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Abstract

Typhoid fever and malaria are two serious infectious diseases that are common in sub-Saharan Africa, and co-infection
poses a serious threat to public health. Designing successful control measures requires an understanding of the
dynamics of these illnesses. We created a deterministic compartmental model that divided the human population into
seven groups: susceptible people, typhoid-only infected people, malaria-only infected people, co-infected people,
recovered people, susceptible mosquitoes, and infected mosquitoes. We defined parameters for the global stability of
the disease-free equilibria and determined the fundamental reproduction numbers for typhoid and malaria using the
next-generation matrix technique. The global stability results were validated using Lyapunov functions and LaSalle's
invariance principle. When both fundamental reproduction numbers are less than unity, the disease-free equilibrium
is asymptotically stable worldwide.Numerical simulations highlight the threshold parameters that drive co-infection
persistence and the combined impact of malaria—typhoid interventions. This study provides a theoretical basis for
controlling malaria and typhoid co-infections through integrated interventions. The analytical thresholds derived can
guide policymakers in optimizing combined control strategies in endemic regions such as Nigeria
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Introduction

In sub-Saharan Africa and other tropical countries, typhoid fever and malaria continue to be two of the most serious
infectious diseases that affect people (WHO, 2021; Crump & Mintz, 2010). A major source of morbidity and mortality,
malaria is caused by Plasmodium parasites and is spread via the bite of infected Anopheles mosquitoes, especially in
pregnant women and children under five (Snow et al., 2005). Salmonella enterica serovar Typhi is the causative agent
of typhoid fever, a systemic bacterial infection that is mainly spread by contaminated food and water through the
fecal-oral route (Buckle et al., 2010). According to Pruss-ustum et al. (2019), both diseases flourish in settings with
low sanitation, restricted access to clean water, and inadequate healthcare infrastructure. The co-occurrence of malaria
and typhoid fever within the same population and sometimes within the same individual is increasingly recognized as
a significant public health challenge (Takem et al., 2014; Kang et al., 2020). Co-infection complicates clinical
diagnosis due to overlapping symptoms such as fever, headache, and malaise, which can lead to misdiagnosis and
inappropriate treatment (Nguyen et al., 2021). Furthermore, co-infection can exacerbate disease severity, prolong
recovery times, and increase mortality risk (Adewuyi et al., 2018). Despite these challenges, most control programs
and epidemiological studies have focused on the diseases individually, potentially underestimating the compounded
burden of co-infection (Liu et al., 2017).

Mathematical modeling provides a powerful tool for studying infectious disease dynamics, including co-infection
scenarios (Abu-Raddad et al., 2006). While numerous models have been developed for malaria and typhoid
independently, relatively few have examined their joint transmission dynamics especially in a framework that
integrates malaria’s vector-host interactions with typhoid’s human-to-human waterborne transmission (Mutua et al.,
2015). Co-infection modeling can reveal how interactions between pathogens alter transmission thresholds,
persistence conditions, and the effectiveness of combined control measures (Abah et al., 2023). In this study, we
formulated a deterministic compartmental model dividing the human population into seven epidemiological states
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alongside susceptible and infected mosquito vectors. Using the next-generation matrix method, we derived the basic
reproduction numbers for malaria and typhoid. Using Lyapunov functions and LaSalle's invariance principle, the
global stability of the endemic and disease-free equilibria was thoroughly examined (Korobeinikov, 2006). Our
results underscore the importance of integrated disease management strategies. By identifying the threshold conditions
for eradication or persistence, the model provides a framework for guiding public health interventions in high-burden
countries such as Nigeria, where malaria—typhoid co-infection is common (Okolo et al., 2023; Akinyemi et al., 2023).

