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Abstract 

Typhoid fever and malaria are two serious infectious diseases that are common in sub-Saharan Africa, and co-infection 

poses a serious threat to public health. Designing successful control measures requires an understanding of the 

dynamics of these illnesses. We created a deterministic compartmental model that divided the human population into 

seven groups: susceptible people, typhoid-only infected people, malaria-only infected people, co-infected people, 

recovered people, susceptible mosquitoes, and infected mosquitoes. We defined parameters for the global stability of 

the disease-free equilibria and determined the fundamental reproduction numbers for typhoid and malaria using the 

next-generation matrix technique. The global stability results were validated using Lyapunov functions and LaSalle's 

invariance principle. When both fundamental reproduction numbers are less than unity, the disease-free equilibrium 

is asymptotically stable worldwide.Numerical simulations highlight the threshold parameters that drive co-infection 

persistence and the combined impact of malaria–typhoid interventions. This study provides a theoretical basis for 

controlling malaria and typhoid co-infections through integrated interventions. The analytical thresholds derived can 

guide policymakers in optimizing combined control strategies in endemic regions such as Nigeria  
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Introduction 

In sub-Saharan Africa and other tropical countries, typhoid fever and malaria continue to be two of the most serious 

infectious diseases that affect people (WHO, 2021; Crump & Mintz, 2010). A major source of morbidity and mortality, 

malaria is caused by Plasmodium parasites and is spread via the bite of infected Anopheles mosquitoes, especially in 

pregnant women and children under five (Snow et al., 2005). Salmonella enterica serovar Typhi is the causative agent 

of typhoid fever, a systemic bacterial infection that is mainly spread by contaminated food and water through the 

fecal-oral route (Buckle et al., 2010). According to Pruss-ustum et al. (2019), both diseases flourish in settings with 

low sanitation, restricted access to clean water, and inadequate healthcare infrastructure.The co-occurrence of malaria 

and typhoid fever within the same population and sometimes within the same individual is increasingly recognized as 

a significant public health challenge (Takem et al., 2014; Kang et al., 2020). Co-infection complicates clinical 

diagnosis due to overlapping symptoms such as fever, headache, and malaise, which can lead to misdiagnosis and 

inappropriate treatment (Nguyen et al., 2021). Furthermore, co-infection can exacerbate disease severity, prolong 

recovery times, and increase mortality risk (Adewuyi et al., 2018). Despite these challenges, most control programs 

and epidemiological studies have focused on the diseases individually, potentially underestimating the compounded 

burden of co-infection (Liu et al., 2017). 

 

Mathematical modeling provides a powerful tool for studying infectious disease dynamics, including co-infection 

scenarios (Abu-Raddad et al., 2006). While numerous models have been developed for malaria and typhoid 

independently, relatively few have examined their joint transmission dynamics especially in a framework that 

integrates malaria’s vector-host interactions with typhoid’s human-to-human waterborne transmission (Mutua et al., 

2015). Co-infection modeling can reveal how interactions between pathogens alter transmission thresholds, 

persistence conditions, and the effectiveness of combined control measures (Abah et al., 2023). In this study, we 

formulated a deterministic compartmental model dividing the human population into seven epidemiological states 
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alongside susceptible and infected mosquito vectors. Using the next-generation matrix method, we derived the basic 

reproduction numbers for malaria and typhoid. Using Lyapunov functions and LaSalle's invariance principle, the 

global stability of the endemic and disease-free equilibria was thoroughly examined (Korobeinikov, 2006).  Our 

results underscore the importance of integrated disease management strategies. By identifying the threshold conditions 

for eradication or persistence, the model provides a framework for guiding public health interventions in high-burden 

countries such as Nigeria, where malaria–typhoid co-infection is common (Okolo et al., 2023; Akinyemi et al., 2023). 

 

Malaria and typhoid fever are endemic diseases that contribute substantially to the global burden of infectious diseases, 

particularly in sub-Saharan Africa and parts of Asia (WHO, 2021). Both share overlapping geographic distributions 

and risk factors, such as inadequate sanitation, unsafe water sources, and limited healthcare infrastructure factors that 

often facilitate co-infection (Crump & Mintz, 2010). Reported prevalence rates for malaria–typhoid co-infection in 

endemic regions range from 5% to over 20%, complicating diagnosis and management (Snow et al., 2005). 

