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Abstract:  

This research delves into a comprehensive examination of the application and convergence analysis of a newly 

developed block method for simulating epidemic models. The focal point of this study revolves around the 

derivation and implementation of a novel scheme, crafted through the utilization of power series polynomials, 

ensuring the fulfilment of essential properties. The formulation of the new scheme was rooted in the power series 

polynomial, a mathematical construct known for its versatility and precision. The rigorous validation process 

confirmed that the derived scheme satisfied the requisite properties, thereby establishing its theoretical soundness. 

The crux of the investigation lies in the practical application of this innovative scheme to simulate an epidemic 

model. Through meticulous simulations, the results yielded compelling evidence of the new method's superiority 

over existing approaches considered in this research. The comparative analysis demonstrated a notable 

enhancement in both accuracy and convergence speed, highlighting the efficacy of the newly proposed scheme in 

capturing and predicting the dynamics of epidemics. The observed advantages of the new scheme are particularly 

noteworthy, showcasing its potential to revolutionize the field of epidemiological modelling. By outperforming 

established methods, the new approach not only contributes to the theoretical underpinnings of epidemic 

modelling but also holds significant promise for practical applications, such as forecasting disease spread and 

optimizing intervention strategies. 
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Introduction  

In numerical modelling of real-world issues across disciplines such as engineering, biological sciences, physical 

sciences, and electronics, initial value problems are frequently encountered (Shokri & Shokri, 2013). In 

epidemiological studies, the spread of infections over time or across populations can be effectively modelled using 

numerical methods, particularly through differential equations. The application of mathematical techniques to 

epidemic modelling is integral to applied sciences and various other fields. In these contexts, stochastic elements 

or "noises" are often incorporated into deterministic differential equation models to better capture the complex 

dynamics of disease transmission and progression (Kermack & Mckendrick, 1927). Epidemiological problems 

and studies are frequently expressed numerically and symbolically as equations, particularly differential 

equations, to provide meaningful frameworks for analysis, construction, and application. A foundational model 

in this domain is the Susceptible-Infective-Recovered (SIR) model, which was introduced by researchers Kermack 

and McKendrick (1927). Prominent researchers in the field of mathematical modelling translate the spread of 

transmissible viruses into differential equations. In these models, the population is divided into three categories: 

susceptible individuals (denoted by S), infective individuals (denoted by I), and removed or recovered individuals 

(denoted by R). Those in the recovered category are no longer at risk of becoming infected or spreading the 

infection. This could be due to recovery and subsequent immunity, vaccination, isolation from the population, or 

death. A disease that persists continuously within a population is termed endemic (Chasnov, 2009; Herbert, 1989). 

 

Individuals in the recovered category of the SIR model are considered to have lifelong immunity. The SIR model 

is effectively described using ordinary differential equations (ODEs), representing a deterministic framework 

where identical initial conditions always produce the same outcomes. This model operates in continuous time 

rather than discrete intervals. According to the principles of response kinetics, interactions between infected and 
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susceptible individuals occur at rates proportional to their respective numbers within the population (Herbert 

(1989); Misra, 2005). Modelling provides a straightforward way to illustrate how diseases spread over time. Many 

epidemic models focus on segmenting the population into a few distinct groups. The model is divided into three 

categories, which are as follows: 

i.  Susceptible individuals are those who harbour underlying conditions that compromise their immune 

system and render them resistant to treatment. Conversely, susceptibility also denotes the state wherein 

an individual is vulnerable to contracting a particular disease; 

 ii.  Infected individuals are those who are ill and can readily pass on the infection to others. 

iii.  Recovered or Resistant (R): This category comprises individuals who have experienced illness for a 

duration and subsequently healed or recuperated. This includes illnesses where individuals gain enduring 

immunity.  

 

This research concentrates on developing an algorithmic model employing a two-step approach to address a 

specific problem. 

 

𝑦′ = 𝑦,  𝑦(0) = 𝑦0,  𝑥 ∈ [𝑎, 𝑏]        (1) 

Where   𝑓:ℜ × ℜ𝑚 → ℜ𝑚, 𝑦, 𝑦0 ∈ ℜ
𝑚, 𝑓 is anticipated to meet the Lipchitz condition. 

 

In the majority of instances, solving these initial value problems analytically proves impractical, necessitating the 

utilization of numerical methods. These methods are employed to derive an approximate solution for the initial 

value problem at hand (James et al., 2013). 