Malaria and typhoid fever are endemic diseases that contribute substantially to the global burden of infectious diseases,
particularly in sub-Saharan Africa and parts of Asia (WHO, 2021). Both share overlapping geographic distributions
and risk factors, such as inadequate sanitation, unsafe water sources, and limited healthcare infrastructure factors that
often facilitate co-infection (Crump & Mintz, 2010). Reported prevalence rates for malaria—typhoid co-infection in
endemic regions range from 5% to over 20%, complicating diagnosis and management (Snow et al., 2005).
Mathematical models have been pivotal in understanding the transmission dynamics of individual infectious diseases.
For malaria, vector-host models have informed control strategies such as insecticide-treated nets and indoor residual
spraying (Buckle et al., 2010). Typhoid fever models have focused on waterborne transmission and the impact of
vaccination and sanitation improvements (Pruss-ustun et al., 2019). However, co-infection modeling remains
comparatively underexplored. The benefits of co-infection modeling are evident in studies on other disease pairings,
such as HIV—tuberculosis, which have highlighted synergistic effects on transmission and disease progression (Takem
et al., 2019). Recently, Abah et al., (2023) developed models for malaria—typhoid and other infectious diseases,
emphasizing integrated control strategies and the use of stability analysis for policymaking. The subsequent elements
are esssential parts of the mathematical modeling about the co-infection dynamics of typhoid and malaria.

Mushayabasa et al. (2014) introduces a deterministic mathematical framework for scrutinizing the dynamics
associated with malaria and typhoid co-infection.This analysis first evaluates the transmission dynamics separately
before combining the two diseases, showing that a typhoid epidemic in areas where malaria is endemic can result in
a greater number of clinically symptomatic people with dual infections than those with single infections. The model
illustrates the intricate relationships between the two diseases within the population by showing a backward
bifurcation phenomena. Mutua et al. (2015) develop novel mathematical frameworks to clarify the co-infection
dynamics of malaria and typhoid, accentuating distinctive features and interconnections between the two diseases.
The research emphasizes the critical role of typhoid carriers in co-epidemics and demonstrates that effective
simultaneous preventive measures can reduce the co-infection basic reproduction number to below unity, facilitating
disease eradication. The models highlight the imperative for extensive research to effectively manage these infectious
diseases in tropical developing countries. A mathematical model is proposed to analyze the dynamics of malaria and
typhoid co-infection, focusing on the consequences of erroneously diagnosing typhoid as malaria and subsequently
administering anti-malarial treatments. The findings reveal that such misdiagnosis significantly exacerbates the
endemicity of typhoid and intensifies malaria infections, underscoring the critical need for accurate diagnostic
methodologies as articulated by Akinyi et al. (2015). A mathematical framework addressing the dynamics of two
infectious diseases within a population experiencing co-infection scenarios is posited. It suggests that infection with
one disease increases susceptibility to another, while recovery provides partial immunity. The model utilizes a coupled
system of differential equations to investigate these dynamics, yielding insights into the interactions among the
diseases (Gutiérrez-Jara et al., 2019). A mathematical model specifically designed for the dynamics of malaria-
dysentery co-infection is also presented. It examines the interplay between malaria and dysentery in relation to
prevention strategies (Okosun, 2020). Notwithstanding, additional research is necessary to fully comprehend the
dynamics of malaria and typhoid co-infection; hence, the main goal of this research is to develop and evaluate a
mathematical model that clarifies the co-infection dynamics of malaria and typhoid fever in a human population. This
investigation aims to explore the fundamental characteristics of the developed model, which includes an evaluation of
local stability. A comprehensive analysis of the results is provided, clarifying the dynamics of malaria-typhoid
transmission.

Global stability analysis using Lyapunov functions and LaSalle’s invariance principle is a well-established approach
in epidemiological modeling, offering rigorous guarantees for the global attractivity of equilibria (Korobeinikov,
2006). These techniques have been applied successfully to vector-borne and waterborne disease models,
demonstrating their utility in deriving robust eradication conditions. In the Nigerian context, where malaria—typhoid
co-infection prevalence is high, integrating both diseases into a unified model with global stability analysis provides
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a valuable theoretical framework for designing combined interventions and optimizing limited healthcare resources
(Cheng et al., 2020).

