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Abstract 

Here, we propose the method of Bernstein perturbed collocation for the approximation of fractional 

integrodifferential equations. A trial solution of Bernstein polynomial was slightly perturbed by Chebyshev 

polynomial and put into the equation considered. The equation obtained was then collocated at equally spaced 

interior points of the interval, yielding a system of equations. These equations are subsequently solved using 

appropriate computational software, such as Maple 18. The methodology was demonstrated in some examples 

to illustrate the method's accuracy. 
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Introduction 

Fractional calculus constitutes a field of differentials and integrals of integers and non-integers (fractional) 

orders. With diverse applications spanning science, technology and engineering, there is an increased interest in 

utilizing fractional differentials and integro-differential equations to model real-world phenomena such as 

seismic activities and the regulation of electrical memory in sockets etc. However, solving fractional integro-

differential equations (FIDEs) often comes with its challenges, as analytical solutions may not exist within the 

closed interval. Thus, resorting to approximate methods becomes necessary. A lot of techniques have been 

developed for this purpose, including the Adomian Decomposition Method (ADM), Standard. Least Squares 

Method (SLSM), Homotopy Analysis Transform Method (HATM), Collocation Method (CM), Homotopy 

Perturbation Method (HPM), Finite Difference Method (FDM), Finite Element Method (FEM), and Spectral 

Methods (SM), and others. 

 

Many researchers have come up with innovative approaches to tackle problems involving fractional-order 

integro-differential equations. Ajileye et al. (2024) solved linear and nonlinear Fredholm integro-differential 

equations numerically. They used standard collocation points to convert their equation to a set of equations. The 

algebraic equations were then solved using the matrix inversion approach. The method was found to be e ffcient 

and accurate. Aduroja et al. (2023) examined the collocation approximation method for the solution of some 

classes of Volterra integro-differential equations with polynomial basis functions. The matrix approach was used 

to obtain the required algebraic equation and after some transformations, the authors were able to obtain a system 

of equations. To get the numerical approximation, they simply substituted their constants obtained into the trial 

solution and this yielded accurate solutions. Ajileye et al.(2023) considered the collocation approach for the 

solution of the Volterra integro-differential equation using the Chebyshev polynomial base function. They 

converted the equation to some linear system of equations and solved the matrix obtained to get the values of the 

constants in the equations. Results obtained at the end showed that the method is efficient. Ajileye et al. (2022) 

applied a collocation approach to solve Volterra-Fredholm Integro-differential equations. The authors 

transformed the equation into a set of equations by matrix method to be able to solve the system of equations. 

Alshbool et al. (2022) developed two techniques of Bernstein fractional polynomials, namely the fractional 

Bernstein operational matrix method and operational matrices of differentiation method.  
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The two methods were used to solve fractional integro-differential equations (FIDEs). The schemes were 

introduced based on the idea of operational matrices generated using integration and operational matrices of 

differentiation respectively. By collocation, the authors applied the Riemann-Liouville and fractional derivative 

in Caputo’s sense on Bernstein polynomials to obtain the approximate solutions of the proposed FIDEs. Also, 

the residual correction procedure for both methods were provided to estimate the absolute errors. The results 

were found to be good and converged to the exact solution. Adebisi et al., (2021) investigated the application of 

perturbation on the Galerkin method for the solution some classes of fractional integro-differential equations. 

 

Uwaheren et al. (2022) worked on Akbari-Ganji’s method to solve Volterra type of integro-differential difference 

equations. At the end, the approximate and the exact solutions were compared and the results showed that there 

was high convergence. Uwaheren et al. (2021) applied the Legendre Galerkin method for solving fractional 

integro-differential equations of Fredholm type. Using the governing equation of the problem the authors were 

able to minimise the errors of the approximate solution without applying any other method to linearize the non-

linear part of the problem. Oyedepo et al. (2021) studied the modified homotopy perturbation technique on 

fractional integrodifferential difference equations and Uwaheren et al. (2020) discussed multi-order fractional 

differential equations of Lane Emden type. Other authors who worked on related differential and 

integrodifferential equations include Shaher (2006) whose focus was on the solution of multi-order fractional 

differential equations, presented a new algorithm for the solution of linear and non-linear multi-order fractional 

differential equations based on the Adomian decomposition method, Oyedepo et al. (2016) and Avipsita et al. 

