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Abstract

In this paper, the fourth order Compact Finite Difference — Boole’s Method was used to solve linear Integro-
differential equations of first and second orders respectively. The discretized unknown function in each case formed
a system of linear algebraic equations and was subsequently solved using MATLAB package. The approximate
solutions arrived at from the combined method have been compared with exact and other existing solutions of the
given numerical problems which show that the proposed method is very e asy, powerful and efficient in determining
approximate solutions to linear integro-differential equations.
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Introduction

In sciences and engineering, different physical systems are modeled using integro-differential equations. Usually, it
is difficult to obtain analytical solution to Integro-differential equations as such it is necessary to derive a scheme that
can provide an approximate solution that is reliable. Different methods have been derived for this purpose but some
have their limitations ranging from unrealistic assumptions, linearization, low convergent to divergent results. Among
these methods include Chebyshev wavelets method, Adomian decomposition method, wavelet-Galerkin method, CAS
wavelets method, sine-cosine wavelets, homotophy perturbation method, differential transform method and new
homotophy Analysis method. Linear Integro-Differential Equation (LIDE) is an important branch of modern
mathematics and arises often in many applied areas which include engineering, mechanics, physics, chemistry,
astronomy, biology, economics, potential theory and electrostatics (Kurt & Sezer,2008). A variational iteration method
and trapezoidal rule by Saadati et al (2008) was used for solving LIDEs. Heris (2012) applied modified Laplace
Adomian decomposition method. Bashir and Sirajo (2020), used finite difference Simpson’s approach on Fredholm
Integro-differential equation and proved the error estimation of the method. In the work of Aruchunan and Sulaiman
(2011), a numerical solution of first order linear Fredholm integro-differential equations was obtained using
conjugate gradient method. A reliable algorithm with application was presented by Al-Towaiq and Kasasbeh (2017).

Compact finite Difference Methods to approximate solutions to such problems, especially in the context of the
ordinary and partial differential equations has attracted interest.

Comparatively, there has been less progress made in determining high-order Compact Finite Difference Method in
terms of integro-differential equations (IDE). Therefore, considerable works have been focusing on developing
efficient high-order numerical schemes for approximating solutions of integro-differential equations. This work will
examine the first order integro-differential equation:

=g +2 f K(x, Df (O)de

0
Noting that, a,, a; and A are constants, f is unknown function while g(x) and K(x,t) ( the Kernel) are known
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functions .
And the second order equation of the form:

= g(x) + A f K(x, t)f (t)dt

0
With dirichlet boundary conditions f(a,) = a and f(a;) = B.
Recently, Scientists have developed interest in applying higher-order numerical methods for solving ordinary
differential equations (ODESs) and partial differential equations (PDESs). One scheme that has received attention is the
application of the compact finite difference, which can achieve a high level of accuracy with a relatively few grid
points. This scheme can result to more efficient and accurate solutions for ODEs and PDEs.
Several numerical solutions of the integro- differential equations have been studied by compact finite difference
methods including Zhao and Coreless (2006) and Solimam et al (2012). A good number of researchers have
developed numerical methods for integral and integro-differential equations recently as can be seen in Mirzaee and
Hoseini (2017), Elahi Z. et al (2018), Sahu and Saha (2015), Chen and Zhang (2011), Taiwo and Jimoh (2014),
Darania and Ebadian, (2007), Atkinson (1997), Zhao (2007), Bashir and Sirajo (2021), Aziz and Ain (2020) and
Sameeh and Elsaid (2016).
This work will focus on the derivation of the combined fourth-order compact finite difference- Boole’s scheme for
solving first order and second order integro-differential equations that are applied in different fields of human
endeavour. The specific objectives are to efficiently handle the integral kernels and solve first and second order LIDEs
using the derived Method and check how accuracy can be achieved.
The work is arranged thus: The first section considers the derivation of the scheme in detail. Two numerical
experiments have be treated in the second section, the third section discusses the results obtained and conclusion is
presented in the last section.