Material and Methods

To elucidate the dynamics nature, we categorized the population of this study into seven compartments, namely:
Susceptible humans against malaria and typhoid Sy, Infected human with typhoid fever only 7, individual co-
infected with Typhoid and malaria(/ ), infected human with malaria only(Iy), recovered individual(Ry;), susceptible
mosquitoes(Sy,), infected mosquitoes(ly;). Figurel shows the schematic representation of the malaria and typhoid
co-infection model

Figure 1: Malaria and Typoid co-infection model

Model Equation

Bt = BrSule — BurSule = BuSulu — Sy + R, <1>
(LI—tT=ﬂTSH|T—aTIT—7T|T—(ﬂH+5T)|T @
d(;—tC:ﬁMTSch"'aTlT"'aMlHM —acle —(uy +6,)l, ®)
T S, = 7 s — e+ 80 @
d;** =arly +acle +ay gy —(uy +x)R, ®)
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ds
d':/l = Pwm _IBHSM(IHM+IC)_IUMSM ©
dl
d:/l :IBHSM(IHM+IC)_IUMIM )

With initial condition
S,(0)=S,0>0,1,(0)=1;,>0,1.(0)=1¢c, >0, 144, (0)= I,y >0,

R,(0)=R,,>0,S,(0)=S,,>0,1,(0)=1,,>0 ®)
The total population is human and mosquito is given as:

Ny =S, O +1;O)+1c®)+ 1 1) +R, (1) ©)
Ny =Sy (£) + 1y () (10)

Model parameter and variable description
Tablel: Variables

Variables Description

S y Susceptible human

|T Infected individuals with Typhoid only

|C Individuals co-infected with Typhoid and Malaria
o Individuals infected with Malaria only

RH Recovered individuals

SM Susceptible mosquitoes

| " Infected mosquitoes (transmitting Malaria)

Table 2: Parameters

Parameter Description

N Recruitment rate of Human

P Recruitment rate of Mosquito

Ly Natural death rate of humans

Ly Natural death rate of mosquitoes

ﬂT Transmission rate of Typhoid

B Transmission rate of Malaria

B Transmission rate of co-infection

B Mosquito infection rate from humans

ja Typhoid Interaction term for co-infection dynamics
Yu Malaria Interaction term for co-infection dynamics
a; Recovery rate from Typhoid

o Recovery rate from co-infection

ay Recovery rate from Malaria
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5c Death rate due to Co-infection
S, Death rate due to Typhoid infection
Sy Death rate due to Malaria infection
K Loss of immunity and susceptibility to malaria
N Total population of Human
H
N, Total population of Mosquitoes

Basic Properties of the Model

Invariant Region

The invariant region is used to determine where the model solution is bounded. The model equation (1) to (7) is
divided into two groups: the mosquito population and the human population. The total human population is represented

by N,, =S, ) +1; (t)+ 1) +1,,, () + R, (t). The total mosquito populationis N, =S,, +1,,
Theorem:

Let @, = sH,|T,|C,|HM,RHemi:NHh(t)spH} and ), :{SM,IM e R? :NM(t)sp—M} so  that
Hy Hwm

D=0y *Wy R *ERE The biologically feasible region of the C of the model equation (1) to (7) is

positively invariant.