Mathematical models have been pivotal in understanding the transmission dynamics of individual infectious diseases. 

For malaria, vector-host models have informed control strategies such as insecticide-treated nets and indoor residual 

spraying (Buckle et al., 2010). Typhoid fever models have focused on waterborne transmission and the impact of 

vaccination and sanitation improvements (Pruss-ustun et al., 2019). However, co-infection modeling remains 

comparatively underexplored. The benefits of co-infection modeling are evident in studies on other disease pairings, 

such as HIV–tuberculosis, which have highlighted synergistic effects on transmission and disease progression (Takem 

et al., 2019). Recently, Abah et al., (2023) developed models for malaria–typhoid and other infectious diseases, 

emphasizing integrated control strategies and the use of stability analysis for policymaking.The subsequent elements 

are esssential parts of the mathematical modeling about the co-infection dynamics of  typhoid and malaria. 

 

Mushayabasa et al. (2014) introduces a deterministic mathematical framework for scrutinizing the dynamics 

associated with malaria and typhoid co-infection.This analysis first evaluates the transmission dynamics separately 

before combining the two diseases, showing that a typhoid epidemic in areas where malaria is endemic can result in 

a greater number of clinically symptomatic people with dual infections than those with single infections. The model 

illustrates the intricate relationships between the two diseases within the population by showing a backward 

bifurcation phenomena. Mutua et al. (2015) develop novel mathematical frameworks to clarify the co-infection 

dynamics of malaria and typhoid, accentuating distinctive features and interconnections between the two diseases. 

The research emphasizes the critical role of typhoid carriers in co-epidemics and demonstrates that effective 

simultaneous preventive measures can reduce the co-infection basic reproduction number to below unity, facilitating 

disease eradication. The models highlight the imperative for extensive research to effectively manage these infectious 

diseases in tropical developing countries. A mathematical model is proposed to analyze the dynamics of malaria and 

typhoid co-infection, focusing on the consequences of erroneously diagnosing typhoid as malaria and subsequently 

administering anti-malarial treatments. The findings reveal that such misdiagnosis significantly exacerbates the 

endemicity of typhoid and intensifies malaria infections, underscoring the critical need for accurate diagnostic 

methodologies as articulated by Akinyi et al. (2015). A mathematical framework addressing the dynamics of two 

infectious diseases within a population experiencing co-infection scenarios is posited. It suggests that infection with 

one disease increases susceptibility to another, while recovery provides partial immunity. The model utilizes a coupled 

system of differential equations to investigate these dynamics, yielding insights into the interactions among the 

diseases (Gutiérrez-Jara et al., 2019). A mathematical model specifically designed for the dynamics of malaria-

dysentery co-infection is also presented. It examines the interplay between malaria and dysentery in relation to 

prevention strategies (Okosun, 2020). Notwithstanding, additional research is necessary to fully comprehend the 

dynamics of  malaria and typhoid co-infection; hence, the main goal of this research is to develop and evaluate a 

mathematical model that clarifies the co-infection dynamics of malaria and typhoid fever in a human population. This 

investigation aims to explore the fundamental characteristics of the developed model, which includes an evaluation of 

local stability. A comprehensive analysis of the results is provided, clarifying the dynamics of malaria-typhoid 

transmission. 

 

Global stability analysis using Lyapunov functions and LaSalle’s invariance principle is a well-established approach 

in epidemiological modeling, offering rigorous guarantees for the global attractivity of equilibria (Korobeinikov, 

2006). These techniques have been applied successfully to vector-borne and waterborne disease models, 

demonstrating their utility in deriving robust eradication conditions. In the Nigerian context, where malaria–typhoid 

co-infection prevalence is high, integrating both diseases into a unified model with global stability analysis provides 
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a valuable theoretical framework for designing combined interventions and optimizing limited healthcare resources 

(Cheng et al., 2020). 