Derivation of the Scheme
To solve an integro-differential equation of the form

ff=gx)+1 f K(x, t)f(t)dt

With the initial condition f(a,) = a , we have to make use of N X N matrix.
From the standard Compact Finite Difference formula of the first derivative, if i = 2, ..., (N — 1), for interior points,
since the boundary conditions are known, we need to adjust compact finite difference formula i = 1;
h
3 (F17H = 14f + f5) = fo + 8f1 = 9f;
And when i = N, we can only use two points at the right hand side
h( | 5, 19 , 9,
§<§f1v—3 - ng—z + ng—1 + ng) =—fv-1+fn
In matrix form we have
M]_F, = A].F + Hl

i.e
F' = M{'A,F + M{'H,
Where
8 -900 ... 0000
-1010 ... 0000
0—-101... ... 000O
A =
0000 .. —-1010
0000 ... 0—-101

0000... 00—-11 7
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The integral part in the equation will be treated with the quadrature method-the composite Boole’s rule represented
as follows:

b
2h
[reaax =570 + e +32C Y fad 20 DT fa) e . f(xi))]
a i€1,3,5,.,n—1 i€2,6,10,..,n—2 i€4,8,12,.,n—4
Therefore, using the above rule
b

f ke FOde = 20|70k f ) + kf ) +32C Y. £(5)ky)
ij - 45 ij 0 ij n ] 5]

a J€1,3,5,.,n—-1

120 ) kyfED+1eC Y fH)
j€2,6,10,..n—2 j€4,8,12,..n—4

Letting f(t;) = f; then we have
b

2h
[ uf@de =22 |70k + ki) #32C Y k) 4120 Y k)10 Y kyf

a j€1,3,5,..,n—1 j€2,6,10,..,n—2 j€4,8,12,.,n—4

Formulation with (N x N)Matrix
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For (N X N) , f(0) = 0, We have
AM,7F = g(x) + 22
14‘(2}64,8,12,...,11—4 kl}f]]

Letyz%

Expressing the right hand side in matrix form then for fourth order we have
A;M,7'F = g(x) + yBF
A1M1_1F —yBF = g(x)
F= (1411\/11_1 —¥B)™' * g(x)

To solve an integro-differential equation of the form
f"=gx+2 f K(x,t)f(t)dt

With the boundary conditions metioned above, it WI|| be more convenient to make use of (N —1) x (N —
1) matrix.
Formulation with (N — 1)(N — 1) Matrix
Given the range a, < x < a; with N subintervals of space step size h = alN;a" Letx; be the points of subdivision,

notingthat x; = ay + ih (0 <i < N) sothat x, = a, and xy = a,. Inthiscase, f; isconsidered the approximate
solution at x;.
The second-order derivative is evaluated by the compact difference formula. The derivative of f is obtained by
solving a diagonal dominance matrix system. For the second derivatives of f(x) we have:

n n n 3 .
10fl + (fi—l +fi+1 = h_z(fi—l - Zfl +fi+1) (l = 1'2'3'---1N - 1)
For i = 1, we use

n n n n 3
14fi" =5 +4f3' = fu' =7 (fo = 2fi + f2)
And when i = N — 1, the formula is

3
o+ 4fy_3 = Sfyla 14l = 5 (Fv—2 = 2fn-1 + fiv)

Both of the formulae are (h*) . The matrix form is
AzF = MzF” - HZ

Where
—-2100 ... 0000
1-210 ... 0000
12 01—21... ... 0000
A2=ﬁ
0000 ... 01—-21
0000 ... 00-21
0000... 001-2 7 y_iyweny
Up
0
H, =
0
Un/ (N-1)(N-1)
14-54-10 ... 0000
1 10 1 0 0 ... 0000
0 1 101 0 ... 0000
M, = 1101 ... 0000
0000 ... 1 10 1 0
0000 ... 01 10 1

0000 ...0—-14-514 / _yyw-1
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For (N — 1)(N — 1), we have

.....

14(X jeasaz, -4 kijfj]
2hA
Lety = T

Expressing the right hand side in matrix form then for fourth order using second derivative we have
A,M,"'F + M, 'H, = g(x) + yBF
A,M,"*F + M,”*H, — yBF = g(x)
F= (AzMz_1 —¥B) ' x (g(x) - M2_1H2)
Note that when 4 = 0,
fr=90
It implies that
A,M,"'F + M, 'FH, = g(x)
A M, 7'F + My H, = g (x)
F = (A;M;™ )7 (g(x) — My Hy)

Numerical Experiments
To prove the validity of the proposed method, two examples have been considered, one on the first order and the
other on the second order integro differential equations. The results obtained are analyzed using the error formula.
The proposed method has been compared with the methods in  [4] and [15] to show its higher accuracy.

