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Abstract 

This paper examined a mathematical model for the growth of yeast species 1 and 2 through numerical analysis. 

The approximate solutions in the form of infinite series were obtained by applying the Laplace Decomposition 

Method. With the use of the Maple 18 program, numerical justification was carried out on the model parameter 

values to produce the desired outcomes. According to the findings, yeast species 1 and 2 were shown to decline 

when growth rate coefficients dropped from 50% to 90%, and increased when growth rate coefficients increased 

from 120% to 160%.  When yeast species 1 and 2's growth rate coefficients dropped from 50%, 70%, and 90%, a 

loss in biodiversity was seen; similarly, when their growth rate coefficients increased from 120%, 140%, and 

160%, a gain in biodiversity was observed.  
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Introduction 

Dynamical systems originate from a system of functional differential equations of neutral type or hyperbolic 

partial differential equations (Hale, 1969). However, according to Rajendra (2021), dynamical systems are defined 

as the study of the long-term behaviour of evolving systems. The modern theory of dynamical systems originated 

at the end of the 19th century with fundamental questions concerning the stability and evolution of the solar 

system. Attempts to answer those questions led to the development of a rich and powerful field with applications 

to physics, biology, meteorology, astronomy, and other fields. Despite its origins in Newtonian mechanics, the 

concept of dynamical systems has been thoroughly explored by various researchers in recent years due to its 

profound impact on natural science and engineering. 

 

Eli and Abanum (2020) compared the analytical and numerical results of a dynamic system's stability analysis. 

Using a mathematical model of biology, they developed a system of ordinary differential equations involving 

sickle cell, HIV, and T cells. By employing an analytical characteristic equation, the eigenvalues were derived to 

test for the trivial steady-state solution or points. Lastly, they ran a numerical simulation to investigate the 

reliability of the outcome. Godspower et al. (2020) focused on the investigation of typical agricultural assets' 

biodiversity. They used numerical modelling techniques, specifically ODE 45, to determine how biodiversity 

would grow as a result of variations in the growth rates. Similar research was conducted by (Solomonovic et al. 

1998;  Bertoin, 2016), who proposed recovery models of economic agriculture-industry interaction to examine 

the features of bifurcation and stability as well as the persistence and extinction of economic and environmental 

wealth. The author applied numerical analysis and a special situation of negative recovery. Eward and Ford, (2002) 

investigated the stability and bounds of differential equations. Their study addresses the stability and boundedness 

of solutions as they relate to the qualitative behaviour of solutions to differential equations.  

 

Solomonovic et al. (1998) investigated the stability analysis problem for a new class of discrete-time recurrent 

neural networks with mixed time delays. The mixed time delays, which are composed of both discrete and 

distributed time delays, are addressed for the first time when analyzing the asymptotic stability for discrete-time 

neural networks. The existence of the equilibrium point was first proven under mild conditions by constructing a 

new Lyapnuov-Krasovskii functional, and a linear matrix inequality (LMI) approach was developed to determine 

sufficient conditions for the discrete-time neural networks to be globally asymptotically stable. As an extension, 

they also take into consideration the stability analysis problem for the same class of neural networks but with 

state-dependent stochastic problems. Rajendra (2021) reviewed the standard dynamical system approach to 
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biomedical science. Their research aims to address the needs of both the present and the future for the interaction 

of different scientific and technological fields with dynamical systems. They talk about a variety of models for 

interacting populations, including discrete population models for single species, continuous population models 

for single species, Lotka-Voltera systems, and realistic predator-prey models. They create models that encapsulate 

the key elements of diverse interactions, facilitating a deeper comprehension of the results. Analyzing biomedical 

concerns through one of the most significant branches of mathematics provides a comprehensive viewpoint using 

numerical simulation methods with ODE45. 

 

Eli and Ekaka-a (2021) used ODE45 numerical simulation tools to investigate how discrete time delays affect a 

dynamical system's stability. The outcome demonstrated the overwhelming instability of the dynamical system. 

Forecasting the expansion of yeast species was not taken into consideration in the research contributions of 

(Abanun et al., 2024; Liu et al., 2009; Yan & Ekaka-a, 2011; Suha et al., 2023; Anya et al., 2022; Najib & Hassan, 

2021) and many other researchers in the fields of ecological modelling and mathematical biology. In light of this, 

the Laplace Adomian Decomposition Method (LADM) is being used to investigate the effect of decreasing and 

increasing the growth rate coefficients of yeast species 1 and 2. Finding the numerical solution for the differential 

model system and solving non-linear dynamical systems are two tasks that the Laplace Adomian Decomposition 

Method (LADM) can achieve effectively and simply (Bazuaye & Omoregbe, 2022, Abanum et al., 2024). It was 

Adomain, (1988) who first proposed this method. This study uses a method that breaks down a solution into an 

infinite series that quickly converges to the exact solution. 

