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Abstract 

 This paper investigates the structural characterization of generating sets within the semigroup of full transformations, 

emphasizing the graph-theoretic proper- ties of their associated digraphs. Focusing on the Jn−1-class, denoted by Jn−1 

= {α ∈ Tn: | im(α)| = n − 1}, we establish necessary and sufficient conditions for a subset A ⊆ Dn−1 to be a generating 

set. It is proved that A generates Dn−1 if and only if A is a cover and the corresponding digraph ΓA is strongly 

connected. Consequently, minimal generating sets are precisely the minimal strongly connected covers of Dn−1. 

Furthermore, every generating subset induces a connected and cyclic digraph, thereby revealing intrinsic links between 

algebraic generation and graph connectivity. Illustrative examples for n = 4 and n = 5 are presented through egg-box 

diagrams and directed graphs, showing that six and ten elements, respectively, suffice to generate the semigroup. 

These values correspond to the Stirling numbers of the second kind, which determine the number of partitions required 

to cover the associated transformation graphs in Singn. The results provide a deeper understanding of the 

combinatorial and graph-theoretic structure of generating systems in finite full transformation semigroups 

    

Keywords:Transformation, Semigroups, generating sets, Strongly connected, Digraphs.  

 

 

Introduction 

The study of generating sets in transformation semigroups has long been a central subject in semigroup theory, 

motivated by foundational results of Howie (1978) on idempotent generation and the structure of singular 

transformations. Recent approaches have enriched these algebraic investigations by introducing graph- theoretic 

viewpoints: associating digraphs to generating sets and exploring how connectivity properties of these graphs 

reflect algebraic generation in transformation semigroups. In” Lengths of words in transformation semigroups 

generated by di- graphs”, Cameron et al. systematically develops this connection by constructing semigroups 

from simple digraphs and analyzing word lengths in generators derived from edges. Similarly, East et al (2019) 

treat how semigroup properties, such as regularity and D-classes, correspond to the structure of the generating 

digraph. These works suggest a deeper principle: connectivity in the digraph ensures semigroup generation 

properties. At the same time, more general semigroup generation questions—such as determination of smallest 

generating sets, rank, and ubiquity—have been explored in broader contexts. For example, Jonuˇsas and 

Troscheit (2017) investigate unique irredundant generating sets, probabilistic properties, and computational rank 

problems. Additionally, studies such as Lallement et al. (1980) examine generation by idempotents and minimal 

generating sets in transformation semigroups. Motivated by these advances, the present work introduces a 

digraph-based equivalence for generation in the class Dn−1, showing that for A ⊆ Dn−1, A is a generating 

set if and only if it is a cover of Dn−1 and the corresponding digraph ΓA is strongly connected. This approach 

leverages combinatorial, graph-theoretic, and algebraic ideas to establish necessary and sufficient conditions for 

generation, connecting them to minimal generating sets and minimal strongly connected covers. We illustrate 

the theory with explicit examples for small values of n, uncovering connections to the Stirling numbers of the 

second kind. Such results deepen our understanding of transformation semigroup generation and provide tools 

for exploring ranks, minimal generation, and digraph-semigroup correspondence in other algebraic contexts. 

 

https://doi.org/10.63561/jmns.v2i4.1122
http://www.fnasjournals.com/
https://doi.org/10.63561/jmns.v2i4.1122


 

 

 
A Graph-Theoretic Characterisation of Generating Sets in Finite Full Transformation Semigroups 

 

46 Cite this article as:   
Lawal, Z., Ali, B., & Abubakar, U.I. (2025) A graph-theoretic characterisation of generating sets in finite full transformation 

semigroups. FNAS Journal of Mathematical Modeling and Numerical Simulation, 2(4), 45-50. 

https://doi.org/10.63561/jmns.v2i4.1122  

 

 

    

Preliminaries 

Throughout this manuscript, we use the symbol Σ to denote a semigroup and 

Γn = {1, 2, . . . , n} 

to represent a finite totally ordered set of size n. We record below several fundamental notions and 

conventions required later. 