 

Material and Methods 

To elucidate the dynamics nature, we categorized the population of this study into seven compartments, namely: 

Susceptible humans against malaria and typhoid SH , Infected human with typhoid fever only IT , individual co-

infected with Typhoid and malaria(I
C

), infected human with malaria only(IHM), recovered individual(RH), susceptible 

mosquitoes(SM), infected mosquitoes(IM).  Figure1 shows the schematic representation of the malaria and typhoid 

co-infection model  

 
 

 

Figure 1: Malaria and Typoid co-infection model 

 

 

Model Equation 

HHHMHMCHMTTHTH
H RSISISIS

dt

dS
 +−−−−=                              (1) 

( ) TTHTTTTTHT
T IIIIS

dt

dI
 +−−−=                                             (2) 

CcHCCHMMTTCHMT
C IIIIIS

dt

dI
)(  +−−++=                                  (3) 

HMMHHMMHMMMHM
HM IIIIS

dt

dI
)(  +−−−=                                    (4) 

( ) HHHMMCCTT
H RIII

dt

dR
 +−++=                                             (5) 
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MMCHMMHM
M SIIS

dt

dS
 −+−= )(                                                 (6) 

MMCHMMH
M IIIS

dt

dI
 −+= )(                                                        (7) 

With initial condition  

( ) ( ) ( ) ( )

( ) ( ) 00,0)0(,00

,00,00,00,00

000

0000

===

====

MMMMHH

HMHMCCTTHH

IISSRR

IIIIIISS

                 (8)                                                                                   

The total population is human and mosquito is given as:
 

)()()()()( tRtItItItSN HHMCTHH ++++=                                            (9) 

)()( tItSN MMM +=                                                                   (10) 

 

Model parameter and variable description 

Table1: Variables 

Variables Description 

HS  Susceptible human 

TI  Infected individuals  with Typhoid only 

CI  Individuals co-infected with Typhoid and Malaria 

HNI  Individuals infected with Malaria only 

HR  Recovered individuals 

MS  
Susceptible mosquitoes 

MI  
Infected mosquitoes (transmitting Malaria) 

 

Table 2: Parameters 

Parameter Description 

H  Recruitment rate of Human 

M  
Recruitment rate of Mosquito 

H  Natural death rate of humans 

M  
Natural death rate of mosquitoes 

T  Transmission rate of Typhoid 

M  Transmission rate of Malaria 

TM
 

Transmission rate of co-infection 

H  
Mosquito infection rate from humans 

T  Typhoid Interaction term for co-infection dynamics 

M  
Malaria Interaction term for co-infection dynamics 

T  
Recovery rate from Typhoid 

C  
Recovery rate from co-infection 

M
 

Recovery rate from Malaria 
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C  Death rate due to Co-infection 

T  Death rate due to Typhoid infection 

M  Death rate due to Malaria infection 

  Loss of immunity and susceptibility to malaria 

HH
N  

Total population of Human 

MN  
Total population of Mosquitoes 

 

Basic Properties of the Model 

Invariant Region 

The invariant region is used to determine where the model solution is bounded. The model equation (1) to (7) is 

divided into two groups: the mosquito population and the human population. The total human population is represented 

by )()()()()( tRtItItItSN HHMCTHH ++++= . The total mosquito population is MMM ISN +=
 

Theorem:  

Let ( )








= +

H

H
HhHHMCTHH tNRIIIS




 :,,,, 5

 and ( )








= +

M

M
MMMM tNIS




 :, 2

 

so that 

.25

+= MH   The biologically feasible region of the  of the model equation (1) to (7) is 

positively invariant. 

Proof: 

From the total human population represented by )()()()()( tRtItItItSN HHMCTHH ++++= , 

It is clear that, 

HHH
H N

dt

dN
 −                                                                    (11) 

Applying separation of and integrating, that is,  

 
−

dtdN
N

H

HHH 

1

                                                              (12) 

Integrating (12), we have 
t

HH
hDN

 −
− 1                                                                    (13) 

At ( ) 0,0 NtNt H ==  equation (13) turns 

1DNHH =−   

Therefore, equation (13) becomes 

( ) t

HHHH
hNN

 −
−−   

( )

H

t

HH

H

H
h

hN
N







 −
−

−


                                                          (14) 

If →t equation (14) becomes 

( )
H

H
H tN




                                                                           (15) 

This implies that ( )
H

H
H tN




0 . 

As a result, the model's feasible solution set for the host population stays inside the region and is provided by 
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( )








= +

H

H
HhHHMCTHH tNRIIIS




 :,,,, 5

.  

Similarly the equation given by the total mosquito population in the model equation (1) to (7), that is  

MMM
M N

dt

dN
 −                                                                  (16) 

By solving the equation (16), we have 

( )
M

M
M tN




                                                                          (17) 

From equation (17), if →t , ( )
M

M
M tN




→  

Thus, for the total mosquitoes population the feasible solution set of the model remain within the region and is given 

by ( )








= +

M

M
MMMM tNIS




 0:, 2

. 