 

Model Assumptions  

For this study, we shall consider the following assumptions: 

i. The growth of yeast species 1 and yeast species 2 depends on the difference between the survival rate 

and the death rate.  

ii. The interaction within each species, also known as the self-interaction coefficient of the intra-competition 

process, may also have an impact on the expansion of these two species.  

iii. The inter-competition coefficient, which indicates how much each species contributes to preventing the 

growth of another, may also have an impact on the expansion of these two species.  

iv. The beginning data values of yeast species 1 and yeast species 2, when the growing season is measured 

in weeks, may also have an impact on the growth of these two competing species.  

 

Mathematical Formulations  

We have taken into consideration the multi-parameter continuous dynamical system of a nonlinear first-order 

Ordinary Differential Equation (Eli & Ekaka-a, 2021)for this study. 

 
𝑑𝑥

𝑑𝑡
= ∝1 𝑥 − 𝛽1𝑥2 − 𝛾1𝑥𝑦         1 

𝑑𝑦

𝑑𝑡
=  ∝2 𝑦 − 𝛽2𝑦2 − 𝛾2𝑥𝑦         2 

𝑥(𝑡) denotes the biomass of yeast specy 1 (candida albican) at time 𝑡 in the unit of weeks. 

𝑦(𝑡) denotes the biomass of yeast specy 2 (candida parapsilosis) at time 𝑡 in the unit of weeks. 

∝1 and ∝2 specify the growth rate of yeast species 1 and 2 respectively.  

𝛽1 and 𝛽2 specify the intra-competition coefficient of yeast species 1 and 2 respectively.  

𝛾1 and 𝛾2 denote the competition of yeast species 1 and yeast 2 respectively where 𝛾1 is the contribution of the 

yeast species to inhibit the growth of species 2 as 𝛾2 is the contribution of the yeast species 2 to inhibit the growth 

of species 1. 

At a unique positive steady-state solution, 
𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
= 0,    

So that equation (1) and (2) becomes 

∝1 𝑥 − 𝛽1𝑥2 − 𝛾1𝑥𝑦 = 0                   3 

∝2 𝑦 − 𝛽2𝑦2 − 𝛾2𝑥𝑦 = 0                   4 

From equ (1) 

𝑥(∝1− 𝛽1𝑥 − 𝛾1𝑦) = 0 ⟹ 𝑥 = 0 or 
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∝1− 𝛽1𝑥 − 𝛾1𝑦 = 0  

∴ 𝛽1𝑥 =  ∝1− 𝛾2𝑦  

∴ 𝑥 =
∝1

𝛽1
−

𝛾1𝑦

𝛽1
                                                                                                                        5 

Similarly, from equation 4 

𝑦(∝2− 𝛽2𝑦 − 𝛾2𝑥) = 0 

⟹ 𝑦 = 0 

or  

∝2− 𝛽2𝑦 − 𝛾2𝑥 = 0 

∴ 𝛽2𝑦 = ∝2− 𝛾2𝑥 

∴ 𝑦 =
∝2

𝛽2
−

𝛾2𝑥

𝛽2
                                                      6 

Now, substituting (5) into (6) we get  

𝑦 =
∝2

𝛽2
−

𝛾2

𝛽2
(

∝1

𝛽2
−

𝛾1𝑦

𝛽1
)                                                                                                     7 

∴ 𝑦 =
∝2

𝛽2

−
𝛾2 ∝1

𝛽1𝛽2

+
𝛾1𝛾2𝑦

𝛽1𝛽2

 

⟹ 𝑦 −
𝛾1𝛾2𝑦

𝛽1𝛽2

=
∝2

𝛽2

−
𝛾2 ∝1

𝛽1𝛽2

 

𝑦 (1 −
𝛾1𝛾2𝑦

𝛽1𝛽2

) =
∝2 𝛽1 − 𝛾2 ∝1

𝛽1𝛽2

 

𝑦 (
𝛽1𝛽2 − 𝛾1𝛾2

𝛽1𝛽2

) =
∝2 𝛽1 − 𝛾2 ∝1

𝛽1𝛽2

 