A semigroup is a non-empty set Σ endowed with a binary operation (often written by 

juxtaposition) that is associative; that is, 

(xy)z = x(yz) for all x, y, z ∈ Σ. 

If Σ contains an element ϵ such that xϵ = ϵx = x for every x ∈ Σ, then Σ is called a monoid. 

An element 𝜎∈ Σ satisfying 𝜎x = x𝜎 = 𝜎 for all x ∈ Σ is termed a zero element, and in 

this case, we say that Σ is a semigroup with zero. Whenever an identity or zero is absent, one may 

adjoin such an element formally; the resulting enlarged semigroups are written Σ1 and Σ0, 

respectively. 

A non-empty subset U ⊆ Σ is called a 𝑠𝑢𝑏𝑠𝑒𝑚𝑖𝑔𝑟𝑜𝑢𝑝 if it is closed under the operation of 

Σ, i.e., 

xy ∈ U whenever x, y ∈ U. 

Let Γn = {1, 2, . . ., n}. A mapping φ : Γn → Γn is referred to as a full transformation of 

Γn. The collection of all full transformations, 

Tn = {φ : Γn → Γn}, 

forms a semigroup under composition and is known as the full transformation semi- group. More 

generally, a map ψ is called a partial transformation of Γn if 

Dom(ψ) ⊆ Γn, Im(ψ) ⊆ Γn. 

The set of all partial transformations, 

Pn = {ψ: Dom(ψ) ⊆ Γn}, 

also forms a semigroup under composition and is called the partial transformation semigroup. 

An element a ∈ Σ is said to be regular (in the sense of von Neumann) if there exists 

b ∈ Σ such that 

aba = a. 

The semigroup Σ is called regular if each of its elements is regular. A regular semigroup in which 

every element admits a unique inverse is an inverse semigroup. 

For any semigroup Σ, Green’s classical relations L, R, J, H, D are defined by 

a L b ⇐⇒ Σ1a = Σ1b, a R b ⇐⇒ aΣ1 = bΣ1, a J b ⇐⇒ Σ1aΣ1 = Σ1bΣ1, 

with 

H = L ∩ R, D = L ◦ R. 

An element e ∈ Σ is an idempotent if e2 = e. The set of idempotents of Σ is denoted by E(Σ). 

A semigroup in which all elements are idempotent is called a band. If Σ is generated by its 

idempotents, meaning ⟨E(Σ)⟩ = Σ, then Σ is termed a semi- band. 

If Σ possesses a zero-element o, an element α ∈ Σ is nilpotent if αm = o for some m ≥ 1, 

and the set of all such elements is denoted N (Σ). An element β ∈ Σ is a quasi-idempotent if 

β ≠ β2 = β4, 

namely if its square is idempotent although β itself is not. Likewise, an element δ ∈ Σ is called 

quasi-nilpotent if δk = C for some k ≥ 1, where C denotes a constant transformation. 

The rank of a semigroup Σ is the size of the smallest generating set:  

rank(Σ) = min {|A|: A ⊆ Σ, ⟨A⟩ = Σ}. 

Restricting the generating set to E(Σ), N (Σ), or the set of all Quasi-Idempotents yields the 

idempotent rank, nilpotent rank, and quasi-idempotent rank, respectively. 

A generating set G of Σ is minimal if no proper subset of G still generates Σ. Similarly, a 

family of subsets {Ai} is a minimal cover of a set X if S i Ai = X and no proper subfamily 

continue to cover X. These ideas are central to the study of ranks 

and generation in the semigroups investigated in this paper. 
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Results 

The collection of full transformations, denoted by Tn, serves as a cornerstone in examining the 

structure of finite semigroups. semigroups. Within Tn, the J -classes, particularly Jn−1 = {α ∈ Tn : 

| im(α)| = n − 1}, provide a rich setting for exploring generating systems and their combinatorial 

properties. Understanding how subsets of Dn−1 generate the semigroup reveals important relationships 

between algebraic generation and graph-theoretic connectivity. 