Proof:

From the total human population represented by N, =S, (t) + 1 (t) + 1. (t) + 1, (1) + R, (1),

It is clear that,

dN

d—tHSpH — My Ny, 11)

Applying separation of and integrating, that is,
1
[—2 N, <[

Pu —Hu Ny (12)
Integrating (12), we have
Py — Hy N < D! (13)
At t=0, N, (t)z N, equation (13) turns
Pu — 1y N =D,

Therefore, equation (13) becomes
Pr — N < (pH ~ Hy N)f_#ht
P (pH _ﬂHN)g_#ht

N, <—— (14)
Hy Hy
If t—> o0 equation (14) becomes
N, ()< 2 (15)
H

This implies that0 < N, (t) <Pu
H
As a result, the model's feasible solution set for the host population stays inside the region and is provided by
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o, ={SH,|T,|C,|HM,RH eR° :NHh(t)sp—H}

H
Similarly the equation given by the total mosquito population in the model equation (1) to (7), that is
dN
dtM < pu —Hu Ny (16)
By solving the equation (16), we have
N, ()< 2 (17)
M

1)
From equation (17), ift > o0 , N, (t) — M
M
Thus, for the total mosquitoes population the feasible solution set of the model remain within the region and is given

by @y ={5M,|M eR2:0< NM(t)gp_M}
M
Therefore, the feasible solution set for the model equations (1) to (7) together with initial conditions given by

o = o, * o, ,Iisapositive invariant and hence it is biologically meaningful and well posed in the domain @ .

Disease Free Equilibrium Point
A steady state solution in which there is no disease is known as the “disease free equilibrium point”. A person's body
is virus-free at this point. Setting the right sides of model differential equations (1) through (7) to zero will yield the
disease-free equilibrium of these equations. That is,

ds, di; dig dl, dr, ds, di,

dt  dt  dt dt dt dt  dt

In the absence of the disease

Ny =540 =1; 0 =1c0) =L, =R, (=5, (=1, 1) =0.

Then, equation (18) reduces to

=0 (18)

Py —HuSy =0 (19)
Pu —HuSy =0 (20)
Then, from equation (19) and (20), we have
S, _Pu S,, _ Pu

Hy Hwm

Hence, the disease free equilibrium points E0 are:

Ey= (S, 0z, 0c, iy Riys Sy Ty )= [p—H,o,o,o,o,p—M,oJ
Hy Hy

This suggests that the disease will die out in the population.

Sub Model of Malaria

ds

dtH =Pu —PuSulu —#uSy + xRy (21)
dl

di-th =BuSuly =y lam = 7ulaw — (W + 0y ) iy (22)
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dR,,

at =yl _(IUH +K)RH (23)
ds
dtM = Pu = BuSulam = HuSw (24)
dl,,
dt = BuSulim =ty (25)

With initial condition
SH(O):SHO >0, Ly (0): limo >0, RH(O): Ry >0, 5 (0) =Sy, >0, IM(O): o >0

Results
Basic Reproduction Number R, of Sub Model of Malaria

An epidemic's course is determined by the basic reproduction number, a key idea in mathematical biology. According
to Diekmann et al., (2020), the basic reproduction number is the number of secondary cases that a typical infected
individual is expected to cause in a population that is completely susceptible.

Itis a highly valuable threshold parameter that characterises mathematical problems related to infectious diseases. If
it is less than one, this indicates that, on average, one infected individual generates fewer than one new infected
individual over the infectious period, leading to the potential eradication of the illness. If it exceeds unity, then each
infected individual generates, on average, more than one new infection, resulting in the disease proliferating within
the community. Consequently, we calculate the fundamental reproduction number of the model equations (1) to (7)

utilising the next generation method ~ (Agbo et al., 2024). R;= p(FV _l) Where, p(A) is the spectral radius
of matrix A(or the maximum modulus of the eigenvalues of A).

oF; ov, -
F= 8_I(E0) and V = 8_I(EO) ,With1<1i, j<m, where m represents the infected classes.
X X

Fi and Vi are the number of new infections that arise in the compartment i and the number of people who enter

and exit the compartment i by any means, respectively. The corresponding matrices at disease-fee equilibrium E,
were obtained using the linearization method. Taking into account the main infection:

j i

F = By v #4445k (26)

Ph
Differentiating (26) partial regarding the infection class and replacing the values Sy at the disease free equilibrium,
we obtained

