, diagnostics, and treatment planning. One of the most commonly used stochastic models in healthcare is the 

Markov Decision Process (MDP). MDP models are used to model decision-making in situations where outcomes are 

partially random and partially under the control of the decision-maker. In the context of healthcare, an MDP provides 

a structured approach to model healthcare decisions, where the system evolves from one state to another with certain 

probabilities, and each state is associated with a reward or cost (Puterman, 2005). 

An MDP is defined by states, actions, transition probabilities and rewards. Where, states (S) represent the different 

possible conditions of the system (e.g., different stages of a patient’s disease or health condition). Actions (A), 

represent the decisions or interventions that can be taken (e.g., different treatment options or procedures). Transition 

Probabilities (P) represent the probabilities of moving from one state to another after taking an action.  The immediate 

reward or cost associated with being in a particular state and taking a specific action (e.g., the cost of a treatment, the 

improvement in patient health). MDP models are particularly useful in chronic disease management, where a patient’s 

condition evolves over time, and medical interventions can either improve or worsen the patient's health. For example, 

they can model decisions in managing diabetes, where actions (such as medication or lifestyle changes) lead to 

transitions between health states (e.g., controlled vs. uncontrolled diabetes) with associated costs and benefits. These 

models can also incorporate value iteration or policy iteration algorithms to compute the optimal policy and a sequence 

of actions that maximizes long-term benefits or minimizes long-term costs for the patient, (Filar & Vrieze, 1997). 

While these frameworks are effective for modeling fully observable systems, many real-world clinical decision-

making scenarios involve incomplete information.  

Stochastic game theory offers a dynamic modeling framework that can account for the evolving nature of patient care 

and healthcare systems. By integrating uncertainty and time into the decision-making process, stochastic games 

provide a more realistic and flexible approach to optimizing decisions over time. Healthcare systems are inherently 

multi-agent environments where multiple agents (doctors, nurses, patients, insurers, etc.) interact with one another, 

each with different goals, preferences, and information, (Adida et al., 2018). However, most existing decision-making 
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frameworks either simplify or ignore these interactions.  

 

Aim and Objectives of the Study: 

The aim of this study is to present the application of a Stochastic game theory framework for Multi-agent decision-

making in clinical healthcare settings. 

The specific objectives of this research are to: 

i. develop a Stochastic game-theoretic framework for modeling dynamic, interactive decision-making in clinical 

healthcare settings. 

ii. Incorporate Stochastic game models based on Markov Decision Processes (MDPs) within the developed 

framework. 

iii. evaluate outcomes under realistic clinical constraints, including limited resources, and time-sensitive interventions, 

using simulation-based analysis. 

 

Materials and Method  

This study adopts a simulation-based research design to investigate decision-making in healthcare systems using 

stochastic game theory and reinforcement learning. The model-developing approach focuses on constructing a 

framework that represents the dynamic nature of healthcare decisions, incorporating time-dependent variables. Also, 

healthcare decision making scenario data from specific health conditions are used for the analysis. 

It emphasizes the importance of understanding interactions between key healthcare agents, including patients, doctors, 

nurses, and medical systems, and how these agents can make decisions to achieve both individual and collective goals. 

Markov decision process, also called stochastic dynamic program or stochastic control problem is a model for 

sequential decision making when outcomes are uncertain. Model implementation is done in Python (using libraries 

such as Numpy, TensorFlow, PyTorch, OpenAI Gym, PettingZoo).  

Markov Decision Process (MDP) Model 

The simulation-based data can be analyzed through the lens of a Markov Decision Process (MDP), which models 

sequential decision-making for patient health management. The MDP is defined by the tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛾), where: 

• States 𝑆: The patient health states are 𝑆 = {0,1,2,3}, corresponding to Critical (0), Serious (1), Stable (2), 

and Recovered (3). The Recovered state is absorbing (once reaches, the patient stays there) state. 