 

Scholars have suggested various numerical methods to approximate initial value problems, spanning from discrete 

techniques (Lambert, 1973; Butcher, 2008; Fatunla, 1988), to methods employing prediction and correction 

(Kayode & Adeyeye, 2011; Adesanya et al., 2008; Awoyemi & Idowu, 2005) and subsequently, block techniques 

(Tumba et al., 2019; Sabo et al., 2019). Researchers have suggested various numerical techniques to solve equation 

(1.1), which can be categorized into single-step or multi-step methods. Multi-step methods come in the form of 

k-step or hybrid methods. The hybrid method, although challenging to formulate, has been noted to overcome the 

Dahlquist barrier condition by introducing off-step points. Despite its complexity, it provides superior 

approximation compared to the k-step method, particularly with smaller step lengths, (Odekunle et al., 2012). 

Reports suggest that the hybrid method offers improved stability conditions, particularly in cases where the 

problem exhibits stiffness or oscillations, (Omar et al., 2016; Skwame et al., 2012; Skwame et al., 2018). 

 

The research is structured as follows: an introduction provides an overview, followed by the method's 

development in the second section. The analysis of the method is explored in the third section, while the fourth 

section applies the method mathematically to various physical problems. Finally, concluding remarks are drawn. 

 

Materials and Methods 

We utilize the power series  polynomial as a fundamental function for developing the method,  employing 

interpolation and collocation techniques. 

The power series, serves as an approximation in the following format; 

 

𝑦(𝑥) = ℎ∑ 𝛺𝑗𝜏
𝑖𝑢+𝑣−1

𝑖=0               (2) 

be acknowledged, wherein 𝑢 and 𝑣 represent the points of interpolation and collocation, 

respectively. By applying differentiation to equation (2) once, we obtain 

 

𝑦′(𝑥) = ℎ∑ 𝑖𝛺𝑗𝜏
𝑖−1𝑢+𝑣−1

𝑖=0               (3) 

Where 𝛺 ∈ ℜ for 𝑖 = 0 (
1

7
) 1 and the function 𝑦(𝑥) possesses continuous differentiability. We shall endeavour to 

obtain the solution of equation (1.1) over the integration interval[ 𝑎, 𝑏], utilizing a constant step-size h which is 

specified by the relation ℎ = 𝜒𝑛+1 − 𝜒𝑛 ,  𝑛 = 0,  1, ⋯ ,  𝑁. 

Substituting equation (3) into (1) gives, 

 

𝑓(𝑥, 𝑦) = ℎ∑ 𝑖𝛺𝑗𝜏
𝑖−1𝑢+𝑣−1

𝑖=0              (4) 

We interpolate equation (2) at point, 𝜏𝑛+𝑢,  𝑢 =
1

7
 and collocate equation (4) at points 
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𝜏𝑛+𝑣,  𝑣 = 0, 
1

7
,  
2

7
,  
3

7
 
4

7
, 
5

7
,  
6

7
,  1 to give, 

𝑀𝛷 = 𝑁 as 
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 (5) 

Solving (5), for 𝛺𝑖 ,  𝑖 = 0 (
1

7
) 1 and replacing back into (2) gives a linear block method as  

𝑦(𝑥) = 𝛼1
7

(𝑥)𝑦
𝑛+

1
7
+ ℎ [

𝛽0(𝑥)𝑓𝑛 + 𝛽1
7

(𝑥)𝑓
𝑛+

1
7
+ 𝛽2

7

(𝑥)𝑓
𝑛+

2
7
+ 𝛽3

7

(𝑥)𝑓
𝑛+

3
7
+

𝛽4
7

(𝑥)𝑓
𝑛+

4
7
+ 𝛽5

7

(𝑥)𝑓
𝑛+

5
7
+ 𝛽6

7

(𝑥)𝑓
𝑛+

6
7
+ 𝛽1(𝑥)𝑓𝑛+1

] 

(6) 

Evaluating (6) at non-interpolating points to gives 

𝑦𝑛 = 𝑦
𝑛+

1
7
−

751

17280
ℎ𝑓𝑛 −

139849

846720
ℎ𝑓

𝑛+
1
7
+

4511

31360
ℎ𝑓

𝑛+
2
7
−

123133

846720
ℎ𝑓

𝑛+
3
7
+

88547

846720
ℎ𝑓

𝑛+
4
7

−
1537

31360
ℎ𝑓

𝑛+
5
7
+

11351

846720
ℎ𝑓

𝑛+
6
7
−

275

169344
ℎ𝑓𝑛+1 

(7) 

𝑦
𝑛+

2
7
= 𝑦

𝑛+
1
7
−

275

169344
ℎ𝑓𝑛 +

5311

94080
ℎ𝑓

𝑛+
1
7
+

11261

94080
ℎ𝑓

𝑛+
2
7
−

44797

846720
ℎ𝑓

𝑛+
3
7
+

2987

94080
ℎ𝑓

𝑛+
4
7

−
1283

94080
ℎ𝑓

𝑛+
5
7
+

2999

846720
ℎ𝑓

𝑛+
6
7
−

13

31360
ℎ𝑓𝑛+1 

(8) 

y
n+

3

7

= y
n+

1

7

−
13

6615
hfn +

1363

26460
hf
n+

1

7

+
46

245
hf
n+

2

7

+
1153

26460
hf
n+

3

7

+
52

6615
hf
n+

4

7

−
1

196
hf
n+

5

7

+

2

1323
hf
n+

6

7

−
1

5292
hfn+1  

 

