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Abstract 

In this paper, the fourth order Compact Finite Difference – Boole’s Method was used to solve linear Integro-

differential equations of first and second orders respectively. The discretized unknown function in each case formed 

a system of linear algebraic equations and was subsequently solved using MATLAB package. The approximate 

solutions arrived at  from the combined method have been compared with exact and other existing solutions of the 

given numerical problems which show that the proposed method is very e asy, powerful and efficient in determining 

approximate solutions to linear integro-differential equations.  
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Introduction 

In sciences and engineering, different physical systems are modeled using integro-differential equations. Usually, it 

is difficult to obtain analytical solution to Integro-differential equations as such it is necessary to derive a scheme that 

can provide an approximate solution that is reliable. Different methods have been derived for this purpose but some 

have their limitations ranging from unrealistic assumptions, linearization, low convergent to divergent results. Among 

these methods include Chebyshev wavelets method, Adomian decomposition method, wavelet-Galerkin method, CAS 

wavelets method, sine-cosine wavelets, homotophy perturbation method, differential transform method and new 

homotophy Analysis method. Linear Integro-Differential Equation (LIDE) is an important branch of modern 

mathematics and arises often in many applied areas which include engineering, mechanics, physics, chemistry, 

astronomy, biology, economics, potential theory and electrostatics (Kurt & Sezer,2008). A variational iteration method 

and trapezoidal rule by Saadati et al (2008) was used for solving LIDEs. Heris (2012) applied modified Laplace 

Adomian decomposition method. Bashir and Sirajo (2020), used finite difference Simpson’s approach on Fredholm 

Integro-differential equation and proved the error estimation of the method. In the work of Aruchunan and Sulaiman 

(2011),  a numerical solution of first order linear Fredholm integro-differential equations was obtained using 

conjugate gradient method. A reliable algorithm with application was presented by Al-Towaiq and Kasasbeh (2017). 

 

Compact finite Difference Methods to approximate solutions to such problems, especially in the context of the 

ordinary and partial differential equations has attracted interest. 

Comparatively, there has been less progress made in determining high-order Compact Finite Difference Method in 

terms of integro-differential equations (IDE). Therefore, considerable works have been focusing on developing 

efficient high-order numerical schemes for approximating solutions of integro-differential equations. This work will 

examine the first order integro-differential equation: 

𝑓′ = 𝑔(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡

𝑎1

𝑎0

 

Noting that, 𝑎0, 𝑎1 and 𝜆 are constants, 𝑓 is unknown function while 𝑔(𝑥) and 𝐾(𝑥, 𝑡) ( the Kernel) are known 

 

https://doi.org/10.63561/jmns.v2i4.1124
http://www.fnasjournals.com/
https://doi.org/10.63561/jmns.v2i4.1124


 

A Fourth-Order Compact Finite Difference–Boole’s Method for Solving Linear Integro-Differential Equations 

62 Cite this article as:   

Gbanor, S.T. (2025). A fourth-order compact finite difference–boole’s method for solving linear integro-differential equations. 

FNAS Journal of Mathematical Modeling and Numerical Simulation, 2(4), 61-68. 
https://doi.org/10.63561/jmns.v2i4.1124 

 

functions . 

And the second order equation of the form: 

  

𝑓′′ = 𝑔(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡

𝑎1

𝑎0

 

With dirichlet boundary conditions 𝑓(𝑎0) = 𝛼 and 𝑓(𝑎1) = 𝛽. 

Recently, Scientists have developed interest in applying higher-order numerical methods for solving ordinary 

differential equations (ODEs) and partial differential equations (PDEs). One scheme that has received attention is the 

application of  the compact finite difference, which can achieve a high level of accuracy with a relatively few grid 

points. This scheme can result to more efficient and accurate solutions for ODEs and PDEs. 

Several numerical solutions of the integro- differential equations have been studied by compact finite difference 

methods including Zhao  and Coreless (2006) and Solimam et al (2012). A good number of researchers have 

developed numerical methods for integral and integro-differential equations recently as can be seen in Mirzaee and 

Hoseini (2017), Elahi Z. et al (2018), Sahu and Saha  (2015), Chen and Zhang (2011), Taiwo  and Jimoh (2014), 

Darania and Ebadian, (2007), Atkinson (1997), Zhao (2007), Bashir and Sirajo (2021), Aziz and Ain (2020) and 

Sameeh and  Elsaid (2016).       . 