Therefore, the feasible solution set for the model equations (1) to (7) together with initial conditions given by

MH  = , is a positive invariant and hence it is biologically meaningful and well posed in the domain . 

 

 Disease Free Equilibrium Point 

A steady state solution in which there is no disease is known as the “disease free equilibrium point”. A person's body 

is virus-free at this point. Setting the right sides of model differential equations (1) through (7) to zero will yield the 

disease-free equilibrium of these equations. That is, 

0=======
dt

dI

dt

dS

dt

dR

dt

dI

dt

dI

dt

dI

dt

dS MMHHMCTH
                                    (18) 

In the absence of the disease  

   0)()()()()()()( ======== tItStRtItItItSN MMHHMCTHH .  

Then, equation (18) reduces to  

0=− HHH S                                                                         (19) 

0=− MMM S                                                                         (20) 

Then, from equation (19) and (20), we have  

H

H
HS




= ,  

M

M
MS




=  

Hence, the disease free equilibrium points 0E  are: 

=0E  ( )=MMHHMCTH ISRIIIS ,,,,,,  







0,,0,0,0,0,

M

M

H

H









 
This suggests that the disease will die out in the population. 

Sub Model of Malaria  

HHHMHMH
H RSIS

dt

dS
 +−−=

                                                     

(21) 

HMMHHMMHMMMHM
HM IIIIS

dt

dI
)(  +−−−=

                  

(22)                                    
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( ) HHHMM
H RI

dt

dR
 +−=                                                            (23)  

MMHMMHM
M SIS

dt

dS
 −−=                                                         (24) 

MMHMMH
M IIS

dt

dI
 −=                                                               (25) 

With initial condition  

( ) ( ) ( ) ( ) 00,0)0(,00,00,00
00000 ===== MMMMHHHMHMHH IISSRRIISS  

 

Results
                              

 

Basic Reproduction Number 0R  of Sub Model of Malaria  

An epidemic's course is determined by the basic reproduction number, a key idea in mathematical biology. According 

to Diekmann et al., (2020), the basic reproduction number is the number of secondary cases that a typical infected 

individual is expected to cause in a population that is completely susceptible. 

 It is a highly valuable threshold parameter that characterises mathematical problems related to infectious diseases. If 

it is less than one, this indicates that, on average, one infected individual generates fewer than one new infected 

individual over the infectious period, leading to the potential eradication of the illness. If it exceeds unity, then each 

infected individual generates, on average, more than one new infection, resulting in the disease proliferating within 

the community. Consequently, we calculate the fundamental reproduction number of the model equations (1) to (7) 

utilising the next generation method  (Agbo et al., 2024). 0R = ( )1−FV
 

Where, ( )A  is the spectral radius 

of matrix A(or the maximum modulus of the eigenvalues of A). 

( )















= 0E

x

F
F

j

i
 and ( )
















= 0E

x

V
V

j

i
, with mji  ,1 , where m represents the infected classes. 

iF and iV  are the number of new infections that arise in the compartment 𝑖 and the number of people who enter 

and exit the compartment 𝑖 by any means, respectively. The corresponding matrices at disease-fee equilibrium 𝐸0 

were obtained using the linearization method.  Taking into account the main infection: 

 

H

HHMM
i

SIB
F




=                                                                    (26)   

Differentiating (26) partial regarding the infection class and replacing the values SH at the disease free equilibrium, 

we obtained 

H

M
i

B
F


=                                                                             (27) 

Similarly, considering the secondary infected class: 

( ) HMMMHi IV  ++=                                                              (28) 

Differentiating (28) partial with respect to infection class, we have 

( )MMHiV  ++=                                                                  (29) 

Taking the inverse of (29), we have 

( )MMH

iV
 ++

=
− 11

                                                               (30) 

Then, we have 
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( )MMH

M
iiVF





++
=−1

                                                                                     

Hence, the basic reproduction number is 

( )MMH

MHR




++
=0                                                            (31) 

Also, considering the primary and the secondary infection classes from the mosquito compartments, that is  

H

HHHMH
i

SIB
F




=                                                                (32)  