  (9) 

𝑦
𝑛+

4

7

= 𝑦
𝑛+

1

7

−
9

6272
ℎ𝑓𝑛 +

337

6272
ℎ𝑓

𝑛+
1

7

+
1107

6272
ℎ𝑓

𝑛+
2

7

+
3897

31360
ℎ𝑓

𝑛+
3

7

+
2777

31360
ℎ𝑓

𝑛+
4

7

−
513

31360
ℎ𝑓

𝑛+
5

7

+

117

31360
ℎ𝑓

𝑛+
6

7

−
13

31360
ℎ𝑓𝑛+1  

 

(10) 

𝑦
𝑛+

5
7
= 𝑦

𝑛+
1
7
−

8

6615
ℎ𝑓𝑛 +

38

735
ℎ𝑓

𝑛+
1
7
+

136

735
ℎ𝑓

𝑛+
2
7
+

664

6615
ℎ𝑓

𝑛+
3
7
+

136

735
ℎ𝑓

𝑛+
4
7
+

38

735
ℎ𝑓

𝑛+
5
7

−
8

6615
ℎ𝑓

𝑛+
6
7
 

 

(11) 

𝑦
𝑛+

6

7

= 𝑦
𝑛+

1

7

−
275

169344
ℎ𝑓𝑛 +

9355

169344
ℎ𝑓

𝑛+
1

7

+
1075

6272
ℎ𝑓

𝑛+
2

7

+
22375

169344
ℎ𝑓

𝑛+
3

7

+
22375

169344
ℎ𝑓

𝑛+
4

7

+

1075

6272
ℎ𝑓

𝑛+
5

7

+
9355

169344
ℎ𝑓

𝑛+
6

7

−
275

169344
ℎ𝑓𝑛+1  

 

(12) 
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𝑦𝑛+1 = 𝑦
𝑛+

1
7
+
41

980
ℎ𝑓

𝑛+
1
7
+

54

245
ℎ𝑓

𝑛+
2
7
+

27

980
ℎ𝑓

𝑛+
3
7
+

68

245
ℎ𝑓

𝑛+
4
7
+

27

980
ℎ𝑓

𝑛+
5
7
+

54

245
ℎ𝑓

𝑛+
6
7

+
41

980
ℎ𝑓𝑛+1 

 

(13) 

Using equation (7) to make 𝑦
𝑛+

1

7

 the subject of the formula, to get 

𝑦
𝑛+

1
7
= 𝑦𝑛 +

751

17280
ℎ𝑓𝑛 +

139849

846720
ℎ𝑓

𝑛+
1
7
−

4511

31360
ℎ𝑓

𝑛+
2
7
+

123133

846720
ℎ𝑓

𝑛+
3
7
−

88547

846720
ℎ𝑓

𝑛+
4
7

+
1537

31360
ℎ𝑓

𝑛+
5
7
−

11351

846720
ℎ𝑓

𝑛+
6
7
+

275

169344
ℎ𝑓𝑛+1 

 

(14) 

 

Substitute (14) into (8) to (13) to gives the new scheme as 

𝑦
𝑛+

1
7
= 𝑦𝑛 +

751

17280
ℎ𝑓𝑛 +

139849

846720
ℎ𝑓

𝑛+
1
7
−

4511

31360
ℎ𝑓

𝑛+
2
7
+

123133

846720
ℎ𝑓

𝑛+
3
7
−

88547

846720
ℎ𝑓

𝑛+
4
7
+

1537

31360
ℎ𝑓

𝑛+
5
7
+

11351

846720
ℎ𝑓

𝑛+
6
7
+

275

169344
ℎ𝑓𝑛+1

𝑦
𝑛+

2
7
= 𝑦𝑛 +

41

980
ℎ𝑓𝑛 +

1466

6615
ℎ𝑓

𝑛+
1
7
−

71

2940
ℎ𝑓

𝑛+
2
7
+

68

735
ℎ𝑓

𝑛+
3
7
−

1927

26460
ℎ𝑓

𝑛+
4
7
+

26

735
ℎ𝑓

𝑛+
5
7
−

29

2940
ℎ𝑓

𝑛+
6
7
+

8

6615
ℎ𝑓𝑛+1

𝑦
𝑛+

3
7
= 𝑦𝑛 +

265

6272
ℎ𝑓𝑛 +

1359

6272
ℎ𝑓
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1
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+