This work will focus on the derivation of the combined fourth-order compact finite difference- Boole’s scheme for 

solving first order and second order integro-differential equations that are applied in different fields of human 

endeavour. The specific objectives are to efficiently handle the integral kernels and solve first and second order LIDEs 

using the derived Method and check how accuracy can be achieved.  

The work is arranged thus: The first section considers the derivation of the scheme in detail. Two numerical 

experiments have be treated in the second section, the third section discusses the results obtained and conclusion is 

presented in the last section. 

  

Derivation of the Scheme 

To solve an integro-differential equation of the form 

𝑓′ = 𝑔(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡

𝑎1

𝑎0

 

With the  initial  condition 𝑓(𝑎0) = 𝛼 , we have to make use of 𝑁 × 𝑁 matrix. 

From the standard Compact Finite Difference formula of the first derivative, if 𝑖 = 2,… , (𝑁 − 1), for interior points, 

since the boundary conditions are known, we need to adjust compact finite difference formula 𝑖 = 1; 
ℎ

3
(−17𝑓1

′ − 14𝑓2
′ + 𝑓3

′) = 𝑓0 + 8𝑓1 − 9𝑓2 

And when 𝑖 = 𝑁, we can only use two points at the right hand side 
ℎ

3
(
1

8
𝑓𝑁−3
′ −

5

8
𝑓𝑁−2
′ +

19

8
𝑓𝑁−1
′ +

9

8
𝑓𝑁
′) = −𝑓𝑁−1 + 𝑓𝑁 

In matrix form we have 

𝑀1𝐹
′ = 𝐴1𝐹 + 𝐻1 

i.e  

𝐹′ = 𝑀1
−1𝐴1𝐹 + 𝑀1

−1𝐻1 

Where 

𝐴1 =

(

 
 
 
     

8 − 9 0 0  . . . 0 0 0 0
−1 0 1 0      . . . 0 0 0 0

    0 − 1 0 1 . . . . . . 0 0 0 0                …            . . .         . ..           
       0 0 0 0      . . .    −1 0 1 0
         0 0 0 0    . . .     0 − 1 0 1
         0 0  0  0 . . .     0  0 − 1 1 )

 
 
 

(𝑁)(𝑁)
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𝐻1 =

(

 
 
 
 

𝑓0
0
.
.
.
0
0)

 
 
 
 

(𝑁)(𝑁)

 

 

𝐹 =

(

 
 
 
 

𝑓1
𝑓2
.
.
.
0
𝑓𝑛)

 
 
 
 

(𝑁)(𝑁)

 

 

 

𝐹′ =

(

 
 
 
 

𝑓1
′

𝑓2
′

.

.

.
𝑓𝑁−1
′

𝑓𝑁
′ )

 
 
 
 

(𝑁)(𝑁)

 

 

𝑀1 =
ℎ

3

(

 
 
 
 
 

     

−17 − 4 1 0  0 . . . 0 0 0 0
  1    4   1   0    0 . . . 0 0 0 0
    0     1    4   1    0 . . . 0 0 0 0

                           1    4   1     . . .     0 0 0 0           
                         0  0  0  0    . . .       1    4   1   0 
                           0 0 0 0    . . .         0    1    4   1  

                            0 0  0  0   . . .  0
1

8
  
−5

8
 
19

8
    
9

8
 )

 
 
 
 
 

(𝑁)(𝑁)

 

The integral part in the equation  will be treated with the quadrature method-the composite Boole’s rule represented 

as follows:  

∫𝑓(𝑥)𝑑𝑥 =
2ℎ

45

𝑏

𝑎

[7(𝑓(𝑥0) + 𝑓(𝑥𝑛)) + 32( ∑ 𝑓(𝑥𝑖)

𝑖∈1,3,5,...,𝑛−1

) + 12( ∑ 𝑓(𝑥𝑖)) + 14( ∑ 𝑓(𝑥𝑖))

𝑖∈4,8,12,...,𝑛−4𝑖∈2,6,10,...,𝑛−2

] 