B
F=—" @27)
P
Similarly, considering the secondary infected class:
\ :(:UH +7m + 06y )IHM (28)
Differentiating (28) partial with respect to infection class, we have
Vi:(:uH"'?/M +5M) (29)
Taking the inverse of (29), we have

1

(ﬂH +7w 0y )
Then, we have

(30)

V.=
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P

(,”H +7u + 0y )
Hence, the basic reproduction number is
Ry = P (31)

(:UH + 7w + 0w )
Also, considering the primary and the secondary infection classes from the mosquito compartments, that is

RVl =

F = By 1w 444 Sy (32)
P
Vi :(ILIH +7m +0y )IHM (33)

Differentiating (32) and (33) partial with respect to infection classes and substituting the value Sw for (32) at the
disease free equilibrium point, and taking the inverse of (33), we obtained

B
Fv'=—"H (34)
Hwm
Equation (34) is the basic reproduction number mosquito compartments that is,
B
Ry =—" (35)
Hy
Therefore, the reproduction number of sub model of malaria is,
B, B
RM =RM xRQ = H = (36)
(£t + 700+ S Dt
Sub Model of Typhoid
ds
dtH =P = PrSyly — Sy + iRy
di,
EzﬂTSH I =1y _(IUH +5T)|T
drR
dtH =a;l; +acle +ay gy — (1, +©)R, @37)
With initial condition
Sk (O): So >0, IT(O): I, >0, Ry (O): Ry >0
Basic Reproduction Number R, of Sub Model of Typhoid
Considering the primary and secondary infection in model system (37), we have
B-I,S
Fi _21'19H (38)
Ny
V, =y +uy, +6;)l; (39)

Differentiating (38) and (39) partial with respect to infection classes and substituting the value Sy for (38) at the
disease free equilibrium point and take the inverse of (39), we obtained

BT

FV'=
| (7T+IUH +5T)
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(40)
Equation (40) is the basic reproduction number sub model of Typhoid, that is
B
Ry = ! (41)
(7T + fy + 07 )
Therefore, the basic reproduction number R, for the co- infection is
B, B
R, = RY xR! = m B By (@2)

(rr + s+ 67 Nty + 7 + Ot et
Global Stability of Disease-free Equilibrium of the Malaria-typoid co-infection

Theorem 2
. . [ Py Pu . . .
The disease-free equilibrium E, = | =—,0,0,0,0,—=,0 | is globally asymptotically stable if R,<I.
Hy Hym

Proof

Consider the Lyapunov function variables E, (SH e e Taw Ry Sy s IM) according to the approach in
(Agbo et al., 2025) be

Eo(Su il e L Riy Sy I ) =
(S, —SHO—SHOInS—H)+IT +1e+ 1y +Ry +(Sy —SMO—SMOInS—M)H,\,I

HO MO (43)

—SHolnS—H)+ '+ + 1 R +(Sy — S —SM0|I‘IS—M)+ 'y
HO MO (44)

Eo Z(SH _SH

0

Differentiating Eq (SH el T Ry Sy Ly ) with respect to time gives

S S
E, :(l—S—H)S'+|'T+I'C+I'HM +R', +(1- S S EAVE Y
0 MO (45)
Substituti , . _ PH _ Pw :
ubstituting equation (1-7) into (44)and S, = and S,,, = —— togives
H Hy
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S
:(1_SLO)(/0H _ﬂTSHIT _ﬂMTSHIC_ﬂMSHIM_:uHSH+KRH)+ﬂTSHIT_
H
arly = yrly = (g +65)ly + BurSule +ar by —ay Ly —acle -

