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Abstract 

Considering the barrier to effective communication, and in order to enhance network operations, this research work 

presents an algebraic approach, taking into account the obstacle to efficient communication computation. This research 

effort, which is diverse in content but consistent with results from previous works in this area of study, applies group 

theory to address the pipeline dilemma facing telecommunications businesses. The purpose of the pipeline entity group 

is to analyze the operation of pipeline entities and to transmit information within the pipeline system. By the application 

of group theory, the result is justifiable for the symmetric and translation operations pipeline entity described to be a 

member of the group elements of the order 12 pipeline entity group. The transformation is classified into six (6) 

dimensional types and is defined as a characteristics transformation matrix that satisfies the property of group 

associativity, closure, also the associative, distributive, and inverse transformation properties of group based on the 

expression of the pipeline entity group model, two-dimensional natures, symmetry principal, 3 Ordered model 

symmetry transformation procedure components of the data framework. The flux conservation principle and pipeline 

network measurements are taken into consideration when establishing the equation for pipeline system network traffic. 

For the purpose of developing a sophisticated multi- and mobile e-commerce application model and building it for 

telecom businesses and operators, the relationship governing the transition of flow states within the pipeline system's 

solution framework is determined. 
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Introduction 

Ever since the first nomadic people started to settle approximately 7000 years ago, humans have tried to regulate the 

flow of water. Water was transported by the Romans via pipes and channels, but they were unaware of this connection, 

which took Leonard da Vinci and Castelli to rediscover. 1500 years or so later. It is acknowledged that Leonardo da 

Vinci (1452-1519) was the first to comprehend and articulate the law of continuity. Castelli is credited with formulating 

continuity mathematically between 1577 and 1644. Resistance, as shown by Isaac Newton (1542–1727), is proportional 

to the square of the velocity. Numerous mathematical techniques have been employed to address issues pertaining to 

the networking and transmission (distribution) of commodities, services, and information, as applicable. In this study, 

we aim to use group theory to the solution of pipeline communication difficulties. In mathematical research, group 

theory is fundamental and essential to the analysis of algebraic structures. Group theory is used to one-dimensional 

pipeline content in this research work, which models and analyzes pipeline entities into group elements and uses them 

to distribute or offer high-quality services (such as water, network, communication, and transportation). 

Group 

A group can be thought of as a collection of individuals with distinct identities or as a collection of elements having 

noteworthy qualities. However, under the framework of algebra, Think of a binary operation * on a non-empty finite 

or infinite set of items, G. If the algebraic system meets the requirements of closure, associativity, identity, and inverse 

characteristics, it is considered a group. 

Mathematically as .*,,....., GbaGba   

By associative, .*)*()*(*,,....., GcbacbaGba =  whereas for identity property, an element say

.**,,.....,   , aaaGbathatsuchG ==  s      (1) 
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Finally, by inverse property, ,,....., Gba  there exists an inverse, ,,..., 11 Gba −−
  such that .*1 Gaa =−   

Cancellation law .* 1 Gayzazaay === −        (2) 

 also holds in a group G. (Gupta, 2019). 

In addition to these properties of the group, when a group *) ,(G  satisfies the commutative property in addition to all 

other group qualities, it is said to be abelian. Mathematically by commutative law if: 

G.ba, for  holds  ** = abba (Rotman, 2003). 

Example 1.1 

 The group 𝐻 = {𝑎𝑛: 𝑛 ∈ 𝑍} is an abelian group because for every element a,..v, u...z in H, 

𝑣 ∗ 𝑢 = 𝑢 ∗ 𝑣. 

By identity, let 𝑢 = 𝑥𝑠 𝑎𝑛𝑑  𝑣 = 𝑥𝑡 𝑡ℎ𝑒𝑛 𝑢𝑣 = 𝑥𝑠 𝑥𝑡 = 𝑥𝑠+𝑡 = 𝑣𝑢 therefore uv=vu   (3) 

Also 𝑢−1𝑣−1 = (𝑥𝑠 )−1 (𝑥𝑡 )−1 =  𝑥−(𝑠+𝑡) = (𝑢𝑣)−1       (4) 

That is(𝑢𝑣)−1 = 𝑢−1𝑣−1  a group in which the group operation is not commutative is said to be “non-abelian group” 

or non-commutative. 

