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Abstract:

This research delves into a comprehensive examination of the application and convergence analysis of a newly
developed block method for simulating epidemic models. The focal point of this study revolves around the
derivation and implementation of a novel scheme, crafted through the utilization of power series polynomials,
ensuring the fulfilment of essential properties. The formulation of the new scheme was rooted in the power series
polynomial, a mathematical construct known for its versatility and precision. The rigorous validation process
confirmed that the derived scheme satisfied the requisite properties, thereby establishing its theoretical soundness.
The crux of the investigation lies in the practical application of this innovative scheme to simulate an epidemic
model. Through meticulous simulations, the results yielded compelling evidence of the new method's superiority
over existing approaches considered in this research. The comparative analysis demonstrated a notable
enhancement in both accuracy and convergence speed, highlighting the efficacy of the newly proposed scheme in
capturing and predicting the dynamics of epidemics. The observed advantages of the new scheme are particularly
noteworthy, showcasing its potential to revolutionize the field of epidemiological modelling. By outperforming
established methods, the new approach not only contributes to the theoretical underpinnings of epidemic
modelling but also holds significant promise for practical applications, such as forecasting disease spread and
optimizing intervention strategies.
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Introduction

In numerical modelling of real-world issues across disciplines such as engineering, biological sciences, physical
sciences, and electronics, initial value problems are frequently encountered (Shokri & Shokri, 2013). In
epidemiological studies, the spread of infections over time or across populations can be effectively modelled using
numerical methods, particularly through differential equations. The application of mathematical techniques to
epidemic modelling is integral to applied sciences and various other fields. In these contexts, stochastic elements
or "noises™ are often incorporated into deterministic differential equation models to better capture the complex
dynamics of disease transmission and progression (Kermack & Mckendrick, 1927). Epidemiological problems
and studies are frequently expressed numerically and symbolically as equations, particularly differential
equations, to provide meaningful frameworks for analysis, construction, and application. A foundational model
in this domain is the Susceptible-Infective-Recovered (SIR) model, which was introduced by researchers Kermack
and McKendrick (1927). Prominent researchers in the field of mathematical modelling translate the spread of
transmissible viruses into differential equations. In these models, the population is divided into three categories:
susceptible individuals (denoted by S), infective individuals (denoted by 1), and removed or recovered individuals
(denoted by R). Those in the recovered category are no longer at risk of becoming infected or spreading the
infection. This could be due to recovery and subsequent immunity, vaccination, isolation from the population, or
death. A disease that persists continuously within a population is termed endemic (Chasnov, 2009; Herbert, 1989).

Individuals in the recovered category of the SIR model are considered to have lifelong immunity. The SIR model
is effectively described using ordinary differential equations (ODES), representing a deterministic framework
where identical initial conditions always produce the same outcomes. This model operates in continuous time
rather than discrete intervals. According to the principles of response kinetics, interactions between infected and
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susceptible individuals occur at rates proportional to their respective numbers within the population (Herbert
(1989); Misra, 2005). Modelling provides a straightforward way to illustrate how diseases spread over time. Many
epidemic models focus on segmenting the population into a few distinct groups. The model is divided into three
categories, which are as follows:

i Susceptible individuals are those who harbour underlying conditions that compromise their immune
system and render them resistant to treatment. Conversely, susceptibility also denotes the state wherein
an individual is vulnerable to contracting a particular disease;

ii.  Infected individuals are those who are ill and can readily pass on the infection to others.

iii.  Recovered or Resistant (R): This category comprises individuals who have experienced illness for a
duration and subsequently healed or recuperated. This includes illnesses where individuals gain enduring
immunity.

This research concentrates on developing an algorithmic model employing a two-step approach to address a
specific problem.

y' =y, ¥(0) =y, x€[a,b] 1)
Where f:R X R™ - R™,y,y, € R™, f is anticipated to meet the Lipchitz condition.

In the majority of instances, solving these initial value problems analytically proves impractical, necessitating the
utilization of numerical methods. These methods are employed to derive an approximate solution for the initial
value problem at hand (James et al., 2013).