Therefore, using the above rule 

∫𝑘𝑖𝑗𝑓(𝑡)𝑑𝑡 =
2ℎ

45

𝑏

𝑎

[7(𝑘𝑖𝑗𝑓(𝑡0) + 𝑘𝑖𝑗𝑓(𝑡𝑛)) + 32( ∑ 𝑓(𝑡𝑗)

𝑗∈1,3,5,...,𝑛−1

𝑘𝑖𝑗)

+ 12( ∑ 𝑘𝑖𝑗𝑓(𝑡𝑗)) + 14( ∑ 𝑓(𝑡𝑗))

𝑗∈4,8,12,...,𝑛−4𝑗∈2,6,10,...,𝑛−2

] 

Letting  𝑓(𝑡𝑗) = 𝑓𝑗 then we have  

∫𝑘𝑖𝑗𝑓(𝑡)𝑑𝑡 =
2ℎ

45

𝑏

𝑎

[7(𝑘𝑖0𝑓0 + 𝑘𝑖𝑛𝑓𝑛) + 32( ∑ 𝑘𝑖𝑗𝑓𝑗
𝑗∈1,3,5,...,𝑛−1

) + 12( ∑ 𝑘𝑖𝑗𝑓𝑗) + 14( ∑ 𝑘𝑖𝑗𝑓𝑗
𝑗∈4,8,12,...,𝑛−4𝑗∈2,6,10,...,𝑛−2

] 

 

Formulation with (𝑵 × 𝑵)Matrix 
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 For (𝑁 × 𝑁) , 𝑓(0) = 0, We have 

 𝐴1𝑀1
−1𝐹 = 𝑔(𝑥) +

2ℎ𝜆

45
[7(𝑘𝑖0𝑓0 + 𝑘𝑖𝑛𝑓𝑛) + 32(∑ 𝑘𝑖𝑗𝑓𝑗𝑗∈1,3,5,...,𝑛−1 ) + 12(∑ 𝑘𝑖𝑗𝑓𝑗) +𝑗∈2,6,10,...,𝑛−2

14(∑ 𝑘𝑖𝑗𝑓𝑗𝑗∈4,8,12,...,𝑛−4 ] 

Let 𝛾 =
2ℎ𝜆

45
 

Expressing the right hand side in matrix form then for fourth order we have  

𝐴1𝑀1
−1𝐹 = 𝑔(𝑥) + 𝛾𝐵𝐹 

𝐴1𝑀1
−1𝐹 − 𝛾𝐵𝐹 = 𝑔(𝑥) 

𝐹 = (𝐴1𝑀1
−1 − 𝛾𝐵)−1 ∗ 𝑔(𝑥) 

 

To solve an integro-differential equation of the form 

𝑓′′ = 𝑔(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡

𝑎1

𝑎0

 

With  the boundary conditions  metioned above, it will be more convenient to make use of (𝑁 − 1) × (𝑁 −
1) matrix. 

Formulation with (𝑵 − 𝟏)(𝑵 − 𝟏) Matrix 

 Given the range 𝑎0 ≤ 𝑥 ≤ 𝑎1 with N subintervals of space step size ℎ =
𝑎1−𝑎0

𝑁
. Let 𝑥𝑖   be the points of subdivision, 

noting that  𝑥𝑖 = 𝑎0 + 𝑖ℎ (0 ≤ 𝑖 ≤ 𝑁) so that 𝑥0 = 𝑎0 and 𝑥𝑁 = 𝑎1. In this case,  𝑓𝑖 is considered the approximate 

solution at 𝑥𝑖.  

The second-order derivative is evaluated by the compact difference formula.  The derivative of 𝑓 is obtained by 

solving a diagonal dominance matrix system. For the  second derivatives of 𝑓(𝑥)  we have:  

10𝑓𝑖
′′ + (𝑓𝑖−1

′′ + 𝑓𝑖+1
′′ ) =

3

ℎ2
(𝑓𝑖−1 − 2𝑓𝑖 + 𝑓𝑖+1)     (𝑖 = 1,2, 3, . . . , 𝑁 − 1) 

For 𝑖 = 1, we use  

14𝑓1
′′ − 5𝑓2

′′ + 4𝑓3
′′ − 𝑓4

′′ =
3

ℎ2
(𝑓0 − 2𝑓1 + 𝑓2)      