(2017) both worked on the solution of Volterra-type fractional order integrodifferential equations using the 

Bernstein polynomial basis, providing a robust method for handling this class of equations. However, the former 

utilized the method of least squares combined with Bernstein bases to solve fractional integro-differential 

equations and achieved high accuracy in the numerical solutions, Snayip (2016) presented the Bernstein-

collocation method for the solution of nonlinear Fredholm and Volterra integrodifferential equations. By 

collocating and the matrix operations, the problem considered was reduced to a set of equations. The approximate 

solutions were obtained by solving the linear system of equations. The study also used the Bernstein series to 

solve nonlinear Fredholm and Volterra integro differential equations. The results were good compared to the exact 

solutions. 

 

In this work, we considered the normal integro-differential equations with integer-ordered derivatives and exact 

solutions. These equations were solved at some non-integer (fractional) values at the neighbourhood of the 

normal integer ordered derivatives, n for ⌈α⌉− ≤ n ≤ ⌈α⌉+ where ⌈α⌉− and ⌈α⌉+ indicate some carefully chosen 

fractional values to the left and right of n; the integer ordered derivatives. Their solutions are compared to the 

exact solution which was given at n all with the aim of ascertaining which of the ⌈α⌉− and ⌈α⌉+ will converge 

better. 

 

The general equation representing the problem to be considered is given as: 

 , (1) 

which we rewrite as 

 , (2) 

with the following supplementary conditions: 

 u(i)(0) = δi, i = 0,1,2,...,n − 1, n − 1 < α ≤ n, n ∈ N, (3) 

where Dαu(x) denotes the Caputo fractional derivative of u(x), f(x), k(x,z) are given smooth functions; δi are real 

constants; x and z are real variables varying in [0,1]; and u(x) is the unknown function to be determined. 

Definition of Relevant Terms 

Beta function:  

 

 

 

Beta function is defined as 

   (4) 

Where x,y ∈ R 

The gamma function is defined as 
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    (5) 

This integral converges when the real part of z is positive (Re(z) > 0).  

Γ(1 + z) = zΓ(z) 

When z is a positive integer 

(6) 

Γ(z) = (z − 1)! (7) 

Riemann-Liouville fractional integral: Riemann-Liouville fractional integral is de ned as 

  Re(α) > 0, Re(x) > 0, Re(t) > 0 (8) 

Jα denotes the fractional integral of order α. 

Riemann-Liouville fractional derivative: Fractional order derivative in Riemann-Liouville sense denoted Dα is 

defined as 

    (9) 

n is a positive integer with the property that 0 < α < n. 

Caputo Fractional Derivative: Fractional order Derivative in Caputo sense is defined as 

    (10) 

with some properties as: 

1. JαJβf = Jα+βf, α,β > 0 

2. , a > 0, β > −1, x > 0 

3.  

4. , x > 0, n − 1 < α ≤ n 

5. DαC = 0, where C is the constant, 
Chebyshev Polynomial: 

The Chebyshev polynomials of the first kind and of degree k are defined on the interval [-1, 1] as: 

Tk(x) = cos(k cos−1(x)) 

and the recurrence relation is given as: 

(11) 

 Tk+1(x) = 2xTk(x) − Tk−1(x), k = 1,2,3,··· (12) 

The first few terms of the Chebyshev polynomials of degree n on the interval [−1,1] are given as: 

T0(x) = 1 

T1(x) = x 

T2(x) = 2x2 − 1 

T3(x) = 4x3 − 3x 

T4(x) = 8x4 − 8x2 + 1 

T5(x) = 16x5 − 20x3 + 5x 

and the recurrence formula for shifted Chebyshev on the closed form interval [0,1] is: 

    (13) 

with some few terms given as: 

T0
∗(x) = 1 

T1
∗(x) = 2x − 1 

T2
∗(x) = 8x2 − 8x + 1 

T3
∗(x) = 32x3 − 48x2 + 18x − 1 

T4
∗(x) = 128x4 − 256x3 + 100x2 − 32x + 1 

T4
∗(x) = 128x4 − 256x3 + 100x2 − 32x + 1 

Bernstein Polynomial: The (n + 1) Bernstein basis polynomials of degree n is defined as: 
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    (14) 

where  is a binomial coefficient. 

So, for example, . 

The first few Bernstein basis polynomials for blending 1, 2, 3, or 4 values together are: 

b0,0(x) = 1 b0,1(x) = 1 − 

x b1,1(x) = x b0,2(x) = (1 

− x)2 b1,2(x) = 2x(1 − x) 

A combination of Bernstein polynomials: 

b2,2(x) = x2 b0,3(x) = 

(1 − x)3 b1,3(x) = 3x(1 − x)2 

b2,3(x) = 3x2(1 − x) b3,3(x) 

= x3 

 

 

n un(x) := XaiBi,n(x) 
(15) 

i=0 
equation (15) is an nth-degree Bernstein polynomial. 