1377

31360
ℎ𝑓
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2
7
+

5927

31360
ℎ𝑓
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3
7
−

3033

31360
ℎ𝑓

𝑛+
4
7
+

1377
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ℎ𝑓

𝑛+
5
7
−

373

31360
ℎ𝑓

𝑛+
6
7
+

9

6272
ℎ𝑓𝑛+1

𝑦
𝑛+

4
7
= 𝑦𝑛 +

278

6615
ℎ𝑓𝑛 +

1445

6615
ℎ𝑓

𝑛+
1
7
+

8

245
ℎ𝑓

𝑛+
2
7
+

1784

6615
ℎ𝑓

𝑛+
3
7
−

106

6615
ℎ𝑓

𝑛+
4
7
+

8

245
ℎ𝑓

𝑛+
5
7
−

64

6615
ℎ𝑓

𝑛+
6
7
+

8

6615
ℎ𝑓𝑛+1

𝑦
𝑛+

5
7
= 𝑦𝑛 +

265

6272
ℎ𝑓𝑛 +

36725

169344
ℎ𝑓

𝑛+
1
7
+

775

18816
ℎ𝑓

𝑛+
2
7
+

4625

18816
ℎ𝑓

𝑛+
3
7
−

13625

169344
ℎ𝑓

𝑛+
4
7
+

1895

18816
ℎ𝑓

𝑛+
5
7
−

275

18816
ℎ𝑓

𝑛+
6
7
+

275

169344
ℎ𝑓𝑛+1

𝑦
𝑛+

6
7
= 𝑦𝑛 +

41

980
ℎ𝑓𝑛 +

54

245
ℎ𝑓

𝑛+
1
7
+

27

980
ℎ𝑓

𝑛+
2
7
+

68

245
ℎ𝑓

𝑛+
3
7
+

27

980
ℎ𝑓

𝑛+
4
7
+

54

245
ℎ𝑓

𝑛+
5
7
+

41

980
ℎ𝑓

𝑛+
6
7

𝑦𝑛+1 = 𝑦𝑛 +
751

17280
ℎ𝑓𝑛 +

3577

17280
ℎ𝑓

𝑛+
1
7
−

49

640
ℎ𝑓

𝑛+
2
7
+

2989

17280
ℎ𝑓

𝑛+
3
7
+

2989

17280
ℎ𝑓

𝑛+
4
7
+

49

640
ℎ𝑓

𝑛+
5
7
+

3577

17280
ℎ𝑓

𝑛+
6
7
+

751

17280
ℎ𝑓𝑛+1 }
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Results 

Basic Properties of the new Scheme 

Order of the block method 

To find the order and error constant of the new scheme, we first defined the linear difference operator 𝐿 associated 

with equation (15) as 

𝐿[𝑦(𝑥);  ℎ] = 𝑀𝛷 = 𝑁 (16) 

Corollary (Omar & Adeyeye (2016)) 

Compared The Linear Operator (16) With The Truncation Error 𝐶09ℎ
09𝑦09(𝑥𝑛) + 0(ℎ

10). 

Proof 

The Linear Difference Operators (16) Is Compared With The New Scheme (15) As 

𝑙1
7

[𝑦(𝑥𝑛); ℎ] = 𝑦 (𝑥𝑛 +
1

7
ℎ) − (𝛼1

7

(𝑥𝑛 +
1

7
ℎ) + ℎ∑ (𝛽𝑣(𝑥)𝑓𝑛+𝑣)

1
𝑗=0 )

𝑙2
7

[𝑦(𝑥𝑛); ℎ] = 𝑦 (𝑥𝑛 +
2

7
ℎ) − (𝛼1

7

(𝑥𝑛 +
1

7
ℎ) + ℎ∑ (𝛽𝑣(𝑥)𝑓𝑛+𝑣)

1
𝑗=0 )

𝑙3
7

[𝑦(𝑥𝑛); ℎ] = 𝑦 (𝑥𝑛 +
3

7
ℎ) − (𝛼1

7

(𝑥𝑛 +
1

7
ℎ) + ℎ∑ (𝛽𝑣(𝑥)𝑓𝑛+𝑣)

1
𝑗=0 )

𝑙4
7

[𝑦(𝑥𝑛); ℎ] = 𝑦 (𝑥𝑛 +
4

7
ℎ) − (𝛼1

7

(𝑥𝑛 +
1

7
ℎ) + ℎ∑ (𝛽𝑣(𝑥)𝑓𝑛+𝑣)

1
𝑗=0 )