In this section, we introduce a digraph ΓA associated with each subset A ⊆ Dn−1, where vertices 

correspond to elements of Dn−1 and directed edges describe the action of transformations in A. This 

graph-theoretic representation provides an intuitive and rigorous means of analyzing generating behavior 

in Tn. 

The results that follow establish necessary and sufficient conditions under which a subset of Dn−1 forms 

a generating set, characterize minimal generating sets in terms of strong connectivity, and illustrate these 

findings through explicit constructions for small values of n. The main theorems thus bridge semigroup 

generation with fundamental concepts from digraph theory and combinatorics. 

Lemma 3.1. Let A ⊆ Dn−1. If A is a generating set, then ΓA is connected (as an undirected graph). 

Proof. A generates Dn−1 ⇒ for all u, v ∈ Dn−1, there exists a directed path u → v in ΓA. Ignoring 

edge direction ⇒ ΓA is connected. 

Corollary 3.2. If A ⊆ Dn−1 is a generating set, then ΓA contains at least one directed cycle. 

Proof. ΓA strongly connected ⇒ ∃ path v → v for some v ∈ Dn−1 ⇒ directed cycle exists. 

Lemma 3.3. Let A ⊆ Dn−1. If A is a cover but ΓA is not strongly connected, then A 

is not generating. 

Proof. ¬strong connectivity ⇒ ∃ u, v ∈ Dn−1 such that no path u → v in ΓA ⇒ A does not generate 

Dn−1. 

Corollary 3.4. Minimal generating sets of Dn−1 ⇐⇒ minimal strongly connected covers of Dn−1. 

Proof. A minimal generating set ⇒ A is a cover and ΓA is strongly connected with minimal 

cardinality. 

Theorem 3.5. Let A ⊆ Dn−1. Then A is a generating set if and only if A is a cover of Dn−1 and 

the associated digraph ΓA is strongly connected. 

Proof. Assume first that A is a generating set for Dn−1. Then for each x ∈ Dn−1, some map a ∈ A 

satisfies x ∈ dom(a). Thus, A forms a cover of Dn−1. Furthermore, since A generates the entire 

structure, for any p, q ∈ Dn−1 there must exist a directed path in ΓA linking p to q; hence the digraph 

ΓA is strongly connected. 

For the converse direction, suppose that A covers Dn−1 and that ΓA is strongly connected. Because 

each element of Dn−1 lies in the domain of at least one member of A, and because any two vertices p, 

q ∈ Dn−1 can be joined by a directed path in ΓA, every point of Dn−1 can be reached via compositions of 

elements from A. Consequently, the action of A generates the entire semigroup Dn−1. 

To exemplify the process. Let n = 4 and consider the Jn−1-class i.e 

J3 = {α ∈ T4 : |imα| = 3} Thus 

J3 contains nCr- L-classes and Stirling number 

S (n, r) = S(n − 1, r − 1) + rs(n − 1, r) −R-classes 

and the number of H-classes in 

J3 = nCr ·S (n, r) = S(n − 1, r − 1) + rs(n − 1, r) = 24. 

Let the kernel classes be 

A1= |3, 4|, A2=|2, 4|, A3=|1, 4|, A4=|2, 3|, A5=|1, 3| and A6=|1, 2| then the images be 

Xn \ {4}, Xn \ {3}, Xn \ {2} and Xn \ {1} 

Thus, we have the following egg-box picture for J3 
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J3(T4) Xn \ {4} Xn \ {3} Xn \ {2} Xn \ {1} 