Scholars have suggested various numerical methods to approximate initial value problems, spanning from discrete
techniques (Lambert, 1973; Butcher, 2008; Fatunla, 1988), to methods employing prediction and correction
(Kayode & Adeyeye, 2011; Adesanya et al., 2008; Awoyemi & Idowu, 2005) and subsequently, block techniques
(Tumbaetal., 2019; Sabo et al., 2019). Researchers have suggested various numerical technigues to solve equation
(1.1), which can be categorized into single-step or multi-step methods. Multi-step methods come in the form of
k-step or hybrid methods. The hybrid method, although challenging to formulate, has been noted to overcome the
Dahlquist barrier condition by introducing off-step points. Despite its complexity, it provides superior
approximation compared to the k-step method, particularly with smaller step lengths, (Odekunle et al., 2012).
Reports suggest that the hybrid method offers improved stability conditions, particularly in cases where the
problem exhibits stiffness or oscillations, (Omar et al., 2016; Skwame et al., 2012; Skwame et al., 2018).

The research is structured as follows: an introduction provides an overview, followed by the method's
development in the second section. The analysis of the method is explored in the third section, while the fourth
section applies the method mathematically to various physical problems. Finally, concluding remarks are drawn.

Materials and Methods

We utilize the power series polynomial as a fundamental function for developing the method, employing
interpolation and collocation techniques.

The power series, serves as an approximation in the following format;

y(x) = h Xy~ o7 )
be acknowledged, wherein u and v represent the points of interpolation and collocation,
respectively. By applying differentiation to equation (2) once, we obtain

y' () = h Xy tiget? (3)

WhereQ e Rfori =0 (%) 1 and the function y(x) possesses continuous differentiability. We shall endeavour to
obtain the solution of equation (1.1) over the integration interval[ a, b], utilizing a constant step-size h which is

specified by the relationh = x4y — x,, n =0, 1, -, N.
Substituting equation (3) into (1) gives,
floy) = REET igT ™ @)

We interpolate equation (2) at point, 7,,,,, U = % and collocate equation (4) at points
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Solving (5), forQ;, i =0 G) 1 and replacing back into (2) gives a linear block method as

ﬁo(X)fn+ﬁl(X)f R A RS 1C) MR (6)
y(X)—al(x)y ¢ 7] !
ﬁ @F, 2 £ BS54 oGO 6+ Br(Dfurs
7 7 7 7
Evaluating (6) at non-interpolating points to gives
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Results
Basic Properties of the new Scheme
Order of the block method
To find the order and error constant of the new scheme, we first defined the linear difference operator L associated
with equation (15) as
Lly(x); h] = M® =N (16)

Corollary (Omar & Adeyeye (2016))

Compared The Linear Operator (16) With The Truncation Error Cyoh%y°°(x,,) + 0(h'°).
Proof

The Linear Difference Operators (16) Is Compared With The New Scheme (15) As
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Corollary (Omar & Adeyeye, 2016)
The local truncation error of (15) is assume y(x) to be sufficiently differentiable and expanding y(x,, + qh) and
vy (x, + jh) about x,, using Taylor series to have

l%[y(xn); h] = (2.3186 x 10719), l%[y(xn); h] = (1.8203 x 10719), l;[y(xn); h] (18)

= (2.0411 x 10719, La[y(x,); k] = (1.8706 x 10710, Is[y(x,); h]
7 7

= (2.0914 x 10719), Is[y(x,); h] = (1.5931 x 10729), 1, [y (x,,); h]
7

= (3.9117 x 10719)
Proof
Expanding (17) using a Taylor series about x,, respectively and then collecting their like elements to the power
of h gives

l;[y(xn); h] = (2.3186 x 107 %y (x,) + 0(h1°)l;[y(xn): h]

= (1.8203 x 101y (x,) + O(hlo)l;[y(xn); h]
= (2.0411 x 107 )r%y O (x,) + 0(h1°)l;[y(xn); h]
= (1.8706 x 107 1)r°%yP(x,) + 0(h1°)l§[y(xn); h]
= (2.0914 x 10" )%y (x,) + O(hlo)lg[y(xn); h]

= (1.5931 x 1071y (x,,)) + 0(h'*), [y (x,); h]
= (3.9117 x 10" )%y (x,,) + 0(h'°)