 

Subgroup 

A set of non-empty elements G that meet the closure, associative, identity, and inverse qualities can be subjected to an 

algebraic operation *, which is defined by *) ,(G . Also, let GH  such that ,0H  and •  be the restriction of * 

to H that is .*,,, HbabaGcba •=  We said ) ,( •H is a sub-group of G if it satisfies the following 

properties 

1. . the operation is closed: Hba  G,c..b,a, •  

2. the operation is associative: .)()(,,....., HcbacbaGba ••=••  

3. 
.operarion e  w.r.t thaa  H 

elementidentity an     ,,.....,

•=•





Gba  

4. 
ba

Gba

•==•=•
−





1-
b

1-
aaa

1
    

   H
-1

b  ,
-1

a element   an       ,,.....,


 

The concept of Subgroup could be linked to the basic knowledge of subset G. (Asibong-Ibe, 1992). 

More so, property (1), and (4) are important conditions necessary and sufficient for a subset of group G to be a subgroup, 

(Gupta, 2019). 

 

Further analysis shows that the symmetry of a group of object consists of all transformations that leave the object 

unchanged, with the composition of these transformations serving as the group operation. (Rose, 1978). 

This is group symmetry of a regular shape thus includes rotation and reflections with respect to the group order 

(Gardiner, 1980). 

The order of a group G is simply the number of elements in group G (Asibong-Ibe, 1992). Each of these elements can 

generate a cyclic of the group in a definite operator. Thereby defining a cyclic group to be a group that be generated by 

a single element (Asibong-Ibe, 1992). 

 

Properties associated with group 

 

i. Homomorphism 

The mapping HGf →: from a group G to H satisfying Gyyfxfyoxf = ,)(*)()  ( is said to be group 

homomorphism (Hell, & Nesetril, 2006). This is characteristic as shown in this research analysis and also helps to 

determine the efficiency of quality service delivery. 

Example 1.3 

The mapping 
+→ RRf : defined by 

xexf =)(  is a group homomorphism that transforms the semigroup of 

positive reals into the abelian group of reals. We note that 

𝑓(𝑥 + 𝑦) = 𝑒𝑥+𝑦 = 𝑒𝑥 𝑒𝑦 𝑎𝑛𝑑 𝑓(𝑥)𝑓(𝑦) = 𝑒𝑥 𝑒𝑦 therefore, 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) ∗ 𝑓(𝑦)                        (5) 

ii. Isomorphism 
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A homomorphism from HG   to is called isomorphism if it is bijective (one to one and unto). Asibong-Ibe (2019). 

 

Pipeline, pipeline group and pipeline group stages 

Pipeline group refers to the collection of symmetry transformations applied to a pipeline entity. In general terms, long 

pipes are believed to be included in the definition of the term "pipeline." for the purpose of transporting liquids over 

short, medium, or long distances using a large pipe that is usually buried. An additional type of pipeline used in 

computing is a linear sequence with a specific modulus. It's the void left behind when a massive wave breaks, especially 

when surfing.  

The examination of an entity in an abstract group form to transport a substance by means of structuring the channel 

(pipeline) flow or pipelining is the only topic of this research activity, and the action word "pipeline" is located there 

(Antaki, 2003). 

 

The stages involved in a Pipeline system include 

a) Instruction Fetch aka (Undertaking pipeline). 

b) Instruction Decode or (Service Pipeline). 

c) Instruction Execute. 

d) Memory Access or (Logistics Pipeline). 

e) Write Back or (Data Pipeline) 

 

Concepts involved in the pipeline group 

 

i. Pipeline Entity Element 

This is an abstract operation )etc. ,,(*, o+ unit that changed the state of the pipelines functioning in the logical and 

estimative communication pipeline (Jianqing et al., 2018). 