𝑦(𝛽1𝛽2 − 𝛾1𝛾2) = ∝2 𝛽1 − 𝛾2 ∝1 

∴ 𝑦 =
∝2𝛽1−𝛾2∝1

𝛽1𝛽2−𝛾1𝛾2
                                                                                                                  8 

To get 𝑥, put 8 into 5, so that  

𝑥 =
∝1

𝛽1
−

𝛾1

𝛽1
(

∝2𝛽1−𝛾2∝2

𝛽1𝛽2−𝛾1𝛾2
)                                                                                                 9 

Thus, the trivial steady state solution is (𝑥, 𝑦) = (0, 0), while the non-trivial steady state solution is when 𝑥 ≠ 0 

and 𝑦 ≠ 0 

∴ (𝑥, 𝑦) {[
∝1

𝛽1
−

𝛾1

𝛽1
(

∝2𝛽1−𝛾2∝2

𝛽1𝛽2−𝛾1𝛾2
)] , [

∝2𝛽1−𝛾2∝1

𝛽1𝛽2−𝛾1𝛾2
]}                                10 
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Applications of the Laplace Decomposition Method  

Laplace transform is a mathematical tool used to convert a system of differential equations to a system of algebraic 

equations, (Abanum et al, 2024). It transforms a variable (such as x, y in space or at time t) to a parameter(s) a 

‘constant’ under certain conditions. It transforms one variable at a time. Applying the Laplace transform on both 

sides of the model (1) to (2) above, we obtain the system of equations.  

ℒ [
𝑑𝑥

𝑑𝑡
] = ℒ[𝛼1𝑥 − 𝛽1𝑥2 − 𝛾1𝑥𝑦]        11 

ℒ [
𝑑𝑥

𝑑𝑡
] = 𝑆𝑥(𝑡) − 𝑆(0) = 𝑆ℒ𝑥[𝑡] − 𝑥(0)       12 

𝑆ℒ𝑥[𝑡] − 𝑥(0) = 𝛼1ℒ[𝑥] − 𝛽1ℒ[𝑥]2 − 𝛾1ℒ[𝑥𝑦] 

𝑆ℒ𝑥[𝑡] = 𝑥(0) + 𝛼1ℒ[𝑥] − 𝛽1ℒ[𝑥]2 − 𝛾1ℒ[𝑥𝑦] 

ℒ𝑥[𝑡] =
𝑥(0)

𝑆
+

𝛼1

𝑆
ℒ[𝑥] −

𝛽1

𝑆
ℒ[𝑥]2 +

𝛾1

𝑆
ℒ[𝑥𝑦]      13 

Assume ℒ𝑥[𝑡] as an infinite series 

ℒ𝑥[𝑡] = ℒ[∑ 𝑥(𝑡)∞
𝑖=0 ]         14 

Also, we decompose the nonlinearity solution using the Adomian technique 

𝑥𝑦 =
1

𝑖!

𝑑𝑖

𝜆𝑖 [∑ 𝜆𝑗𝑥𝑗
𝑖
𝑗=0 ∑ 𝜆𝑗𝑦𝑗

𝑖
𝑗=0 ]

𝜆=0
= ∑ 𝐴𝑖

∞
𝑖=0       15 

For 𝑖 = 0, 𝑗 = 0 

 𝐴0 = 𝑥0(𝑡)𝑦0(𝑡) 

For 𝑖 = 1, 𝑗 = 0, 1 

𝐴1 = 𝑥0(𝑡)𝑦1(𝑡) + 𝑥1(𝑡)𝑦0(𝑡) 

𝐴2 = 𝑥0(𝑡)𝑦2(𝑡) + 𝑥1(𝑡)𝑦1(𝑡) + 𝑥2(𝑡)𝑦0(𝑡)                                                               16 

𝐴3 = 𝑥0(𝑡)𝑦3(𝑡) + 𝑥1(𝑡)𝑦2(𝑡) + 𝑥2(𝑡)𝑦1(𝑡) + 𝑥3(𝑡)𝑦0(𝑡) 

Substituting into equ 13 

ℒ[∑ 𝑥(𝑡)∞
𝑖=0 ] =

𝑥(0)

𝑠
+

𝛼1

𝑠
ℒ[∑ 𝑥(𝑡)∞

𝑖=0 ] −
𝛽1

𝑠
ℒ[∑ 𝑥(𝑡)∞

𝑖=0 ]2 −
𝛾

𝑠
ℒ[∑ 𝐴𝑖

∞
𝑖=0 ]    