Hence, from the above results, the order of the new scheme is 9, and the error constants is
Cio = (23186 x 1071° 1.8203 x 1071° 2.0411 x 1071° 1.8706 x 1071° 2.0914 x 1071 1.593
X 10710 39117 x 107197
Consistency (Omar & Adeyeye, 2016)

Now that the order p > 7, therefore, the new scheme (15) is consistent.
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Zero stability

Definition: The new scheme (15) is expected to be zero-stable, if the roots z,, s =1, 2,::-, kof the first
characteristic polynomial p(z) defined by p(z) = det(zA — E)satisfies|z;| < 1 and every root satisfying |z;| =
0 have multiplicity not exceeding the order of the differential equation. Moreover, as h - 0, p(z) =
z""H(z — 1)* where uis the order of the differential equation, ris the order of the matrices A and E, (Omar &
Adeyeye, 2016).

Then our method,

1 0 0 0 0 0 O 0O 0 000 0 1
/O 1 0 0 0 O 0\ /0 0 0 0 0 O 1\
| 0 01 0 0 0 O | | 0 0 000 0 1 |
pz)=lzl0 0 0 1. 0 0 0ol-10 0 0 0 0 0 1l[=2"z-Dp)=2"z-1)=0
| 0 0 0 010 O0 l l 0 0 000 01 l
\0 0 0 0 0 1 0/ \0 0 0 0 0 O 1/
0 0 00 0 0 1 0 0 00 0 0 1
li[y(x,); h] = (2.3186 x 10719), I2[y(x,); h] = (1.8203 x 1071%), I3[y (x,); hl (18)
7 7 7
= (2.0411 x 1071°), la[y(x,,); h] = (1.8706 x 1071°), Is[y(x,); ]
7 7
= (2.0914 x 107), ls[y(xn); k] = (1.5931 x 1071%), Ly [y (x,); h]
7
= (3.9117 x 10719)
Proof

Expanding (17) using a Taylor series about x,, respectively and then collecting their like elements to the power
of h gives

L1y (xn); h] = (2.3186 X 107)h%y @ (x,) + 0(h'*) L2 [y (x,); h]

7 7

= (1.8203 x 107 10)R%y D (x,,) + 0(h1°)l;[y(xn): h]
= (2.0411 x 107 )r%y O (x,) + O(hlo)l;[y(xn): h]
= (1.8706 x 1071)r°%yD(x,) + O(hlo)lg[y(xn): h]
= (2.0914 x 1071)r°%yD(x,) + O(hlo)lg[y(xn): h]

= (1.5931 x 10" )r%y O (x,,) + 0(R1°) 1, [y (x,,); h]
= (3.9117 x 10" )%y (x,,) + 0(h'°)

Hence, from the above results, the order of the new scheme is 9, and the error constant is
Cio = (2.3186 x 1071° 1.8203 x 1071° 2.0411 x 1071° 1.8706 x 1071° 2.0914 x 1071° 1.593
x 10719 39117 x 107197

147 | Cite this article as:

Bello, K. A., James, A. A, Ayinde, A. M., & Sabo, J. (2024). Analysis of convergence of block methods in simulating
epidemic diseases. FNAS Journal of Mathematical Modeling and Numerical Simulation, 2(1), 142-152.



Analysis of Convergence of Block Methods in Simulating Epidemic Diseases

Linear Stability
The concept of A-stability according to [12] is discussed by applying the test equation
y® = 20y, (19)
To yield
Y = u(@)Y_1, z=2Ah (20)

Where p(z) is the amplification matrix of the form
u(z) = (89— zn©® — Zlﬂ(o))_l(fl — W — 71y @) (21)
The matrix u(z) has Eigen values (0, 0, ---, &) where &, is called the stability function.

Thus, the stability function of the method is given by

(761250582027 -334 7450514662° +6620 2937992802°-102213 0855575412*+998319 73729799523)
Z — _ \-7133554 799947415224+29598119 6079744002-60247612 422144000
(914457600027-331 94810880026+7005 05003520023-101102 737075200z%+1024619 25888000023)
-7069872 88627200022 430123806 211072000z-60247612 422144000

(22)

Mathematical implementations

The new scheme was mathematically applied to a selection of problems, including the SIR model, the growth
model, and a highly stiff differential equation. The results will be compared with those found in existing literature.

The model is detailed below.