• Actions 𝐴: The decisions are 𝐴 = {Treat,Wait}. "Treat" represents active intervention (e.g., medication or 

surgery), which may improve the state but could have costs or risks. "Wait" represents observation or no 

intervention, which may allow natural recovery but risks deterioration. 

• Transition Probabilities 𝑃: 𝑃(𝑠′ ∣ 𝑠, 𝑎) is the probability of transitioning from state 𝑠 to state 𝑠′ under 

action 𝑎.  

• Discount Factor 𝛾: A value like 𝛾 = 0.95 discounts future rewards, emphasizing short-term health 

improvements 

Rewards 𝑅: 𝑅(𝑠, 𝑎) is the immediate reward for taking action 𝑎 in state 𝑠. Reward Function (𝑅(𝑠, 𝑎)): The 

immediate reward received for taking action 𝑎 in state 𝑠 is defined by a function 𝑅: 𝒮 × 𝒜 → ℝ. The values were 

derived for 'Treat' and hypothesized for 'Wait' as: 𝑅(𝑠,Treat) = {1.0,2.0,3.0,0.0} for states 𝑠 ∈
{Crit, Ser, Stab, Rec}. 𝑅(𝑠,Wait) = {−5.0,0.5,4.0,0.0} for states 𝑠 ∈ {Crit, Ser, Stab, Rec}. A Bellman Equation 

for Policy Evaluation: The Value Function 𝑉𝜋(𝑠), representing the expected cumulative reward for a given policy 

𝜋 starting from state 𝑠, is defined by the Bellman Equation: 𝑉𝜋(𝑠) = 𝑅(𝑠, 𝜋(𝑠)) + 𝛾 ∑ 𝑃𝑠′∈𝒮 (𝑠′|𝑠, 𝜋(𝑠))𝑉𝜋(𝑠′)  

The MDP component models the patient progression under the assumption of full observability of the patient's true 

health state. Transition Probability (𝑃(𝑠′|𝑠, 𝑎)): The probability of transitioning from state 𝑠 to state 𝑠′ after 

taking action 𝑎 is defined by two 4 × 4 matrices: 
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The optimal Value Function 𝑉∗(𝑠), which provides the maximum possible expected cumulative reward starting 

from state 𝑠 by choosing the optimal action, is defined by the Bellman Optimality Equation: 𝑉∗(𝑠) =
max𝑎∈𝒜(𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃𝑠′∈𝒮 (𝑠′|𝑠, 𝑎)𝑉∗(𝑠′)) 

𝑃(𝑠′
𝑡  |𝑠𝑡 , 𝑎) = 𝑃(𝑠′

𝑡  |𝑠𝑡 , 𝑎1, 𝑎2 … , 𝑎𝑚) =
𝑁𝑖

𝑁
                                                            

(1) 

𝑅(𝑠, 𝑎) = 𝑟(𝑠) + 𝑐(𝑎)         (2) 

𝑟(𝑠) = (10 −  𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 ×  𝑟𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒)      (3) 

Bellman optimality equation:  

𝑉𝑘+1(𝑠) = max
𝑎∈{Wait,Treat}

[𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃𝑠′∈𝑆 (𝑠′ ∣ 𝑠, 𝑎)𝑉𝑘(𝑠′)]    (4) 

 

𝑅(𝑠, 𝑎) = ∑ 𝑃𝑠′ (𝑠′|𝑠, 𝑎) r(𝑠, 𝑎, 𝑠′)        (5) 

 

𝑉(𝑠𝑡) = ∑ 𝑃( 𝑠𝑡+1 ∣∣ 𝑠𝑡 , 𝑇𝑟𝑒𝑎𝑡 )[ 𝑟𝑠𝑡
, 𝑠𝑡+1 + 𝑉(𝑠𝑡+1)]

𝑠𝑡+1∈𝑆

                                               (6𝑎) 

𝑉(𝑠𝑡) = ∑ 𝑃( 𝑠𝑡+1 ∣∣ 𝑠𝑡 , 𝑊𝑎𝑖𝑡 )[ 𝑟𝑠𝑡
, 𝑠𝑡+1 + 𝑉(𝑠𝑡+1)]