{3, 4} ε1 ε2 α1  

{2, 4} ε3, α2  ε4  

{1, 4} ε5   ε6, α3 

{2, 3}  ε7, α4 ε8  

{1, 3}  ε9 α5 ε10 

{1, 2}   ε11 ε12, α6 

Table 1: Elements of J3(T4) categorized by images missing a single element 

 

Where: 

𝛼1 = (
1 2 3,4
1 3 4

) , 𝛼2 = (
1 24 3
2 1 3

) , 𝛼3 = (
14 2 3
2 3 4

) , 𝛼4 = (
1 23 3
1 2 4

), 

 𝛼4 = (
1 23 3
1 2 4

) , 𝛼5 = (
13 2 4
1 2 4

) , 𝛼5 = (
12 3 4
4 3 2

) 

 

 
 

 

Figure 1: Directed graph of a Transformation Semigroup For n=4 

For n=5, Jn−1 − class i.e 

J4 = {α ∈ T5 : |imα| = 4} 

 

J4(T5) Xn \ {5} Xn \ {4} Xn \ {3} Xn \ {2} Xn \ {1} 

{1, 5} α1, ε1    ε2 

{2, 5} ε3 α2 ε4   

{3, 5} ε5  α3, ε6   

{4, 5} ε7 α8  α4  

{1, 4}  ε9   α5, ε10 

{2, 4}  ε11  ε12, α6  

{3, 4}  ε13 α7, ε14   

{1, 3}  α8 ε15  ε16 

{2, 3}  α9 ε17 ε18  

{1, 2} α10   ε19 ε20 

Table 2: Elements of J4(T5) categorized by images missing a single element 
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𝑊ℎ𝑒𝑟𝑒:   𝛼1 = (
15 2 3 4
1 2 3 4

) , 𝛼2 = (
1 25 3 4
1 2 3 5

) ,  𝛼3 = (
1 2 35 4
1 2 4 5

) ,

𝛼4 = (
1 2 3 45
1 3 4 5

) ,   𝛼5  = (
14 2 3 5
2 3 4 5

) , 𝛼6 = (
14 2 3 5
1 3 4 5

) ,

𝛼7 = (
1 2 34 5
1 2 4 5

) , 𝛼8 = (
13 2 4 5
1 2 3 5

) , 𝛼9 = (
1 23 4 5
1 2 3 5

) ,

𝛼10 = (
12 3 4 5
1 2 3 4

) 

 

 

 
 

 

Figure 2: Directed graph of a Transformation Semigroup For n=5 

It is observed that for n=4, six elements are enough to generate the semigroup. Also, for n=5, 

ten elements will generate. This coincides with Stirling number of the second kind will give the 

number of elements required to cover the graph in Singn 

 

S(n, r) = S(n − 1, r − 1) + rs(n − 1, r) S(n, 

1) = S(n, n) = 1 

      

Conclusion 

In this study, we have established a graph-theoretic framework for analyzing generating sets in the 

semigroup of full transformations. By associating each subset, A ⊆ Dn−1 with a digraph ΓA, we 

demonstrated that the algebraic property of generation is equivalent to the structural condition that A 

forms a cover of Dn−1 and that ΓA is strongly connected. This equivalence provides a powerful link 

between semigroup theory and digraph connectivity, thereby offering a unified approach for 

characterizing generating systems. Furthermore, it was shown that minimal generating sets correspond 

precisely to minimal strongly connected covers, and that every generating subset induces a connected 

and cyclic digraph. Illustrative examples for n = 4 and n = 5 revealed that six and ten elements, 

respectively, suffice to generate the semigroup—values that coincide with the Stirling numbers of the 
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second kind. This observation highlights a deep combinatorial connection between the structure of 

transformation semigroups and classical enumeration theory. The results obtained contribute to the 

broader understanding of how algebraic generation, combinatorial coverings, and graph connectivity 

interplay within finite full transformation semigroups. Future investigations may extend these ideas to 

other transformation classes or explore analogous graph-theoretic characterizations in partial and Order-

Preserving transformation semigroups. 
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