The following notations will be used in the tables and figures.
ER means exact result; CR means the computed result

ENS means absolute error in the new scheme;

EOAL6 means absolute error in Omar and Adeyeye (2016);
ESOAL3 means absolute error in Sunday et al. (2013);

ESA19 means absolute error in Sunday and Agbataobi (2019);

EOAL6i means absolute error in the Two-Step Implicit Obrechkoff Method of Omar and Adeyeye (2016);
EOA16ii means absolute error in the New Two-Step Obrechkoff-Type Block Method of Omar and Adeyeye

(2016); EBYP15 means absolute error in Badmus et al. (2015).

Problem 1 (SIR Model):

The susceptible-infected-recovered (SIR) model represents an epidemiological framework that quantifies the
aggregate of individuals afflicted by a communicable disease within a specified population over a designated
temporal interval. Such models are predicated upon the premise that they encompass interrelated equations
regarding the quantity of individuals who are vulnerable to the disease, denoted as S(t), the number of individuals
currently experiencing the infection, represented as I(t), and the total count of individuals who have attained

recovery, indicated as R(t). The model is interconnected as follows:

das (23)
il i BSI — uS
di (24)
prie BSI —yI — ul
dR 25
a5 - VI uR (25)
For u, y and Bare positive parameters. yis given as,
y=S+I1+R (26)
Summing (23), (24) and (25) to get
y=ul-y) (27)

let 4 = 0.5with initial condition as y(0) = —0.5, we get,
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_1_ _1 (28)
y—2(1 y),y(O)—Z,h—o

with exact solution:

y() =1-2e™t (29)

See: (Omar & Adeyeye, 2016; Sunday et al., 2013).

Problem 2 (Growth Model):

Consider a growth model, commonly referred to as a bacterial culture, which proliferates at a rate that is directly
proportional to the total population present. After a duration of one hour, approximately 1000 bacterial strands
are identified within the culture; subsequently, after four hours, 3000 strands of the bacteria are also observed.
Determine the cumulative total of bacterial strands present in the culture at a specified time. t: 0 <t <1

We assumed y(t) to be the number of bacteria strands in the culture at timet, the equation is modeled as

y' = 0.366y, y(0) = 694 (30)
With exact solution as,
y(t) = 6940366t (31)
See: (Sunday & Agbataobi, 2019).
Problem 3
Consider the Highly stiff differential equation
y'=M, h=01t(0)=1=1n=-1 (32)
With the exact solution
y(6) = exp(nt) (33)
Source: (Omar & Adeyeye, 2016; Badmus et al., 2015).
Results
Table 1 Numerical Results of problem of 1 with that of (Omar & Adeyeye, 2016; Sunday et al., 2013).
t ER CR ENS EOA16 ESOA13
0.100 0.52438528774964299 0.5243852877496429 2.0000e-20 4.9562e-06 5.5744e-12
0.200 0.54758129098202021 0.5475812909820202 3.0000e-20 4.7260e-06 3.9462¢-12
0.300 0.56964601178747101 0.5696460117874711 3.0000e-20 8.9799e-06 8.1832¢-12
0.400 0.59063462346100907 0.5906346234610091 4.0000e-20  8.5524e-06 3.4361e-11
0.500 0.61059960846429757 0.6105996084642976 5.0000e-20 1.2193e-05 1.9294e-10
0.600 0.62959088965914107 0.6295908896591411 8.0000e-20 1.1608e-05 1.8790e-10
0.700 0.64765595514064328 0.6476559551406433 9.0000e-20 1.4713e-05 1.7768e-10
0.800 0.66483997698218035 0.6648399769821803 9.0000e-20  1.4004e-05 1.7247e-10
0.900 0.68118592418911335 0.6811859241891134 9.0000e-20 1.6643e-05 1.8476e-10
1.000 0.69673467014368329 0.6967346701436833 9.0000e-20  1.5839e-05 3.0058 e-10

See: (Omar & Adeyeye, 2016; Sunday et al., 2013).