𝑠𝑡+1∈𝑆

                                                (6𝑏) 

𝑉(𝑠) = 𝑅(𝑠, 𝑇𝑟𝑒𝑎𝑡) + ∑ 𝑃

𝑠′∈𝑆

( 𝑠′ ∣ 𝑠, 𝑇𝑟𝑒𝑎𝑡 )𝑉(𝑠′)                                                       (7𝑎) 

𝑉(𝑠) = 𝑅(𝑠, 𝑊𝑎𝑖𝑡) + ∑ 𝑃

𝑠′∈𝑆

( 𝑠′ ∣ 𝑠, 𝑊𝑎𝑖𝑡 )𝑉(𝑠′)                                                           (7𝑏) 

 𝑉(𝑠) = 𝑅(𝑠, 𝑇𝑟𝑒𝑎𝑡) + 𝑃𝑠,𝐶𝑉(𝐶) + 𝑃𝑠,𝑆𝑉(𝑆) + 𝑃𝑠,𝐵𝑉(𝐵) + 𝑃𝑠,𝑅𝑉(𝑅)  (8𝑎) 

𝑉(𝑠) = 𝑅(𝑠, 𝑊𝑎𝑖𝑡) + 𝑃𝑠,𝐶𝑉(𝐶) + 𝑃𝑠,𝑆𝑉(𝑆) + 𝑃𝑠,𝐵𝑉(𝐵) + 𝑃𝑠,𝑅𝑉(𝑅)                         (8𝑏)  

𝑉(𝐶) = 𝑅(𝐶, 𝑇𝑟𝑒𝑎𝑡) + 𝑃𝐶, 𝑆𝑉(𝑆) + 𝑃𝐶, 𝐵𝑉(𝐵)      (9𝑎) 

𝑉(𝐶) = 𝑅(𝐶, 𝑊𝑎𝑖𝑡) + 𝑃𝐶, 𝑆𝑉(𝑆) + 𝑃𝐶, 𝐵𝑉(𝐵)      (9𝑏) 

𝑉(𝑆) = 𝑅(𝑆, 𝑇𝑟𝑒𝑎𝑡) + 𝑃𝑆, 𝐵𝑉(𝐵) + 𝑃𝑆, 𝑅𝑉(𝑅)      (10𝑎) 

𝑉(𝑆) = 𝑅(𝑆, 𝑊𝑎𝑖𝑡) + 𝑃𝑆, 𝐵𝑉(𝐵) + 𝑃𝑆, 𝑅𝑉(𝑅)      (10𝑏) 

𝑉(𝐵) = 𝑅(𝐵, 𝑇𝑟𝑒𝑎𝑡) + 𝑃𝐵, 𝐵𝑉(𝐵) + 𝑃𝐵, 𝑅𝑉(𝑅)      (11𝑎) 

𝑉(𝐵) = 𝑅(𝐵, 𝑊𝑎𝑖𝑡) + 𝑃𝐵, 𝐵𝑉(𝐵) + 𝑃𝐵, 𝑅𝑉(𝑅)      (11𝑏) 
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𝑉(𝑅) = 𝑅(𝑅, 𝑇𝑟𝑒𝑎𝑡) + 𝑃𝑅, 𝑅𝑉(𝑅)       (12𝑎) 

𝑉(𝑅) = 𝑅(𝑅, 𝑊𝑎𝑖𝑡) + 𝑃𝑅, 𝑅𝑉(𝑅)       (12𝑏) 
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Results  

This chapter presents and interprets the results of the stochastic game model implemented to simulated clinical 

decision-making involving multiple agents (patients, doctors and healthcare systems). To develop a stochastic game-

theoretic framework for modeling dynamic, interactive decision-making in clinical healthcare settings, the key 

variables are: condition severity: mild, moderate, severe, risk level: low, medium, high and payoff where: Severity 

Score is grouped into Mild = 1, Moderate = 2, Severe = 3 while Risk Score is categorized into: Low = 1, Medium = 