And when 𝑖 = 𝑁 − 1, the formula is  

−𝑓𝑁−4
′′ + 4𝑓𝑁−3

′′ − 5𝑓𝑁−2
′′ +14𝑓𝑁−1

′′ =
3

ℎ2
(𝑓𝑁−2 − 2𝑓𝑁−1 + 𝑓𝑁)   

Both of the formulae are (ℎ4) . The matrix form is   

𝐴2𝐹 = 𝑀2𝐹
′′ −𝐻2  

Where 

𝐴2 =
12

ℎ2

(

 
 
 
     

−2  1 0 0  . . . 0 0 0 0
1 − 2 1 0 . . . 0 0 0 0

    0 1 − 2 1 . . . . . . 0 0 0 0                …            . . .         . ..           
       0 0 0 0      . . .     0 1 − 2 1
         0 0 0 0    . . .     0  0 − 2 1
         0 0  0  0 . . .     0  0  1 − 2 )

 
 
 

(𝑁−1)(𝑁−1)

 

𝐻2 =

(

 
 
 
 

𝑢0
0
.
.
.
0
𝑢𝑛)

 
 
 
 

(𝑁−1)(𝑁−1)

 

𝑀2 =

(

 
 
 
 

     

14 − 5 4 − 1  0 . . . 0 0 0 0
  1    10   1   0    0 . . . 0 0 0 0
    0     1    10   1    0 . . . 0 0 0 0

                           1    10   1     . . .     0 0 0 0           
                         0  0  0  0    . . .       1    10   1   0 
                           0 0 0 0    . . .         0    1    10   1  
                            0 0  0  0   . . .  0 − 1  4 − 5  14   )

 
 
 
 

(𝑁−1)(𝑁−1)
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For (𝑁 − 1)(𝑁 − 1), we have 

 (𝐴2𝐹 + 𝐻2)𝑀2
−1 = 𝑔(𝑥) +

2ℎ𝜆

45
[7(𝑘𝑖0𝑓0 + 𝑘𝑖𝑛𝑓(𝑡𝑛)) + 32(∑ 𝑘𝑖𝑗𝑓𝑗𝑗∈1,3,5,...,𝑛−1 ) + 12(∑ 𝑘𝑖𝑗𝑓𝑗) +𝑗∈2,6,10,...,𝑛−2

14(∑ 𝑘𝑖𝑗𝑓𝑗𝑗∈4,8,12,...,𝑛−4 ] 

Let 𝛾 =
2ℎ𝜆

45
 

Expressing the right hand side in matrix form then for fourth order using second derivative we have  

𝐴2𝑀2
−1𝐹 +𝑀2

−1𝐻2 = 𝑔(𝑥) + 𝛾𝐵𝐹 

𝐴2𝑀2
−1𝐹 +𝑀2

−1𝐻2 − 𝛾𝐵𝐹 = 𝑔(𝑥) 

𝐹 = (𝐴2𝑀2
−1 − 𝛾𝐵)−1 ∗ (𝑔(𝑥) − 𝑀2

−1𝐻2) 
Note that when 𝜆 = 0, 

𝑓′′ = 𝑔(𝑥) 
It implies that 

𝐴2𝑀2
−1𝐹 +𝑀2

−1𝐹𝐻2 = 𝑔(𝑥) 

𝐴2𝑀2
−1𝐹 +𝑀2

−1𝐻2 = 𝑔(𝑥) 

𝐹 = (𝐴2𝑀2
−1)−1 ∗ (𝑔(𝑥) − 𝑀2

−1𝐻2) 
 

 Numerical Experiments 

To prove the validity  of the proposed method, two examples have been considered, one on the first order and the 

other on the second order integro differential equations. The results obtained are analyzed using the error formula. 

The proposed method has been compared with the methods in  [4] and [15] to show its higher accuracy. 