Table 2 Numerical Results of problem of problem 2 with that of (Sunday & Agbataobi, 2019)

t ER CR ENS ESA19
0.100 719.87095048413192628 719.87095048413192630000 2.0000e-17  0.0000e00
0.200 746.70631894946328473 746.70631894946328476000 3.0000e-17  0.0000e00
0.300 774.54205699518372529 774.54205699518372527000 2.0000e-17  0.0000e00
0.400 803.41545642515503139 803.41545642515503132000 7.0000e-17  0.0000e00
0.500 833.36519920809658332 833.36519920809658331000 1.0000e-17  0.0000e00
0.600 864.43140930018794572 864.43140930018794562000 1.0000e-16 2.2737e-13
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0.700 896.65570639951581410 896.65570639951581398000 1.2000e-16 2.2737e-13
0.800 930.08126170438066714 930.08126170438066698000 1.6000e-16 3.4106e-13
0.900 964.75285575016305883 964.75285575016305864000 1.9000e-16 2.2737e-13
1.000 1000.7169384022341531 1000.7169384022341529000 2.0000e-16 3.4106e-13

See: (Sunday & Agbataobi, 2019).

Table 3 Numerical Results of problem of problem 3 with that of (Omar & Adeyeye, 2016; Badmus et al., 2015)

t ER CR ENS EAOL16i EAO16ii EBY15
0.100  0.90483741803595957316  0.90483741803595957288  2.8000e-19  7.5513e-05 9.0730e-12  1.5476e-10
0.200  0.81873075307798185867  0.81873075307798185815  5.2000e-19 6.8684e-05 1.1768e-11  1.3823e-10
0.300  0.74081822068171786607  0.74081822068171786535  7.2000e-19  1.2397e-04  2.3144e-11  1.3282e-10
0.400 0.67032004603563930074  0.67032004603563929987  8.7000e-19  1.1246e-04  2.8440e-11  1.1733e-10
0.500 0.60653065971263342360  0.60653065971263342262  9.8000e-19  1.5237e-04  3.1815e-11  1.1342e-10
0.600 0.54881163609402643263  0.54881163609402643156  1.0700e-19 1.3811e-05 3.4927e-11  9.9385e-11
0.700  0.49658530379140951470  0.49658530379140951357  1.1300e-19  1.6640e-04  3.6582e-11  9.6770e-11
0.800  0.44932896411722159143  0.44932896411722159026  1.1700e-19 1.5076e-04  3.8127e-11  8.4003e-11
0.900 0.40656965974059911188  0.40656965974059911069  1.1900e-19 1.7033e-04 3.8576e-11  8.2517e-11
1.000 0.36787944117144232160  0.36787944117144232039  1.2100e-19  1.5428e-04  3.9020e-11  7.0848e-11
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Figure 1 Graphical curves for Problem 1
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Figure 3 Graphical curves for Problem 3

Discussion

The newly developed scheme meets all criteria for analysis, including order and error constant, consistency,
convergence, and zero-stability. This derived scheme was then utilized to address certain epidemic disease
problems involving first-order initial value problems of ordinary differential equations. Specifically, Problem 1
was successfully tackled using this approach (Omar & Adeyeye, 2016; Sunday et al., 2013), Referred to as an SIR
Model, this epidemiological disease calculates the total number of individuals infected with a transmissible
infection within a closed population over a specified duration. Our method, as evidenced by Table 1 and Figure
2, computes more favourably compared to that of (Omar & Adeyeye, 2016; Sunday et al., 2013). Problem 2,
known as a Growth Model or bacteria culture, entails growth occurring at a rate proportionate to the current size.
This is addressed by (Sunday & Agbataobi, 2019) table 2 clearly demonstrates the convergence of our method
across (Sunday & Agbataobi, 2019) additionally, depicted in Figure 2 graphically. Lastly, Problem 3 involves a
highly stiff differential equation, which was addressed by (Omar & Adeyeye, 2016; Badmus et al., 2015), where
our method outperforms that of (Omar & Adeyeye, 2016; Badmus et al., 2015) as observed in

Table 3 and Figure 3.

Conclusion

In this study, a new scheme was employed to simulate an epidemic disease model. This scheme developed using
power series polynomials and analyzed numerically, exhibited superior accuracy and faster convergence
compared to existing methods explored in the research. Consequently, the new schemes produced favorable
outcomes over their predecessors. Moreover, these new schemes demonstrated computational reliability when
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simulating similar epidemic models described by differential equations, surpassing the methods considered
previously.
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