(:uH+5C)IC+ﬂMSHIM_aMIHM —= 7w lam (ﬂH+5 )IHM
= BuSy gy +1¢)

arly +acle +ayly —(uy + )Ry +(

M
=ty Sy )+ BuSy gy 1) =y by (46)
S
= BrSuly = BurSule —BuSulu —unSy +xRy — py, SHO
H
S S S
BrSyly SH + PurSulc SH + Pu Sy MSLHO_'_IUHSH %_KRH SLHO"'
S
M (S b L e Ry + iy (S hu) + ow = pu oo+
Su @7
BuSu SMO('HM"" )=ty
Sw
simplifying
Sy
=Py ~ Pu S_+ﬁT 9h0 T BurleSho + BulwSho + 44 Sko —
H
Sho Swo
KRy, S ~ Pwm S Sy (law +1c)+BuSyolluy +1c) -
H M
i Syl T e Ry) — 0w S Ty ) — s Ly (48)
S S
=py (- SH0)+(ﬁTIT+ﬁMTIC+ﬂMIM+/uH)SH0_KRH %"'
H H
Smo
,DM(]'_S )= 1 Sl Taw o Te Ry) = (S )
M (49)
P

and Sy, = Pu are  non-negatives
Ay Hy

From equation (1-7) (B /r B, By Ittt )Sos  Spo =

hence
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S S

E, < pn (1- SHO)+(ﬂTIT + Burlc + Bulm + 14)Sho — xRy SHO +

. H H (50)
pu - SMO)_ﬂH(SHilT’IHM’IC’RH)_/JM(SM’IM)

M

By the inequality of arithmetic and geometric means

Sho Sho
pn(L- )+ (Brlr + Burlc + Bulv + 4u)Sho — &Ry —+

Sy Sy

1- Suo — S, 1,1 I.,R,)— Sy.ly,)<0

Pu ( S )=ty Syl Ty Lo Ry) = 40y (S Ty ) <

M

This  proved that E, is the lyapunov  function of E,=0  which  implies  that
LO=1.t)=1l,u®=R,®)=1,{)=0 . Therefore, it follows that the larges invariant set in

(SH +l; g+ +R, +S,, +1,):E,=0 _ E, =(p—H,O,O,O,O,p—M,Oj
1S Hy Hw

Therefore, by Lasalle’s invariance principle the disease free equilibrium is globally asymptotically stable.

Numerical Simulation Results

The global stability of the disease-free equilibrium will be quantitatively demonstrated in this section. The appropriate
R programming instructions and packages were used to run the simulations. Table 3 displays the source and parameter
values used, as well as the initial condition of

(Su o1 1e o Ry, Sy 1y ) = (800,345, 200,550,56,1000500)

Table 3: Parameters Values

Parameter | Values/day | Reference

N 100 (Okosun & Makinde , 2011)

oy 1000 (Okosun & Makinde 2011)

Ly 0.0236 estimated

Ly 0.5 estimated

ﬂT 0.0035 estimated

Bu 0.0696 (Chitnis et al., 2006)

B 0.15 (Mushayabasa et al., 2014)
0.059 (Okosun and Makinde 2011)

By

Yr I 0.1 (Mushayabasa et al., 2014)

a; 0.05 (Bhan et al., 2005)

ac 0.2 (Mushayabasa et al., 2014)

a,, 0.03 (Bhan et al., 2005)

5c 5, 0.01 (Mushayabasa et al., 2014)

Om
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s 0.0013 (Okosun & Makinde 2011)

The graph illustrates the simulation of human compartment over 100 days.

Malaria and Typhoid co-infection Dynamics

1500
variable
= 1000
E I_T
g_ — | O
ncj !
= |_HM
- R_H
500
0
| 0 25 50 75 100

Time

Figure2: Human Compartment of Malaria and Typhoid Co-infection Dynamics at the Disease-free Equilibrium
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Figure3: Mosquito Compartment of Malaria and Typhoid Co-infection Dynamics

Discussion

The findings of this study demonstrate the critical importance of fundamental reproduction numbers in determining
the persistence or elimination of co-infection between malaria and typhoid in a particular population. The analytical
analysis confirmed that the disease-free equilibrium shows global asymptotic stability when both reproduction
numbers are less than unity, meaning that the co-infection will eventually disappear regardless of the original
conditions. This finding reinforces the theoretical threshold condition as a formidable predictor for the efficacy of
disease control measures.The global stability outcomes achieved through the application of Lyapunov functions and
LaSalle’s invariance principle accentuate the resilience of the model. Specifically, the methodology validated that the
disease-free state is globally attractive under sub-threshold conditions. This is in concordance with previous
epidemiological modeling investigations, which have consistently demonstrated that the reduction of the effective
reproduction number below one remains fundamental to the eradication of infectious diseases.