Examplel  f'(x) — fol xf(t)dt =xe*+e*—x, f(0)=0

f(x) = xe*
Table 1: The Approximate Solutions and the Exact Solution
x Exact FDSM(Garba B. D., & CFDM(Proposed method)
Bichi, S. L. (2020)

0.1 0.11052 0.10884 0.11053
0.2 0.24428 0.24302 0.24447
0.3 0.40496 0.40174 0.40544
0.4 0.59673 0.59364 0.59762
0.5 0.82436 0.81899 0.82577
0.6 1.09327 1.08768 1.09532
0.7 1.40963 1.40138 1.41242
0.8 1.78043 1.77155 1.78411
0.9 2.21364 2.20166 2.21830
1.0 2.71828 2.70517 2.72404
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Table 2: The errors of Differential Transform Method, FDSM and the proposed Method.

x FDSM Error CFDM Error (Proposed DTM Error (Darania, P., &

(Garba, B. D., & Bichi, S. L. method) Ebadian, A., 2007)
,2020).

0.1 1.6806x 1073 1.63674x 107> 1.00118x 1072

0.2 1.2580% 1073 1.94219% 10™* 2.78651x 1072

0.3 3.2146x 1073 4.80291x 10~* 5.08731x 1072

0.4 3.0893x 1073 8.88369% 10™* 7.55356% 1072

0.5 5.3670x 1073 1.40765x 1073 9.71889% 1072

0.6 5.5896x 1073 2.04875% 1073 1.09552x 107!

0.7 8.2456x 1073 2.80021x 1073 1.041332x 107!

0.8 8.8806x 1073 3.67342x 1073 6.94513%x 1072

0.9 1.1987x 1072 4.65693%x 1073 1.00034x 1072

1.0 1.3116x 1072 5.76220x 1073 1.55148x 107!

Example2. f"(x) = (x—2)+60 [ (x—t)f()dt 0<x<1.
fO)=0 f(1)=0 f(x)=x(x—1)>*

Table 3: The Exact and Approximation solutions of Example 2.

x Exact u(x) CFDM Error

0.1 0.081000000000000 0.081043223052295 4.322305x% 107>
0.128000000000000 0.128068303094984

0.2 6.830309% 10~°
0.147000000000000 0.147078441835646

0.3 7.844184% 107°
0.144000000000000 0.144076840981857

0.4 7.684098% 10~°
0.125000000000000 0.125066702241195

0.5 6.670224x 107°
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0.096000000000000 0.096051227321238

0.6 5.122732x 107°
0.063000000000000 0.063033617929562

0.7 3.361793x 10~°
0.032000000000000 0.032017075773746

0.8 1.707577%x 1075
0.009000000000000 0.009004802561366

0.9 4.802561x 107°

Discussion of Results

Table 1 above shows the Exact, CFDM and FDSM solutions of Example 1.

In table 2, the absolute errors obtained from the proposed method, FDSM and DTM are compared and it is observed
that the CFDM has a better accuracy than any of the existing methods mentioned.

In the table 3 above, it is also observed that the approximate solution obtained by our method is in close agreement
with that of the exact solution of the problem in Example 2. The absolute error obtained indicated that our method can
give good approximation to linear integro-differential equations.

Conclusion

The fourth order Compact Finite Difference Scheme has been combined with the Boole’s rule to solve linear Integro-
differential equations. Two numerical experiments were considered to illustrate the procedure. It was observed that
the approximate solutions obtained were in close agreement with those of the exact solutions which can be seen from
the tables. MATLAB package was used to compute our exact and approximate solutions. The accuracy of the method
was measured using the errors of the first order with FDSM in Garba and Bichi (2020). and the DTM in Darania and
Ebadian (2007). The results obtained show that the method is highly accurate, remarkably effective and is very easy.
It may also be concluded that the Method is very powerful and efficient in finding the analytical solutions of linear
Integro-differential equations of first and second orders.
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