    9 

𝑢𝑠𝑖𝑛𝑔 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑥(0) ≥ 0 ≥ 𝑛1 

ℒ[∑ 𝑥(𝑡)∞
𝑖=0 ] =

𝑛𝑖

𝑠
+

𝛼1

𝑠
ℒ[∑ 𝑥(𝑡)∞

𝑖=0 ] −
𝛽1

𝑠
ℒ[∑ 𝑥(𝑡)∞

𝑖=0 ]2 −
𝛾

𝑠
ℒ[∑ 𝐴𝑖

∞
𝑖=0 ]    17 

ℒ[𝑥0] =
𝑛𝑖

𝑠
𝑥0 = 𝑛1 

ℒ[𝑥1] =
𝛼1

𝑆𝜓 ℒ[𝑥0] −
𝛽1

𝑆𝜓 ℒ[𝑥0]2 −
𝛾

𝑆𝜓 ℒ[𝐴0]   
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ℒ[𝑥1] =
𝛼

𝑆𝜓 ℒ[𝑥1] −
𝛽1

𝑆𝜓 ℒ[𝑥1]2 −
𝛾

𝑆𝜓 ℒ[𝐴1]  

⋮ 

ℒ[𝑥𝑘+1] =
𝛼1

𝑆4
ℒ[𝑥𝑘] −

𝛽1

𝑆4
ℒ[𝑥𝑘]2 −

𝛾

𝑆4
ℒ[𝐴𝑘] 

To get the solutions  𝑥1, 𝑥2 

To get 𝑥1 

Using 

ℒ[𝑥1] =
𝛼1

𝑆4
ℒ[𝑥0] +

𝛽1

𝑆4
ℒ[𝑥0]2 −

𝛾1

𝑆4
ℒ[𝐴0] 

𝑥0 = 𝑛1 ,  𝑦0 = 𝑛2 

𝐴0 = 𝑥0𝑦0 = 𝑛1𝑛2 

Then, we have 

ℒ[𝑥1] =
𝛼1

𝑆𝜓
ℒ[𝑛1] −

𝛽1

𝑆𝜓
ℒ[𝑛1]2 −

𝛾1

𝑆𝜓
ℒ[𝑛1𝑛2] 

Taking the inverse Laplace transform 

ℒ−1[ℒ[𝑥1]] = ℒ−1 (
𝛼1𝑛1

𝑆𝜓 ℒ[1] −
𝛽1𝑛1

2

𝑆𝜓 ℒ[1] −
𝛾1𝑛1𝑛2

𝑆𝜓 ℒ[1])  

𝑥1 = ℒ−1 [
𝛼1𝑛1

𝑆𝜓
∙

1

𝑆
−

𝛽1𝑛1
2

𝑆𝜓
∙

1

𝑆
−

𝛾1𝑛1𝑛2

𝑆𝜓
∙

1

𝑆
] 

Since ℒ[1] =
1

𝑆
 

 𝑥1 = ℒ−1 [
𝛼1𝑛1

𝑆𝜓+1 −
𝛽1𝑛1

2

𝑆𝜓+1 −
𝛾1𝑛1𝑛2

𝑆𝜓+1 ] 

 𝑥 = 𝛼1𝑛1ℒ−1 (
1

𝑆𝜓+1) − 𝛽1𝑛1
2ℒ−1 (

1

𝑆𝜓+1) − 𝑛1𝑛2ℒ−1 (
1

𝑆𝜓+1) 

From the Laplace property,  ℒ[𝑡𝜓] =
𝜓!

𝑆𝜓+1 ⟹ ℒ−1 [
1

𝑆4+1] =
𝑡𝜓

𝜓!
 

Hence  

𝑥1 = 𝛼1𝑛1
𝑡𝜓

𝜓!
− 𝛽1𝑛1

2 𝑡𝜓

𝜓!
− 𝛾1𝑛1𝑛2

𝑡𝜓

𝜓!
                               18 

Similarly, 

𝑦1 = 𝛼2𝑛2
𝑡𝜓

𝜓!
− 𝛽2𝑛2

2 𝑡𝜓

𝜓!
− 𝛾2𝑛1𝑛2

𝑡𝜓

𝜓!
                    19 
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𝑥2 = 𝛼1 ∙ 𝑥1 ∙
𝑡𝜓