𝑙5
7

[𝑦(𝑥𝑛); ℎ] = 𝑦 (𝑥𝑛 +
5

7
ℎ) − (𝛼1

7

(𝑥𝑛 +
1

7
ℎ) + ℎ∑ (𝛽𝑣(𝑥)𝑓𝑛+𝑣)

1
𝑗=0 )

𝑙6
7

[𝑦(𝑥𝑛); ℎ] = 𝑦 (𝑥𝑛 +
6

7
ℎ) − (𝛼1

7

(𝑥𝑛 +
1

7
ℎ) + ℎ∑ (𝛽𝑣(𝑥)𝑓𝑛+𝑣)

1
𝑗=0 )

𝑙1[𝑦(𝑥𝑛); ℎ] = 𝑦(𝑥𝑛 + ℎ) − (𝛼1
7

(𝑥𝑛 +
1

7
ℎ) + ℎ∑ (𝛽𝑣(𝑥)𝑓𝑛+𝑣)

1
𝑗=0 )

}
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Corollary (Omar & Adeyeye, 2016) 

The local truncation error of (15) is assume 𝑦(𝑥) to be sufficiently differentiable and expanding 𝑦(𝑥𝑛 + 𝑞ℎ) and 

𝑦(𝑥𝑛 + 𝑗ℎ) about 𝑥𝑛 using Taylor series to have 

𝑙1
7

[𝑦(𝑥𝑛); ℎ] = (2.3186 × 10
−10), 𝑙2

7

[𝑦(𝑥𝑛); ℎ] = (1.8203 × 10
−10), 𝑙3

7

[𝑦(𝑥𝑛); ℎ]

= (2.0411 × 10−10), 𝑙4
7

[𝑦(𝑥𝑛); ℎ] = (1.8706 × 10−10), 𝑙5
7

[𝑦(𝑥𝑛); ℎ]

= (2.0914 × 10−10), 𝑙6
7

[𝑦(𝑥𝑛); ℎ] = (1.5931 × 10
−10), 𝑙1[𝑦(𝑥𝑛); ℎ]

= (3.9117 × 10−10) 

(18) 

Proof 

Expanding (17) using a Taylor series about 𝑥𝑛 respectively and then collecting their like elements to the power 

of  ℎ gives 

𝑙1
7

[𝑦(𝑥𝑛); ℎ] = (2.3186 × 10−10)ℎ9𝑦(9)(𝑥𝑛) + 0(ℎ
10)𝑙2

7

[𝑦(𝑥𝑛); ℎ]

= (1.8203 × 10−10)ℎ9𝑦(9)(𝑥𝑛) + 0(ℎ
10)𝑙3

7

[𝑦(𝑥𝑛); ℎ]

= (2.0411 × 10−10)ℎ9𝑦(9)(𝑥𝑛) + 0(ℎ
10)𝑙4

7

[𝑦(𝑥𝑛); ℎ]

= (1.8706 × 10−10)ℎ9𝑦(9)(𝑥𝑛) + 0(ℎ
10)𝑙5

7

[𝑦(𝑥𝑛); ℎ]

= (2.0914 × 10−10)ℎ9𝑦(9)(𝑥𝑛) + 0(ℎ
10)𝑙6

7

[𝑦(𝑥𝑛); ℎ]

= (1.5931 × 10−10)ℎ9𝑦(9)(𝑥𝑛) + 0(ℎ
10)𝑙1[𝑦(𝑥𝑛); ℎ]

= (3.9117 × 10−10)ℎ9𝑦(9)(𝑥𝑛) + 0(ℎ
10) 

 

 

 

 

 

 

Hence, from the above results, the order of the new scheme is 9, and the error constants is 

𝐶10 = (2.3186 × 10
−10 1.8203 × 10−10 2.0411 × 10−10 1.8706 × 10−10 2.0914 × 10−10 1.593

× 10−10 3.9117 × 10−10)𝑇 

Consistency (Omar & Adeyeye, 2016) 

Now that the order 𝑝 ≥ 7, therefore, the new scheme (15) is consistent.
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Zero stability  

Definition: The new scheme (15) is expected to be zero-stable, if the roots 𝑧𝑠,  𝑠 = 1,  2,⋯ ,  𝑘of the first 

characteristic polynomial 𝜌(𝑧) defined by 𝜌(𝑧) = 𝑑𝑒𝑡(𝑧𝐴 − 𝐸)satisfies|𝑧𝑠| ≤ 1 and every root satisfying |𝑧𝑠| =

0 have multiplicity not exceeding the order of the differential equation. Moreover, as ℎ → 0,  𝜌(𝑧) =

𝑧𝑟−𝜇(𝑧 − 1)𝜇 where 𝜇is the order of the differential equation, 𝑟is the order of the matrices 𝐴(0) and 𝐸, (Omar & 

Adeyeye, 2016). 