 

ii. Pipeline Object Status 

Treatment of the state of quantities is equivalent to object minus )(OM defined in the information model of pipeline 

objects .....,, 121 BRR  The pipeline object )(O used in this work to express the pipeline state model is defined to be 

superpositioned state vector quantities of .....,, 121 BRR  is said to be .....},,{ 121 BRRoOM = abbreviated as O  

and the condition of A at various points through the transformation GggAA =   ,1
is is

1A  where G is pipeline 

entity group. 

 

Network and Network System 

This is an operating system designed specifically for a network device, like a firewall, switch, or router (Dalamu, 2019). 

 

Statement of the problem 

A pipeline network is a certain type of communication of a group defined in terms of a fixed element of the group.  

This research focused on the transformation of group elements which worked on matrix groups and permutation groups 

on a given vector space while maintaining their intrinsic structure. 

Numerous works done on group theory failed to define the pipeline matrix group system of flux transmission, and 

without simplified mathematical formulation of relevant network communication problems, major works on pipeline 

group failed to illustrate and examine the symmetry conversion of matrix pipeline components. 

 

Motivation 

The primary aim of this research is to use Group theory in the analysis of pipeline networking. The key objectives of 

the study are to; 

a) Resolve pipeline crisis by analysis of pipeline entity group model for Telecommunication Companies and 

operators alongside other distribution companies. 

b) Establish the equation for the analysis of pipeline flux traffic based on the flux law of conservation principle 

and also the pipeline network matrix. 

c) Obtain the Solutions framework for the transition relationships of flow states within a pipeline system. 

 

Mathematical Formulation 
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The use of group theory and other techniques to elevate abstract problems to the status of analytical problems has 

become evident with the current technological advancements and electronic computation of mathematical problems. In 

certain respects, digital computing has caused the majority of students who could not afford such technology to avoid 

abstract mathematics, depriving them of the fundamental understanding, significance, and, to some extent, applications 

of the subject.  

 

Nonetheless, given the prevalence of algebra in practically all facets of life, this study tackles a real-world 

communication problem in a pipeline system that is modelled, examined, and evaluated in a group setting.  Several 

important theorems and mathematical formulations related to group theory and networking are presented and validated. 

Furthermore, the approaches utilized in the analysis of the network problem for telecommunication operations are 

provided with an understanding of these theorems. 

 

Theorem 2.1 

Let G be a group. Then for any element yxayaxGyxa ==   thus,,,  

Proof: 

Suppose 

yeyyaaaya

xexxaaaxabut

ayaaxaGaGa

===

===

=

−−

−−

−−−

)()(  and

 )()(  

)()( have  then we.  tobelongs also  inverse  the,

11

11

111

 

Therefore yxayaxbutyayaaxax ===== −−    Hence )()( 11
 

This demonstrates that both the left and right cancellation properties hold, and during the course of the investigation, it 

fulfils the quality of service delivery with an identical outcome regardless of formation or origin. Page 31 provides an 

illustration of this. 

 

Theorem 2.2:  

Let HGf →: function as group homomorphism with kernel k . Then k  constitute a normal subgroup within 

𝑘𝑒𝑟𝑓 = {𝑥 ∈ 𝐺|𝑓(𝑥) = 𝑒𝐻  ∈ 𝐻} 

Proof: 

.        