Methodology 

Our approach is based on approximating the unknown function u(x) in equation (1) which is rewritten  

as in (2). To solve equation (2), we used a trial approximant of the form: 

N 

uN(x) = XaiBi,N(x) 

i=0 

Equation (16) is slightly perturbed to get 

(16) 

N 

uN(x) = XaiBi,N(x) + Gn(x) 

i=0 

where 

(17) 

⌈α⌉ 
Gn(x) = XτvTv

∗(x) 

v=0 
(18) 

is called the perturbation term, ⌈α⌉ is the smallest integer which is bigger than α, which is 

The order of the fractional integro-differential equation. N is the degree of the approximation, T ∗(x) is the 

shifted Chebyshev polynomial basis function. τv(v = 1(1)n) are the free tau parameters to be determined and 

ai,i = 0,1,2,...N are the unknown constants also to be determined. 

Substituting (17) into (2) gives 

 
Applying Jα on both sides of equation (19) yields 
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which yields 

 
Equation (21) is further simplified and then collocated at equally spaced interior points, 

, to obtain a set of linear equations. The set 

of equations is solved using a computer package; Maple 18, to obtain the unknown constants. The obtained 

answers are then substituted back into the assumed approximate solution (16) to give the required approximate 

solution. 

Numerical Examples 

First Example: 

Consider the following fractional integrodifferential equation 

  (22) 

with the exact solution u(x) = x + sin(x) 

We rewrite equation (22) as 

  (23) 

Taking a trial solution for N = 3, 

  (24) 

Eqn (24) is perturbed as 

 3 ⌈α⌉ 
u3(x) = XaiBi,3(x) = a0(1−x)3 +a1 ·3x(1−x)2 +a2 ·3x2(1−x)+a3x3 +XτvTv

∗(x) (25) 

 i=0 v=0 

substituting (25) into (23) and 

 

Now, apply Jα, for , with the given initial conditions. After some further simplification, we have 

− 0.003206405a0x13/2 − 0.0191048324x9/2τ2 − 0.0004275207x15/2a3 − 0.0085504145x13/2τ2 

+ 0.006412810a1 x13/2 + 0.010420817a0 x11/2 − 0.00694721x11/2τ1 − 0.06252490x11/2τ3 

− 0.038209664a0 x9/2 − 0.001282562x15/2a1 − 0.0032064054a2 x13/2 + 0.027788847x11/2τ2 

+ 0.019104832x9/2τ3 + 0.000427520x15/2a0 − 0.013680663x15/2τ3 + 0.0012825621x15/2a2 

− 0.0191048324x9/2τ0 + 0.051302487x13/2τ3 − 0.010420817a1 x11/2 + 0.019104832x9/2τ1 

− 6a1 x2 + 3x2a0 + 8x2τ2 − 48x2τ3 − a0 x3 + 3a1 x3 + 32x3τ3 − 3xa0 + 18xτ3 − 8xτ2 − 3x3a2+ 

2τ1 x−τ1+τ2−τ3+τ0+3xa1+3x2a2+a0+x3a3 = 2x−0.08597174607x7/2−0.0034736059x11/2 

(27) 

Equation (27) is collocated at some equally spaced interior points in the interval [0, 1], which results in 8 sets 

of linear equations. We solve the equations and then substitute the answers into the assumed approximate 

equation (24), we get 

u3(x) = −0.1168506545x3 + 0.0469419635x2 + 1.989348036x + 0.00073065454 

Following the same process prescribed in the methodology, the approximate solution is obtained for  as, 

u3(x) = −0.07450x3 − 0.24850x2 + 2.04450x − 0.00327 

Second Example: 

Consider the following fractional integrodifferential equation 
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  (28) 

with the exact solution u(x)= sinh(x). we 

rewrite equation (28) as 

  (29) 

Taking an approximate solution for N = 3, we have 

 (30) 

Equation (30) is perturbed as 

 3 ⌈α⌉ 
u3(x) = XaiBi,3(x) = a0(1−x)3 +a1 ·3x(1−x)2 +a2 ·3x2(1−x)+a3x3 +XτvTv

∗(x)    (31) 

 i=0 v=0 

substituting (31) into (29), yields 

 ⌈α⌉ Z x 

Dα[a0(1−x)3+a1·3x(1−x)2+a2·3x2(1−x)+a3x3+XτvTv
∗(x)] = x+ (x−t)[a0(1−t)3+ 

 v=0 0 

⌈α⌉ 
 a1 · 3t(1 − t)2 + a2 · 3t2(1 − t) + a3t3 + XτvTv

∗(t)]dt   (32) 

v=0 

Now, apply Jα, for , with the given initial conditions. After some further simplification, we have 