Then our method, 

𝜌(𝑧) =

|

|

𝑧

(

 
 
 
 

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1)

 
 
 
 

−

(

 
 
 
 

0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1)

 
 
 
 

|

|

= 𝑧7(𝑧 − 1)𝜌(𝑧) = 𝑧7(𝑧 − 1) = 0 

 

𝑙1
7

[𝑦(𝑥𝑛); ℎ] = (2.3186 × 10
−10), 𝑙2

7

[𝑦(𝑥𝑛); ℎ] = (1.8203 × 10
−10), 𝑙3

7

[𝑦(𝑥𝑛); ℎ]

= (2.0411 × 10−10), 𝑙4
7

[𝑦(𝑥𝑛); ℎ] = (1.8706 × 10−10), 𝑙5
7

[𝑦(𝑥𝑛); ℎ]

= (2.0914 × 10−10), 𝑙6
7

[𝑦(𝑥𝑛); ℎ] = (1.5931 × 10
−10), 𝑙1[𝑦(𝑥𝑛); ℎ]

= (3.9117 × 10−10) 

(18) 

Proof 

Expanding (17) using a Taylor series about 𝑥𝑛 respectively and then collecting their like elements to the power 

of  ℎ gives 

𝑙1
7

[𝑦(𝑥𝑛); ℎ] = (2.3186 × 10−10)ℎ9𝑦(9)(𝑥𝑛) + 0(ℎ
10)𝑙2

7

[𝑦(𝑥𝑛); ℎ]

= (1.8203 × 10−10)ℎ9𝑦(9)(𝑥𝑛) + 0(ℎ
10)𝑙3

7

[𝑦(𝑥𝑛); ℎ]

= (2.0411 × 10−10)ℎ9𝑦(9)(𝑥𝑛) + 0(ℎ
10)𝑙4

7

[𝑦(𝑥𝑛); ℎ]

= (1.8706 × 10−10)ℎ9𝑦(9)(𝑥𝑛) + 0(ℎ
10)𝑙5

7

[𝑦(𝑥𝑛); ℎ]

= (2.0914 × 10−10)ℎ9𝑦(9)(𝑥𝑛) + 0(ℎ
10)𝑙6

7

[𝑦(𝑥𝑛); ℎ]

= (1.5931 × 10−10)ℎ9𝑦(9)(𝑥𝑛) + 0(ℎ
10)𝑙1[𝑦(𝑥𝑛); ℎ]

= (3.9117 × 10−10)ℎ9𝑦(9)(𝑥𝑛) + 0(ℎ
10) 

 

 

 

 

 

 

Hence, from the above results, the order of the new scheme is 9, and the error constant is 

𝐶10 = (2.3186 × 10
−10 1.8203 × 10−10 2.0411 × 10−10 1.8706 × 10−10 2.0914 × 10−10 1.593

× 10−10 3.9117 × 10−10)𝑇 



 
Analysis of Convergence of Block Methods in Simulating Epidemic Diseases 

148 Cite this article as:   

Bello, K. A., James, A. A., Ayinde, A. M., & Sabo, J. (2024). Analysis of convergence of block methods in simulating 
epidemic diseases. FNAS Journal of Mathematical Modeling and Numerical Simulation, 2(1), 142-152. 

 

Linear Stability 

The concept of A-stability according to [12] is discussed by applying the test equation  

𝑦(𝑘) = 𝜆(𝑘)𝑦  (19) 

To yield 

𝑌𝑚 = 𝜇(𝑧)𝑌𝑚−1,  𝑧 = 𝜆ℎ  (20) 

 

Where 𝜇(𝑧) is the amplification matrix of the form 

𝜇(𝑧) = (𝜉0 − 𝑧𝜂(0) − 𝑧1𝜂(0))
−1
(𝜉1 − 𝑧𝜂(1) − 𝑧1𝜂(1))    (21) 

The matrix 𝜇(𝑧) has Eigen values (0,  0, ⋯ , 𝜉𝑘)  where 𝜉𝑘 is called the stability function. 

Thus, the stability function of the method is given by 

𝜁 = −
(7612505820z7-334 745051466z6+6620 293799280z5-102213 085557541z4+998319 737297995z3

-7133554 799947415z2+29598119 607974400z-60247612 422144000
)

(9144576000z7-331 948108800z6+7005 050035200z5-101102 737075200z4+1024619 258880000z3

-7069872 886272000z2+30123806 211072000z-60247612 422144000
)
(22) 

 

Mathematical implementations

The new scheme was mathematically applied to a selection of problems, including the SIR model, the growth 

model, and a highly stiff differential equation. The results will be compared with those found in existing literature. 

The model is detailed below. 

The following notations will be used in the tables and figures. 