Numerical simulations afforded additional insights into the temporal dynamics of both human and mosquito
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populations. The trajectories depicted that, in the absence of sustained transmission that is when R, < 1,the count
of infected individuals diminishes progressively while the susceptible population reaches a state of stabilization. In
contrast, parameter configurations characterized by reproduction numbers exceeding unity revealed the potential for
the persistence of co-infection, thereby underscoring the synergistic interplay of malaria and typhoid transmission
dynamics. These findings are particularly salient in endemic regions, where the intersecting epidemiology of the two
diseases exacerbates the cumulative disease burden. The ramifications of these findings extend to the realm of public
health policy. The model elucidates that interventions targeting single diseases may prove inadequate in regions with
a high prevalence of co-infection. Instead, integrated strategies—such as eliminate co-infection in endemic regions.
Specifically, the model shows that reducing both basic reproduction numbers below unity is essential for global disease
eradication. Numerical simulations further illustrate that integrated interventions targeting vector control for malaria
and improvements in sanitation, hygiene, and vaccination for typhoid can significantly reduce the burden of co-
infection.

From a policy perspective, these findings emphasize the importance of adopting a holistic approach to infectious
disease control. Tackling malaria and typhoid independently is insufficient in co-endemic areas, as the persistence of
one disease may sustain the transmission of the other. Instead, combined intervention strategies offer the most effective
pathway for reducing morbidity and mortality associated with the amalgamation of vector control initiatives for
malaria with water, sanitation, and hygiene (WASH) programs for typhoid are imperative to effectively reduce both
reproduction numbers beneath unity. Furthermore, the simulations suggest that neglecting one disease could
inadvertently perpetuate or exacerbate the co-infection burden.The incorporation of interaction terms within the co-
infection compartment illustrates how the presence of one infection may heighten susceptibility to the other. This
outcome is congruent with clinical observations of heightened disease severity and diagnostic complexities in malaria
and typhoid co-infections. It underscores the critical importance of precise and timely diagnoses, as misdiagnosis
could perpetuate endemic and undermine control interventions.

Therefore, the results indicate that the malaria and typhoid co-infection system is exceedingly responsive to alterations
in transmission and recovery parameters. Achieving and maintaining disease control necessitates the concurrent
reduction of both diseases’ reproduction numbers. This reinforces the advocacy for integrated intervention frameworks
and provides a mathematical rationale for prioritizing combined malaria and typhoid control programs in resource-
constrained, high-burden contexts such as sub-Saharan Africa.

Conclusion

This study has developed and analyzed a deterministic co-infection model for malaria and typhoid fever, incorporating
both human and mosquito populations and the interactions that drive co-infection dynamics. By deriving the basic
reproduction numbers for malaria, typhoid, and their co-infection, and establishing the global stability of the balance
free of sickness The study offers solid theoretical support for the circumstances in which disease eradication is feasible
by utilizing Lyapunov functions and LaSalle's invariance principle. The results demonstrate that simultaneous control
of both infections is necessary to malaria—typhoid co-infection. This study contributes to the growing body of
evidence supporting integrated disease management frameworks in sub-Saharan Africa and other high-burden regions.
By highlighting the threshold conditions for disease elimination and the potential impact of joint interventions, the
model provides a valuable tool for policymakers and public health practitioners seeking to optimize resource allocation
and strengthen control programs against malaria and typhoid co-infection.
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