𝜓!
− 𝛽1(𝑥1 ∙ 𝑥1) ∙

𝑡𝜓

𝜓!
− 𝛾1(𝐴1) ∙

𝑡𝜓

𝜓!
      20 

 

𝑦2 = 𝛼2 ∙ 𝑦1 ∙
𝑡𝜓

𝜓!
− 𝛽2(𝑦1 ∙ 𝑦1)

𝑡𝜓

𝜓!
− 𝛾2(𝑥1𝑦1) ∙

𝑡𝜓

𝜓!
      21 

 

𝑥3 = 𝛼1 ∙ 𝑥2 ∙
𝑡𝜓

𝜓!
− 𝛽1(𝑥2 ∙ 𝑥2)

𝑡𝜓

𝜓!
− 𝛾1(𝑥2𝑦2) ∙

𝑡𝜓

𝜓!
      22 

 

𝑦3 = 𝛼2 ∙ 𝑦2 ∙
𝑡𝜓

𝜓!
− 𝛽2(𝑦2 ∙ 𝑦2)

𝑡𝜓

𝜓!
− 𝛾2(𝑥2𝑦2) ∙

𝑡𝜓

𝜓!
      23 

 

With the following precise model parameters from Eli and Ekaka-a, (2021) 

 

𝛼1 = 0.1, 𝛽1 = 0.0014, 𝛾1 = 0.0012, 𝛼2 = 0.08, 𝛽2 = 0.001, 𝛾2 = 0.0009  

 

𝑥 = 𝑥1 + 𝑥2 + 𝑥3 

 

 

 

 

 

         x 

 

 

 

 

Figure 1. Plot of numerical solution of yeast specy 1 biomass x(t) corresponding to a different time (t) in years 

 

𝑦 = 𝑦1 + 𝑦2 + 𝑦3 

 

 

 

y 

 

 

 

 

Figure 2. Plot of numerical solution of yeast specy 2 biomass y(t) corresponding to a different time (t) in years 
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𝛼1 = 0.1 ∗ 0.50 

𝑥1 = 𝛼1𝑛1

𝑡𝜓

𝜓!
− 𝛽1𝑛1

2
𝑡𝜓

𝜓!
− 𝛾1𝑛1𝑛2

𝑡𝜓

𝜓!
 

 

 

𝑥2 = 𝛼1𝑥1

𝑡𝜓

𝜓!
− 𝛽1𝑥1

2
𝑡𝜓

𝜓!
− 𝛾1𝑥1𝑦1

𝑡𝜓

𝜓!
 

 

 

𝑥3 = 𝛼1𝑥2

𝑡𝜓

𝜓!
− 𝛽1𝑥2

2
𝑡𝜓

𝜓!
− 𝛾1𝑥2𝑦2

𝑡𝜓

𝜓!
 

 
 

 

𝑥 = 𝑥1 + 𝑥2 + 𝑥3 

 
 

 
Figure 3. Plot of numerical solution of yeast specy 1 biomass x(t) corresponding to a different 

time (t) in years when 𝛼1 𝑖𝑠 𝑣𝑎𝑟𝑖𝑒𝑑 𝑎𝑡 50% 

 

 

𝑥1 = 𝛼1𝑛1

𝑡𝜓

𝜓!
− 𝛽1𝑛1

2
𝑡𝜓

𝜓!
− 𝛾1𝑛1𝑛2

𝑡𝜓

𝜓!
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Figure 4. Plot of numerical solution of yeast specy 1 biomass x(t) corresponding to a different time (t) in years 

when 𝛼1 𝑖𝑠 𝑣𝑎𝑟𝑖𝑒𝑑 𝑎𝑡 70% 
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Figure 5. Plot of numerical solution of yeast specy 1 biomass x(t) corresponding to a different time (t) in years 

when 𝛼1 𝑖𝑠 𝑣𝑎𝑟𝑖𝑒𝑑 𝑎𝑡 90% 
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Figure 6. Summary plot of numerical solution of yeast specy 1 biomass x(t) corresponding to different time (t) in 

years 
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Figure 7. Plot of numerical solution of yeast specy 1 biomass x(t) corresponding to a different time (t) in years 

when 𝛼1 𝑖𝑠 𝑣𝑎𝑟𝑖𝑒𝑑 𝑎𝑡 120% 
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Figure 8. Plot of numerical solution of yeast specy 1 biomass x(t) corresponding to a different time (t) in years 

when 𝛼1 𝑖𝑠 𝑣𝑎𝑟𝑖𝑒𝑑 𝑎𝑡 140% 
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Figure 9. Plot of numerical solution of yeast specy 1 biomass x(t) corresponding to a different time (t) in years 

when 𝛼1 𝑖𝑠 𝑣𝑎𝑟𝑖𝑒𝑑 𝑎𝑡 160% 

 