ER means exact result;   CR means the computed result 

ENS means absolute error in the new scheme;  

EOA16 means absolute error in Omar and Adeyeye (2016);  

ESOA13 means absolute error in Sunday et al. (2013); 

ESA19 means absolute error in Sunday and Agbataobi (2019); 

EOA16i means absolute error in the Two-Step Implicit Obrechkoff Method of Omar and Adeyeye (2016);  

EOA16ii means absolute error in the New Two-Step Obrechkoff-Type Block Method of Omar and Adeyeye 

(2016);  EBYP15 means absolute error in Badmus et al. (2015).

 

Problem 1 (SIR Model): 

The susceptible-infected-recovered (SIR) model represents an epidemiological framework that quantifies the 

aggregate of individuals afflicted by a communicable disease within a specified population over a designated 

temporal interval. Such models are predicated upon the premise that they encompass interrelated equations 

regarding the quantity of individuals who are vulnerable to the disease, denoted as S(t), the number of individuals 

currently experiencing the infection, represented as I(t), and the total count of individuals who have attained 

recovery, indicated as R(t). The model is interconnected as follows: 

 
𝑑𝑆

𝑑𝑡
= 𝜇 − 𝛽𝑆𝐼 − 𝜇𝑆 

(23) 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼 − 𝜇𝐼 

(24) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅 

(25) 

For 𝜇,  𝛾 𝑎𝑛𝑑 𝛽are positive parameters. 𝑦is given as,  

𝑦 = 𝑆 + 𝐼 + 𝑅   (26) 

Summing (23), (24) and (25) to get 

𝑦′ = 𝜇(1 − 𝑦)   (27) 

let 𝜇 = 0.5with initial condition as 𝑦(0) = −0.5, we get,  
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𝑦 =
1

2
(1 − 𝑦),  𝑦(0) =

1

2
,  ℎ = 0 

(28) 

with exact solution: 

𝑦(𝑡) = 1 −
1

2
𝑒−𝑡  (29) 

See: (Omar & Adeyeye, 2016; Sunday et al., 2013). 

 

Problem 2 (Growth Model): 

Consider a growth model, commonly referred to as a bacterial culture, which proliferates at a rate that is directly 

proportional to the total population present. After a duration of one hour, approximately 1000 bacterial strands 

are identified within the culture; subsequently, after four hours, 3000 strands of the bacteria are also observed. 

Determine the cumulative total of bacterial strands present in the culture at a specified time. 𝑡:  0 ≤ 𝑡 ≤ 1 

We assumed 𝑦(𝑡) to be the number of bacteria strands in the culture at time𝑡, the equation is modeled as 

 

𝑦′ = 0.366𝑦,  𝑦(0) = 694  (30) 

With exact solution as, 

𝑦(𝑡) = 694𝑒0.366𝑡  (31) 

See: (Sunday & Agbataobi, 2019). 

Problem 3  

Consider the Highly stiff differential equation  

𝑦′ = 𝜆𝜂,  ℎ = 0.1,  𝑡(0) = 𝜆 = 1,  𝜂 = −1   (32) 

With the exact solution 

𝑦(𝑡) = 𝑒𝑥𝑝( 𝜂𝑡)  (33) 

Source: (Omar & Adeyeye, 2016; Badmus et al., 2015). 

 

Results 

Table 1 Numerical Results of problem of 1 with that of (Omar & Adeyeye, 2016; Sunday et al., 2013).   

t ER CR ENS EOA16 ESOA13 

0.100 0.52438528774964299 0.5243852877496429 2.0000e-20 4.9562e-06 5.5744e-12 

0.200 0.54758129098202021 0.5475812909820202 3.0000e-20 4.7260e-06 3.9462e-12 

0.300 0.56964601178747101 0.5696460117874711 3.0000e-20 8.9799e-06 8.1832e-12 

0.400 0.59063462346100907 0.5906346234610091 4.0000e-20 8.5524e-06 3.4361e-11 

0.500 0.61059960846429757 0.6105996084642976 5.0000e-20 1.2193e-05 1.9294e-10 

0.600 0.62959088965914107 0.6295908896591411 8.0000e-20 1.1608e-05 1.8790e-10 

0.700 0.64765595514064328 0.6476559551406433 9.0000e-20 1.4713e-05 1.7768e-10 

0.800 0.66483997698218035 0.6648399769821803 9.0000e-20 1.4004e-05 1.7247e-10 

0.900 0.68118592418911335 0.6811859241891134 9.0000e-20 1.6643e-05 1.8476e-10 

1.000 0.69673467014368329 0.6967346701436833 9.0000e-20 1.5839e-05 3.0058 e-10 

See: (Omar & Adeyeye, 2016; Sunday et al., 2013). 