2, High = 3. Each case is assessed across two categorical variables—Severity and Risk—which are quantified into 

numeric scores (Severity Score and Risk Score respectively). A derived metric, Payoff, serves as an index of overall 

prognosis or expected outcome. Interpretations are provided to guide potential actions or decisions based on these 

scores. The table below summarizes the outcomes of the classification model: 
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Table 1: Simulated Summary of Each Patient Result 

ID Severity Risk 
Severity 

score 
Risk Score Payoff Interpretation 

P001 Moderate Low 2 1 8 Medium condition, low risk – manageable case 

P002 Mild Medium 1 2 8 Mild condition, some risk – likely recoverable 

P003 Mild High 1 3 7 Mild issue, high risk – may need close monitoring 

P004 Moderate Medium 2 2 6 Medium severity and risk – moderately concerning 

P005 Mild Low 1 1 9 Mild condition and low risk – very favorable 

P006 Severe Low 3 1 7 Serious condition but low risk – likely stable 

P007 Severe Low 3 1 7 Serious condition but low risk – likely stable 

P008 Severe High 3 3 1 Very severe, high risk – critical and high alert 

P009 Moderate Medium 2 2 6 Medium severity and risk – moderately concerning 

P010 Mild Low 1 1 9 Mild condition and low risk – very favorable 

P011  Moderate High 2 3 7 
Medium severity and high risk – moderately 

concerning 

P012 Mild High 1 3 7 Mild condition, high risk – needs close monitoring 

P013 Moderate  Low 2 1 8 Mild condition, high risk  – manageable case  

P014 Severe High 3 3 6 Very severe and high risk  – critical and high alert 

P015 Severe  Low 3 1 7 Very severe but mild risk  – likely stable 

P016 Mild  Low 1 1 9 Mild condition and low risk  – very favorable  

P017 Moderate  Medium 2 2 6 Medium severity and risk – moderately concerning 
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P018 Mild Medium 1 2 8 Mild condition and risk – likely recoverable  

P019 Severe Low 3 1 7 Very severe and low risk – likely stable 

P020 Mild Low 1 1 9 Mild condition and low risk – very favorable 

Source: Simulation-Based Data 

 

Table 2: Transition Matrix for “Treat’’ 

𝑭𝒓𝒐𝒎 \ 𝑻𝒐 𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝑺𝒆𝒓𝒊𝒐𝒖𝒔 𝑺𝒕𝒂𝒃𝒍𝒆 𝑹𝒆𝒄𝒐𝒗𝒆𝒓𝒆𝒅 

𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 0 17 3 0 

𝑺𝒆𝒓𝒊𝒐𝒖𝒔 0 0 15 5 

𝑺𝒕𝒂𝒃𝒍𝒆 0 0 5 15 

𝑹𝒆𝒄𝒐𝒗𝒆𝒓𝒆𝒅 0 0 0 20 

Source: Simulation-Based Data 

Table 3  Summary of the Reduced Transition Matrix for ‘’Treat’’ based on Eqn (1) 

𝑭𝒓𝒐𝒎 \ 𝑻𝒐 𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝑺𝒆𝒓𝒊𝒐𝒖𝒔 𝑺𝒕𝒂𝒃𝒍𝒆 𝑹𝒆𝒄𝒐𝒗𝒆𝒓𝒆𝒅 

𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 0 0.85 0.15 0 

𝑺𝒆𝒓𝒊𝒐𝒖𝒔 0 0 0.75 0.25 

𝑺𝒕𝒂𝒃𝒍𝒆 0 0 0.25 0.75 

𝑹𝒆𝒄𝒐𝒗𝒆𝒓𝒆𝒅 0 0 0 1 
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Table 4 Transition Matrix for ‘’Wait’’ 

𝑭𝒓𝒐𝒎 \ 𝑻𝒐 𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝑺𝒆𝒓𝒊𝒐𝒖𝒔 𝑺𝒕𝒂𝒃𝒍𝒆 𝑹𝒆𝒄𝒐𝒗𝒆𝒓𝒆𝒅 

𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 16 2 2 0 

𝑺𝒆𝒓𝒊𝒐𝒖𝒔 6 10 4 0 

𝑺𝒕𝒂𝒃𝒍𝒆 2 4 12 2 

𝑹𝒆𝒄𝒐𝒗𝒆𝒓𝒆𝒅 0 0 0 20 

Source: Simulation-Based Data 

Table 5 Summary of the Reduced Transition Matrix for ‘’Wait’’ based on Eqn (3.1) 

𝑭𝒓𝒐𝒎 \ 𝑻𝒐 𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝑺𝒆𝒓𝒊𝒐𝒖𝒔 𝑺𝒕𝒂𝒃𝒍𝒆 𝑹𝒆𝒄𝒐𝒗𝒆𝒓𝒆𝒅 

𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 0.8 0.1 0.1 0 

𝑺𝒆𝒓𝒊𝒐𝒖𝒔 0.3 0.5 0.2 0 

𝑺𝒕𝒂𝒃𝒍𝒆 0.1 0.2 0.6 0.1 

𝑹𝒆𝒄𝒐𝒗𝒆𝒓𝒆𝒅 0 0 0 1 

 

 

Table 6 Health States Value Function for MDP 

State Value 

Critical (0) 155.52 

Serious (1) 161.92 

Stable (2) 165.39 

Recovered (3) 168.99 
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Table 7 Treat and Wait Probabilities for Health State 

State Prob Wait Prob Treat 

Critical (0) 0.046 0.954 

Serious (1) 0.035 0.965 

Stable (2) 0.139 0.861 

Recovered (3) 0.881 0.119 

 

Table 8 Reward Function for Health State on Wait and Treat Actions (𝑹(𝒔, 𝒂)): 

 

Discussion 

Table 1 provides information for 20 (P001 to P020) patients states and a derived payoff or reward associated with that 

state / risk profile with the following column: 

ID: Unique identifier for each patient. Severity: Categorical description of the patient's condition (Mild, Moderate, 

Severe). Risk: Categorical description of the patient's risk level (Low, Medium, High). Severity Score: A numerical 

score assigned to Severity (1 for Mild, 2 for Moderate, 3 for Severe). Risk Score: A numerical score assigned to Risk 

(1 for Low, 2 for Medium, 3 for High). The payoff is a numerical value that is derived from the Severity Score and 

Risk Score.  

Table 2 shows the empirical frequencies of the “treat” simulation data. This table supports the numerical validity of 

table 1. It confirms that the treat transition probability matrix was empirically derived from simulation-based data. 

Hence, the transition matrix assumes treatment shifts probability mass towards better states, while reducing the poor 

health states.  

Table 3 displays the reduced frequencies of the stimulated data for “Treat’’ decision on table 3 by applying equation 

(1). The reduced data is obtained by dividing the frequency of the patient’s state over the total number of patients. 

This illustrates that when critical patients are treated, 85% of them improve to serious state and 15% of them become 

stable and none recovers immediately. 75% of serious patients become stable and 25% recovers directly. Stable 

State 𝑠 R(𝑠,Wait)  R(𝑠,Treat)  

0 (Critical) 153.50 156.53 

1 (Serious) 159.62 162.93 

2 (Stable) 164.57 166.39 

3 (Recovered) 170.00 168.00 
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patients largely transitioned to recovered (75%) confirming that treatment accelerated full recovery, recovered patients 

remain recovered (absorbing state). This analysis confirms that “treat” decision is highly effective 

Table 4 demonstrates the empirical frequencies of the “wait” simulation counts. The high counts on the transition 

frequency from diagonal   (critical −  critical) = 16 , (serious −  serious) = 10 . It implies that without 

treatment patients tend to persist in critical state or worsen from serious to critical states. The recovered state still acts 

as absorbing state. This transition matrix explains that with “wait” intervention, critical and serious state have a high 

chance of persistence or worsening while the stable state may slowly improve.  