( ) HMMMHi IV  ++=                                                          (33) 

 Differentiating (32) and (33) partial with respect to infection classes and substituting the value SM for (32) at the 

disease free equilibrium point,  and taking the  inverse of (33), we obtained 

M

H
i

B
VF


=−1

                                                                     (34) 

Equation (34) is the basic reproduction number mosquito compartments that is, 

M

HQ B
R


=0                                                                        (35) 

Therefore, the reproduction number of sub model of malaria is, 

( ) MMMH

MHQHM BB
RRR

 ++
== 000                                             (36) 

Sub Model of Typhoid  

( )

( )

( ) ( ) ( )









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



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
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











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




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+−++=
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+−−=
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condition  initialWith 

000 HHTTHH

HHHMMCCTT
H

TTHTTTHT
T

HHHTHTH
H

RRIISS

RIII
dt

dR

IIIS
dt

dI

RSIS
dt

dS
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



                             (37)                                       

        

 

Basic Reproduction Number 0R  of Sub Model of Typhoid  

 

Considering the primary and secondary infection in model system (37), we have

 

H

HTT
i

N

SIB
F =                                                                    (38)   

( ) TTHTi IV  ++=                                                            (39)   

Differentiating (38) and (39) partial with respect to infection classes and substituting the value SH for (38) at the 

disease free equilibrium point and take the inverse of (39), we obtained 

( )THT

T
i

B
VF

 ++
=1

                                                                           

https://doi.org/10.63561/jmns.v2i4.1125


 

Global Stability Analysis of a Malaria–Typhoid Fever Co-infection Model 

77 Cite this article as:   

Abah R.T., Agbo, C.E., & Ibrahim, A. (2025). Global stability analysis of a malaria–typhoid fever co-infection model. FNAS 
Journal of Mathematical Modeling and Numerical Simulation, 2(4), 69-84. https://doi.org/10.63561/jmns.v2i4.1125 

 

(40) 

Equation (40) is the basic reproduction number sub model of Typhoid, that is 

( )THT

TT B
R

 ++
=0

                                                               (41) 

Therefore, the basic reproduction number 0R  for the co- infection is  

( )( ) MMMHTHT

THMTH BBB
RRR

 ++++
== 000

                                    (42) 

Global Stability of Disease-free Equilibrium of the Malaria-typoid co-infection 

Theorem 2 

The disease-free equilibrium =0E  







0,,0,0,0,0,

M

M

H

H








 is globally asymptotically stable if  R0≤1.  

Proof 
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Differentiating  with respect to time gives 
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Substituting equation (1-7) into (44) and 
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=0  to gives 
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From equation (1-7) (β
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hence 
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By the  inequality of arithmetic and geometric means    
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This proved that E0  is the lyapunov function of E0
' =0  which implies that 
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  Therefore, by Lasalle’s invariance principle  the  disease free equilibrium is globally asymptotically stable. 

Numerical Simulation Results 

The global stability of the disease-free equilibrium will be quantitatively demonstrated in this section. The appropriate 

R programming instructions and packages were used to run the simulations. Table 3 displays the source and parameter 

values used, as well as the initial condition of  

( ) )500,1000,56,550,200,345,800(,,,,,, =MMHHMCTH ISRIIIS  

Table 3: Parameters Values 

Parameter Values/day Reference 

H   100 (Okosun & Makinde , 2011) 

M  
 1000 (Okosun & Makinde 2011) 

H   0.0236 estimated 

M  
0.5 estimated 

T  0.0035 estimated 

M  0.0696  (Chitnis et al., 2006) 

TM
 

0.15 (Mushayabasa et al., 2014) 

H  
0.059 (Okosun and Makinde 2011) 

T , M  0.1  (Mushayabasa et al., 2014) 

T  
 0.05 (Bhan et al., 2005) 

C  
0.2 (Mushayabasa et al., 2014) 

M
 

0.03 (Bhan et al., 2005) 

C , T ,

M  

0.01 (Mushayabasa et al., 2014) 
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  0.0013 (Okosun & Makinde 2011) 

The graph illustrates the simulation of human compartment  over 100 days. 