 

Table 2 Numerical Results of problem of problem 2 with that of (Sunday & Agbataobi, 2019) 

t ER CR ENS ESA19 

0.100 719.87095048413192628 719.87095048413192630000 2.0000e-17 0.0000e00 

0.200 746.70631894946328473 746.70631894946328476000 3.0000e-17 0.0000e00 

0.300 774.54205699518372529 774.54205699518372527000 2.0000e-17 0.0000e00 

0.400 803.41545642515503139 803.41545642515503132000 7.0000e-17 0.0000e00 

0.500 833.36519920809658332 833.36519920809658331000 1.0000e-17 0.0000e00 

0.600 864.43140930018794572 864.43140930018794562000 1.0000e-16 2.2737e-13 
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0.700 896.65570639951581410 896.65570639951581398000 1.2000e-16 2.2737e-13 

0.800 930.08126170438066714 930.08126170438066698000 1.6000e-16 3.4106e-13 

0.900 964.75285575016305883 964.75285575016305864000 1.9000e-16 2.2737e-13 

1.000 1000.7169384022341531 1000.7169384022341529000 2.0000e-16 3.4106e-13 

See: (Sunday & Agbataobi, 2019). 

 

 

Table 3 Numerical Results of problem of problem 3 with that of (Omar & Adeyeye, 2016; Badmus et al., 2015) 

t ER CR ENS EAO16i EAO16ii EBY15 

0.100 0.90483741803595957316 0.90483741803595957288 2.8000e-19 7.5513e-05 9.0730e-12 1.5476e-10 

0.200 0.81873075307798185867 0.81873075307798185815 5.2000e-19 6.8684e-05 1.1768e-11 1.3823e-10 

0.300 0.74081822068171786607 0.74081822068171786535 7.2000e-19 1.2397e-04 2.3144e-11 1.3282e-10 

0.400 0.67032004603563930074 0.67032004603563929987 8.7000e-19 1.1246e-04 2.8440e-11 1.1733e-10 

0.500 0.60653065971263342360 0.60653065971263342262 9.8000e-19 1.5237e-04 3.1815e-11 1.1342e-10 

0.600 0.54881163609402643263 0.54881163609402643156 1.0700e-19 1.3811e-05 3.4927e-11 9.9385e-11 

0.700 0.49658530379140951470 0.49658530379140951357 1.1300e-19 1.6640e-04 3.6582e-11 9.6770e-11 

0.800 0.44932896411722159143 0.44932896411722159026 1.1700e-19 1.5076e-04 3.8127e-11 8.4003e-11 

0.900 0.40656965974059911188 0.40656965974059911069 1.1900e-19 1.7033e-04 3.8576e-11 8.2517e-11 

1.000 0.36787944117144232160 0.36787944117144232039 1.2100e-19 1.5428e-04 3.9020e-11 7.0848e-11 

 

 

 

Figure 1 Graphical curves for Problem 1 
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Figure 2 Graphical curves for Problem 17 

 

Figure 3 Graphical curves for Problem 3 

 

Discussion 

The newly developed scheme meets all criteria for analysis, including order and error constant, consistency, 

convergence, and zero-stability. This derived scheme was then utilized to address certain epidemic disease 

problems involving first-order initial value problems of ordinary differential equations. Specifically, Problem 1 

was successfully tackled using this approach (Omar & Adeyeye, 2016; Sunday et al., 2013), Referred to as an SIR 

Model, this epidemiological disease calculates the total number of individuals infected with a transmissible 

infection within a closed population over a specified duration. Our method, as evidenced by Table 1 and Figure 

2, computes more favourably compared to that of (Omar & Adeyeye, 2016; Sunday et al.,  2013). Problem 2, 

known as a Growth Model or bacteria culture, entails growth occurring at a rate proportionate to the current size. 

This is addressed by (Sunday & Agbataobi, 2019) table 2 clearly demonstrates the convergence of our method 

across (Sunday & Agbataobi, 2019) additionally, depicted in Figure 2 graphically. Lastly, Problem 3 involves a 

highly stiff differential equation, which was addressed by (Omar & Adeyeye, 2016; Badmus et al., 2015), where 

our method outperforms that of (Omar & Adeyeye, 2016; Badmus et al., 2015) as observed in  

Table 3 and Figure 3. 

 

Conclusion 

In this study, a new scheme was employed to simulate an epidemic disease model. This scheme developed using 

power series polynomials and analyzed numerically, exhibited superior accuracy and faster convergence 

compared to existing methods explored in the research. Consequently, the new schemes produced favorable 

outcomes over their predecessors. Moreover, these new schemes demonstrated computational reliability when 
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simulating similar epidemic models described by differential equations, surpassing the methods considered 

previously.
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