0.0191048x9/2τ3 − 0.0032064a0x13/2 − 0.0004275207x15/2a3 + 0.006412811a1x13/2 

− 0.019104832x9/2τ0 − 0.062525x11/2τ3 − 0.01368066x15/2τ3 − 6a1x2 + 0.0104208a0x11/2 

−0.038209664a0x9/2+0.001283x15/2a2−0.010421a1x11/2−0.008551x13/2τ2+0.0191048x9/2τ1− 

0.00694721x11/2τ1 + 0.027788847x11/2τ2 − 0.003206405a2x13/2 + 0.000427521x15/2a0− 0.019104832x9/2τ2 

+0.05130249x13/2τ3 −0.00128256217x15/2a1 −3xa0 +18xτ3 −8xτ2 +3x2a0 

+8x2τ2−48x2τ3−a0x3+3a1 x3+32x3τ3+3xa1+3x2a2−3x3a2+2τ1 x+τ0−τ1+τ2−τ3+x3a3+a0 

 = x + 0.08597174607x7/2 (33) 

Equation (33) is collocated at some equally spaced interior points in the interval [0, 1], which results in 8 set 

of linear equations. We solve the equations and then substitute the answers into the assumed approximate 

equation (30), we get 

u3(x) = 0.090853864x3 − 0.028921592x2 + 1.005981592x − 0.000373864 

Following the same process prescribed in the methodology, the approximate solution is obtained for  as, 

u3(x) = 0.1928x3 + 0.1385x2 + 0.9897x + 0.0004 

Third Example: 

Consider the following fractional integrodifferential equation 

  (34) 

with the exact solution u(x) = 4 + ex. 

We rewrite equation (34) as 

  (35) 

Taking an approximate solution for N = 3, 

  (36) 

Equation (36) is perturbed as 

 3 ⌈α⌉ 
u3(x) = XaiBi,3(x) = a0(1−x)3 +a1 ·3x(1−x)2 +a2 ·3x2(1−x)+a3x3 +XτvTv

∗(x) (37) 

i=0 v=0 substituting (37) into (35), yields 
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Now, apply Jα, for , with the given initial conditions. After some further simplification, we have 

0.051302487x13/2τ3 − 0.010420818a1x11/2 − 0.0032064054a0x13/2 − 0.019104832x9/2τ0 

+ 0.027788847x11/2τ2 − 0.038209665a0x9/2 + 0.001282562x15/2a2 − 0.019104832x9/2τ2+ 

0.0104208177a0 x11/2 − 0.00128256218x15/2a1 − 0.00855041453x13/2τ2 + 0.019104832x9/2τ3 

−0.006947211x11/2τ1−0.01368066x15/2τ3+0.000427521x15/2a0−0.06254x11/2τ3−0.000428x15/2a3 

+0.01910x9/2τ1−0.003206a2 x13/2+0.00641281a1 x13/2−6a1 x2−3xa0+18.0xτ3−8xτ2+3x2a0+ 

8x2τ2 − 48x2τ3 − a0x3 + 3a1 x3 + 32x3τ3 + 3xa1 + 3x2a2 − 3x3a2 + 2τ1 x − τ1 + τ2 − τ3 + τ0 

+ x3a3 + a0 = 5 + x + 0.5x2 + 0.30090111x5/2 + 0.085971746x7/2 − 0.0764193298x9/2 (39) 

Equation (39) is collocated at some equally spaced interior points in the interval [0, 1], which results in 8 sets 

of linear equations. We solve the equations and then substitute the answers into the assumed approximate 

equation (36), we get 

u3(x) = 0.233471421x3 + 0.654975737x2 + 0.981914263x + 5.001058579 

Following the same process prescribed in the methodology, the approximate solution is obtained for , we 

obtained 

u3(x) = 0.07442823972x4 + 0.0365657x3 + 0.4967459x2 + 1.0002431x + 4.9999913 

For Tables see the appendix 

 
 Figure 1: Error Representation of table in the first example 



Bernstein Perturbed Collocation Approach for Solving Fractional Integrodifferential Equations  

 

131 Cite this article as: 

Uwaheren, O. A., Anyanwu, E. O., Oduola S. O., & Wahab S. K.  (2024). Bernstein Perturbed Collocation Approach for 
Solving Fractional Integrodifferential Equations. FNAS Journal of Mathematical Modeling and Numerical 

Simulation, 2(1), X-Y. 