Example 1    𝑓′(𝑥) − ∫ 𝑥𝑓(𝑡)𝑑𝑡 = 𝑥𝑒𝑥 + 𝑒𝑥
1

0
− 𝑥,        𝑓(0) = 0 

𝑓(𝑥) = 𝑥𝑒𝑥 

 

Table 1: The Approximate Solutions and the Exact Solution   

  𝒙        Exact  FDSM(Garba B. D., & 

Bichi, S. L. (2020) 

CFDM(Proposed method) 

0.1      0.11052 0.10884    0.11053 

0.2      0.24428 0.24302    0.24447 

0.3      0.40496 0.40174    0.40544 

0.4      0.59673 0.59364    0.59762 

0.5      0.82436 0.81899    0.82577 

0.6      1.09327 1.08768    1.09532 

0.7      1.40963 1.40138    1.41242 

0.8      1.78043 1.77155    1.78411 

0.9      2.21364 2.20166    2.21830 

1.0      2.71828 2.70517    2.72404 
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Table 2: The errors of Differential Transform Method, FDSM and the proposed Method. 

𝒙 FDSM Error 

(Garba, B. D., & Bichi, S. L. 

,2020).  

  CFDM Error (Proposed 

method) 

DTM Error (Darania, P., & 

Ebadian, A., 2007) 

0.1 1.6806× 10−3    1.63674× 10−5 1.00118× 10−2 

0.2 1.2580× 10−3   1.94219× 10−4 2.78651× 10−2 

0.3 3.2146× 10−3    4.80291× 10−4 5.08731× 10−2 

0.4 3.0893× 10−3    8.88369× 10−4 7.55356× 10−2 

0.5 5.3670× 10−3    1.40765× 10−3 9.71889× 10−2 

0.6 5.5896× 10−3    2.04875× 10−3 1.09552× 10−1 

0.7 8.2456× 10−3    2.80021× 10−3 1.041332× 10−1 

0.8 8.8806× 10−3    3.67342× 10−3 6.94513× 10−2 

0.9 1.1987× 10−2    4.65693× 10−3 1.00034× 10−2 

1.0 1.3116× 10−2    5.76220× 10−3 1.55148× 10−1 

 

Example 2 .  𝑓′′(𝑥) = (𝑥 − 2) + 60∫ (𝑥 − 𝑡)𝑓(𝑡)𝑑𝑡     
1

0
0 ≤ 𝑥 ≤ 1. 

𝑓(0) = 0   𝑓(1) = 0     𝑓(𝑥) = 𝑥(𝑥 − 1)2  

 

Table 3: The Exact and Approximation solutions of Example 2. 

  𝒙        Exact u(x) CFDM     Error 

0.1 0.081000000000000 0.081043223052295 4.322305× 10−5 

 

0.2 

   0.128000000000000    0.128068303094984     

6.830309× 10−5 

 

0.3 

   0.147000000000000    0.147078441835646    

 7.844184× 10−5 

 

0.4 

   0.144000000000000    0.144076840981857     

7.684098× 10−5 

 

0.5 

   0.125000000000000    0.125066702241195     

6.670224× 10−5 
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0.6 

   0.096000000000000    0.096051227321238     

5.122732× 10−5 

 

0.7 

   0.063000000000000    0.063033617929562    

 3.361793× 10−5 

 

0.8 

   0.032000000000000    0.032017075773746    

 1.707577× 10−5 

 

0.9 

 

   0.009000000000000    0.009004802561366   

 4.802561× 10−6 

    

 

 

Discussion of Results 

Table 1 above shows the Exact , CFDM and FDSM  solutions of Example 1. 

In table 2, the absolute errors obtained from the proposed method, FDSM and DTM are compared and it is observed 

that the CFDM has a better accuracy than any of the existing methods mentioned. 

In the table 3 above, it is also observed that the approximate solution obtained by our method is in close agreement 

with that of the exact solution of the problem in Example 2. The absolute error obtained indicated that our method can 

give good approximation to linear integro-differential equations. 

 

Conclusion 

The fourth order Compact Finite Difference Scheme has been combined with the Boole’s rule to solve linear Integro-

differential equations. Two numerical experiments were considered to illustrate the procedure. It was observed that 

the approximate solutions obtained were in close agreement with those of the exact solutions which can be seen from 

the tables. MATLAB package was used to compute our exact and approximate solutions. The accuracy of the method 

was measured using the errors of the first order with FDSM in Garba and Bichi (2020). and the DTM in Darania and  

Ebadian (2007). The results obtained show that the method is highly accurate, remarkably effective and is very easy.  

It may also be concluded that the Method is very powerful and efficient in finding the analytical solutions of linear 

Integro-differential equations of first and second orders.  
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