 

 

Figure2: Human Compartment of Malaria and Typhoid Co-infection Dynamics at the Disease-free Equilibrium  
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Figure3: Mosquito Compartment of Malaria and Typhoid Co-infection Dynamics 

Discussion  

The findings of this study demonstrate the critical importance of fundamental reproduction numbers in determining 

the persistence or elimination of co-infection between malaria and typhoid in a particular population. The analytical 

analysis confirmed that the disease-free equilibrium shows global asymptotic stability when both reproduction 

numbers are less than unity, meaning that the co-infection will eventually disappear regardless of the original 

conditions. This finding reinforces the theoretical threshold condition as a formidable predictor for the efficacy of 

disease control measures.The global stability outcomes achieved through the application of Lyapunov functions and 

LaSalle’s invariance principle accentuate the resilience of the model. Specifically, the methodology validated that the 

disease-free state is globally attractive under sub-threshold conditions. This is in concordance with previous 

epidemiological modeling investigations, which have consistently demonstrated that the reduction of the effective 

reproduction number below one remains fundamental to the eradication of infectious diseases. 

Numerical simulations afforded additional insights into the temporal dynamics of both human and mosquito 
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populations. The trajectories depicted that, in the absence of sustained transmission  that is when 𝑅0 < 1,the count 

of infected individuals diminishes progressively while the susceptible population reaches a state of stabilization. In 

contrast, parameter configurations characterized by reproduction numbers exceeding unity revealed the potential for 

the persistence of co-infection, thereby underscoring the synergistic interplay of malaria and typhoid transmission 

dynamics. These findings are particularly salient in endemic regions, where the intersecting epidemiology of the two 

diseases exacerbates the cumulative disease burden. The ramifications of these findings extend to the realm of public 

health policy. The model elucidates that interventions targeting single diseases may prove inadequate in regions with 

a high prevalence of co-infection. Instead, integrated strategies—such as eliminate co-infection in endemic regions. 

Specifically, the model shows that reducing both basic reproduction numbers below unity is essential for global disease 

eradication. Numerical simulations further illustrate that integrated interventions targeting vector control for malaria 

and improvements in sanitation, hygiene, and vaccination for typhoid can significantly reduce the burden of co-

infection. 

From a policy perspective, these findings emphasize the importance of adopting a holistic approach to infectious 

disease control. Tackling malaria and typhoid independently is insufficient in co-endemic areas, as the persistence of 

one disease may sustain the transmission of the other. Instead, combined intervention strategies offer the most effective 

pathway for reducing morbidity and mortality associated with the amalgamation of vector control initiatives for 

malaria with water, sanitation, and hygiene (WASH) programs for typhoid are imperative to effectively reduce both 

reproduction numbers beneath unity. Furthermore, the simulations suggest that neglecting one disease could 

inadvertently perpetuate or exacerbate the co-infection burden.The incorporation of interaction terms within the co-

infection compartment illustrates how the presence of one infection may heighten susceptibility to the other. This 

outcome is congruent with clinical observations of heightened disease severity and diagnostic complexities in malaria 

and typhoid co-infections. It underscores the critical importance of precise and timely diagnoses, as misdiagnosis 

could perpetuate endemic and undermine control interventions. 

Therefore, the results indicate that the malaria and typhoid co-infection system is exceedingly responsive to alterations 

in transmission and recovery parameters. Achieving and maintaining disease control necessitates the concurrent 

reduction of both diseases’ reproduction numbers. This reinforces the advocacy for integrated intervention frameworks 

and provides a mathematical rationale for prioritizing combined malaria and typhoid control programs in resource-

constrained, high-burden contexts such as sub-Saharan Africa. 

Conclusion 

This study has developed and analyzed a deterministic co-infection model for malaria and typhoid fever, incorporating 

both human and mosquito populations and the interactions that drive co-infection dynamics. By deriving the basic 

reproduction numbers for malaria, typhoid, and their co-infection, and establishing the global stability of the balance 

free of sickness The study offers solid theoretical support for the circumstances in which disease eradication is feasible 

by utilizing Lyapunov functions and LaSalle's invariance principle. The results demonstrate that simultaneous control 

of both infections is necessary to  malaria–typhoid co-infection. This study contributes to the growing body of 

evidence supporting integrated disease management frameworks in sub-Saharan Africa and other high-burden regions. 

By highlighting the threshold conditions for disease elimination and the potential impact of joint interventions, the 

model provides a valuable tool for policymakers and public health practitioners seeking to optimize resource allocation 

and strengthen control programs against malaria and typhoid co-infection. 
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