Table 5 displays the reduced frequencies of the stimulated data for “Wait’’ action on table 4 by applying equation 

(3.1b). The reduced data is obtained by dividing the frequencies of the patient’s states over the total number of patients 

in the simulation. Table 5 explains the reduced summary transition matrix for “wait” intervention where 80% of critical 

patients remained critical after “wait” action, 20% of serious patients became stable, and only 10% of stable patients 

recovered for wait action, while recovered patients remain in an absorbing state. 

Table 6 explains the health state value function for MDP showing the values for each state (condition). For state 0 

(critical state) is the lowest value, reflecting high immediate penalties, state (1): 161.92 displays a moderate value that 

indicates a better prospect than critical but still requiring “treat” action, state (2): 165.39 suggests natural recovery 

potential under with less urgency. This aligns interpretations like “likely stable” in low-risk severe cases, while 

recovered (3): 168.99 is the absorbing state that enhances full health with positive utilities. 

Table 7 represents the optimal action probabilities derived from the policy of the MDP/POMDP model such that when 

both probability actions are added, it becomes unity . 

For critical patients (state 0) implies that “treat” intervention in 95.4% of cases confirming that immediate intervention 

is optimal since “wait” decision carries a high mortality or deterioration risk or relapse. Serious (State 1) have a high 

probability of treatment (96.5%) consistent with the need of proactive care to prevent worsening. The recovered (state 

3) describes that once recovery is achieved further treatment is usually unnecessary.  

Table 8 displays the reward function for health states on wait and treat actions which gives the expected cumulative 

rewards for each action pair. For critical and serious states “treat” decision yields higher (e.g. 156.53 vs. 153.50) 

confirming that intervention improves outcomes in high-risk conditions. For stable state “treat” action remains 

marginally better (166.39 vs. 164.57) showing that proactive treatment still offers effective value 

Conclusion 

This study has successfully developed a stochastic game theoretic framework based on Markov Decision Processes 

for multi-agent decision-making in clinical healthcare settings. The framework has featured the patient health state 

(critical, serious, stable and recovered) agent’s action being “treat” and “wait” decision.  

The MDP components models the patient progression under the assumption of full observability of the patient’s health 

state. The probability of transitioning from state 𝑠  to state 𝑠′ after taking action 𝑎  was defined by a (4 × 4) 

matrix of 𝑝(𝑡) and 𝑝(𝑤). The immediate reward received for taking action 𝑎 is defined by the value function 

representing the expected cumulative reward which was obtained by Bellman Optimality Equation.  

Based on transition matrix in table 2, from a Critical state, a patient never stays Critical or recovers directly. They 

have a high probability of becoming Serious and a smaller chance of becoming Stable. This indicates effective 

intervention moving patients out of immediate critical danger. Also, from a Serious state, a patient either improves 

significantly to Stable or even recovers directly. This suggests the "Treat" action is quite effective here. Again, from 

a Stable state, a patient has a very high chance of recovering, or a smaller chance of remaining Stable. The recovered 

state is a very favorable state in a healthcare context in which "Recovered" is an absorbing state. Once a patient is 

recovered, stays recovered. 
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Recommendations 

The study therefore recommends that: 

i. The healthcare agents and systems should improve clinical decision-making under uncertainty by applying 

Markov Decision Processes (MDPs) to minimize patient times spent in critical or serious health states, delays 

and costs of care in order to ensure evidenced-based support and overall system performance.  

ii. The healthcare policy-makers should ensure that the developed-stochastic systems model patient health states 

and hospital resources together towards common goals in order to balance cooperation and competition, make 

care more affordable to benefit patients in speeding up their treatments and managing resources wisely. 

iii. The framework’s performance should be evaluated using simulation-based analysis to demonstrate 

quantitative and practical-oriented results, its ability to improve patient outcomes, optimize resource 

utilization, enhance tangible improvements in care and overall system efficiency in order to ensure practical 

and measurable outcomes. 
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