 

Figure 10. Summary plot of numerical solution of yeast specy 1 biomass x(t) corresponding to different time (t) 

in years 
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Figure 11. Plot of numerical solution of yeast specy 2 biomass y(t) corresponding to a different time (t) in years 

when 𝛼2 𝑖𝑠 𝑣𝑎𝑟𝑖𝑒𝑑 𝑎𝑡 50% 
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Figure 12. Plot of numerical solution of yeast specy 2 biomass y(t) corresponding to a different time (t) in years 

when 𝛼2 𝑖𝑠 𝑣𝑎𝑟𝑖𝑒𝑑 𝑎𝑡 70% 
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Figure 13. Plot of numerical solution of yeast specy 2 biomass y(t) corresponding to a different time (t) in years 

when 𝛼2 𝑖𝑠 𝑣𝑎𝑟𝑖𝑒𝑑 𝑎𝑡 90% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Summary plot of numerical solution of yeast specy 2 biomass y(t) corresponding to different time (t) 

in years 
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Figure 15. The plot of numerical solution of yeast specy 2 biomass y(t) corresponding to a different time (t) in 

years when 𝛼2 𝑖𝑠 𝑣𝑎𝑟𝑖𝑒𝑑 𝑎𝑡 120% 
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Figure 16. Plot of numerical solution of yeast specy 2 biomass y(t) corresponding to a different time (t) in years 

when 𝛼2 𝑖𝑠 𝑣𝑎𝑟𝑖𝑒𝑑 𝑎𝑡 140% 
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Figure 17. Plot of numerical solution of yeast specy 2 biomass y(t) corresponding to a different time (t) in years 

when 𝛼2 𝑖𝑠 𝑣𝑎𝑟𝑖𝑒𝑑 𝑎𝑡 160% 
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Figure 18. Summary plot of numerical solution of yeast specy 2 biomass y(t) corresponding to different time (t) 

in years 

 

 

Discussion  

Using a mathematical tool called Maple 18 software, the behaviour of the several yeast species 1 and 2 under 

examination at different model parameter values is implemented and is visually displayed in Figures 1 through 

18. The solution trajectories of the first scenario are less than those of the second scenario, and so on. As the 

percentage of ∝1 increases, there is an improved biomass of yeast species 1 called x(t), which gets closer to the 

biomass of yeast species 1 at a fixed model parameter. The effects of increasing ∝1, from 120% to 160%, are 

shown in Figs. 7 to 10. These figures illustrate the amount to which the estimated proportion grows as a result of 

the growth rate variation known as ∝1. When all model parameters are fixed at 100%, the solution trajectories or 

biomass of yeast species 1 for the first scenario are greater than that of yeast species 1. However, as growth rates 

are increased from 120% to 160%, the values increase, indicating that the biomass of yeast species 1 has 

maintained an improved x(t), providing evidence of biodiversity gain. 

 

Additionally, we noticed that the solution trajectories of the first scenario are less than those of the second scenario 

as we increase the decreased growth rates of yeast species 2 (∝2) from 50% to 90% on the biomass of yeast 

species 2. Similarly, as the percentage of ∝1 increases, there is an improved biomass of yeast species 2 called y(t), 

which gets closer to the biomass of yeast species 2 at a fixed model parameter. The effects of increasing ∝2 by 

120% to 160% are shown in Figs. 15 to 18, which illustrates the extent to which the estimated percentage grows 

as a result of the growth rate variation known as ∝1.  

 

When all model parameters are fixed at 100%, the solution trajectories or biomass of yeast species 1 for the first 

scenario are greater than that of yeast species 1, and as growth rates are increased from 120% to 160%, the values 

increase. This indicates that the biomass of yeast species 2 has maintained an improved y(t), indicating a gain in 

biodiversity. 

 

Conclusion  

In this paper, we applied the Laplace Decomposition Method to investigate the behaviour of yeast species on 

biodiversity scenarios due to the variation of ∝1 and ∝2. We observed a biodiversity loss when ∝1 and ∝2 are 

decreased together from 20% to 99%. Similarly, when ∝1 and ∝2 are increased from 110% to 120%, a biodiversity 

gain was observed. 
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