 

 
Figure 2: Error Representation of table in the second example 

 
Figure 3: Error Representation of table in the third example 

Discussion 

In this study, the proposed method was used to solve Volterra fractional integro-differential equations 

successfully. Three examples were solved and the numerical results are presented in Tables 1, 2 and 3 and 

the graphs in Figures 1, 2 and 3. In Example 1, the results for were close to the exact solution and the 

result got closer for , which shows that the example,  performed better (converged) than . For 

example 2, the results converged closer to the exact solution than that of . In example 3,  

performs better than . We note that the value of the exact solution as well as the source functions count 

as it was discovered that better results do not depend on whether ⌈α⌉− or ⌈α⌉+ for it to converge better. The 

convergence occurred uniformly from the left or right within the interval [0,1]. Based on the numerical results, 

it is seen that the proposed method provides an acceptable estimation for the class of differential equations 

considered. 

 

Conclusion 

It must be noted that the problems studied in this article are normal integer differential equations solved at 

some non-integer (fractional) values at the neighbourhood of the normal integer ordered derivatives. So, it is 

cheerful to report that the perturbed collocation method using Bernstein basis functions offers a reliable 

approach for the solution of the class of fractional integrodifferential equations considered. The method is 

simple, accurate and less computational. Hence, we say that Bernstein basis functions with the collocation 
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method is a good approximation tool. Incorporating perturbation in the collocation technique, effectively re 

fines and enhanced both the accuracy and convergence of solutions. 
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Appendix 

  

 

Table 1: Error table in first example 

x Exact Solution Approximate Solution Error 

    

0.0 0.00000 -0.00327 0.00073 3.2700e-03 7.3065e-04 

0.1 0.19983 0.19862 0.20002 1.2129e-03 1.8461e-04 

0.2 0.39867 0.39509 0.39954 3.5753e-03 8.7380e-04 

0.3 0.59552 0.58570 0.59860 9.8167e-03 3.0847e-03 

0.4 0.78942 0.77000 0.79650 1.9416e-02 7.0838e-03 

0.5 0.97943 0.94754 0.99253 3.1883e-02 1.3108e-02 

0.6 1.16464 1.11788 1.18600 4.6764e-02 2.1356e-02 

0.7 1.34422 1.28056 1.37620 6.3656e-02 3.1978e-02 

0.8 1.51736 1.43515 1.56242 8.2210e-02 4.5068e-02 

0.9 1.68333 1.58118 1.74398 1.0214e-01 6.0656e-02 

1.0 1.84147 1.71823 1.92017 1.2324e-01 7.8699e-02 

 
Table 2: Error table in second example 

x Exact Solution Approximate Solution Error 

  
    

0.0 0.00000 0.00040 -0.00037 4.0000e-04 3.7386e-04 

0.1 0.10017 0.10095 0.10003 7.8105e-04 1.4082e-04 

0.2 0.20134 0.20542 0.20039 4.0864e-03 9.4358e-04 

0.3 0.30452 0.31498 0.30127 1.0460e-02 3.2496e-03 

0.4 0.41075 0.43078 0.40321 2.0027e-02 7.5464e-03 

0.5 0.52110 0.55398 0.50674 3.2880e-02 1.4352e-02 

0.6 0.63665 0.68572 0.61243 4.9071e-02 2.4226e-02 

0.7 0.75858 0.82719 0.72080 6.8602e-02 3.7779e-02 
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0.8 0.88811 0.97951 0.83242 9.1408e-02 5.5687e-02 

0.9 1.02652 1.14387 0.94782 1.1735e-01 7.8701e-02 

1.0 1.17520 1.32140 1.06754 1.4620e-01 1.0766e-01 

 
 

Table 3: Error table in third example 

x Exact Solution Approximate Solution Error 

  
    

0.0 5.00000 4.99999 5.00106 8.7000e-06 1.0586e-03 

0.1 5.10517 5.10503 5.10603 1.4384e-04 8.6232e-04 

0.2 5.22140 5.22032 5.22551 1.0814e-03 4.1055e-03 

0.3 5.34986 5.34636 5.36088 3.4973e-03 1.1026e-02 

0.4 5.49182 5.48381 5.51356 8.0112e-03 2.1738e-02 

0.5 5.64872 5.63352 5.68494 1.5199e-02 3.6222e-02 

0.6 5.82212 5.79651 5.87643 2.5609e-02 5.4309e-02 

0.7 6.01375 5.97398 6.08942 3.9773e-02 7.5665e-02 

0.8 6.22554 6.16731 6.32531 5.8230e-02 9.9771e-02 

0.9 6.45960 6.37806 6.58551 8.1540e-02 1.2591e-01 

1.0 6.71828 6.60797 6.87142 1.1031e-01 1.5314e-01 

 