  ,)()( ,each for  also and

 )*(    therefore)(*)()(  )().(

 and )()( then  that suppose and ker 

111
1

Gofsubgroupaiskevidently

kxhenceeexfxfkx

eyxfyfxfxoyfbuteyfxf

eyfxfkxyfkLet

HH

HH

H

===

===

===

−−−
−

 

. group in the subgroup normal a bemust   and  

.    that showing

)()()()()()(certainly 

)()( and  )(but   )()()( )( then ., 

. of subgroup normal i  that show osecondly t

1

1

,

111

1111

Gkkkuu

therefore

GukvuuHv

euefufufvfufvuuf

ufufevfufvfufvuufGvGuLet

Gsk

H





===

===

−

−

−−−

−−−−

  

Lemma 2.1:  

Let G  be a group and Gg  . The map GGf y →: given by ,)( 1xyyxf y

−=  for all Gx is an inner 

automorphism. 

. 

Data Analysis 

This work presents the analysis of “secondary data of telecommunication network problem ranging from the e-

commerce to architectural designs judged by group of order 12. The application of the Distribution network model and 

equations, using graphs as a case study for efficient delivery of services and discrete value generation as an example. 

A proper model simulation between the methods stated above are properly defined and stated as used in this work. The 

application of pipeline state play an important role here. The state of pipeline object which can be modelled into six (6) 
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but three (3) basic states (Jianqing et al., 2018) namely; The Ready State, The Running state and The Blocked State. 

With a pipeline object information model, ,.....},,{ 21 BRRoOM =  abbreviated as o . The element o  is a vector 

operation and superposition of ,.....,, 21 BRR expresses amounts. It is an operation vector based on the pipeline states' 

Stages such that the pipeline entity's operation is equal to the state quantities' treatment ,.....,, 21 BRR depicts the 

pipeline state model for the pipeline system, with A serving as the state limitation point and the stages of the pipeline 

entities being a group G that satisfies all recommended properties of its kind. The state of A  at different times of the 

transformation is defined by GGggAAI    where,  , = is a pipeline entity group. O. Blocked 

The flow chart (flow in-flow out) diagrammatically represents the states used in this modelling simulation.

Group of order 12. 

Let G be a group of order 12. Then there are up to isomorphism, exactly five group of order 12:

  , x    , x   , 336212 CCCCC  Alternating group   x   ,   344 SCA . There are two and three Abelian and non-Abelian 

groups respectively. 

 

Table 1: Table of 
12C the cyclic group of order 12 described via the generator a with relation 112 =a  

* e  a 2a   3a  4a  5a  6a  7a  8a  9a  10a  11a  

e  e  a 2a   3a  4a  5a  6a  7a  8a  9a  10a  11a  

A a 2a  3a   4a  5a  6a  7a  8a  9a  10a  11a  e  

2a  2a  3a  4a   5a  6a  7a  8a  9a  10a  11a  e  a 

3a  3a  4a  5a   6a  7a  8a  9a  10a  11a  e  a 2a  

4a  4a  5a  6a   7a  8a  9a  10a  11a  e  a 2a  3a  

5a  5a  6a  7a   8a  9a  10a  11a  e  a 2a  3a  4a  

The group of order 12 can be permutated or have dihedral D6 group given as. 

























4)(16)(25)(3  5),(12)(36)(4  6),(14)(25)(3 

  6),(14)(23)(5   (15)(24),  (13)(46), 

  (26)(35),   ,(153)(264),(135)(246)

   (165432),   (123456),   (1),=D6

 

 

which is generated by the following permutations of the vertices of hexagon, )5,3)(6,2(  ),,6,5,4,3,2,1( == ba  

Now assuming G is a non-Abelian group of order 12 then G  has an element of order 6 and no element of order 12. 

Let Ga  be an element of order 6 and we have put },,,,,,,{)( 65432 aaaaaaeagpH == . Then 

GbsomeforHbHG =       that is where   

Since the symmetry difference GH  and ,2 Hb   we have the possibility that Let ,    , 22 ebifeb == .

}{},,,,{},,,,{   },,,,{)( 543254325432 ebbbbeaaaaeKHthenbbbbeKbgpK ====  

And 𝐻𝐾 = 𝐺 
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Now the symmetry inverse of GH  is such that Habb −1 and since a is of order 6, we have that

31 or   , aaabb =−
if ,1 aabb =−

then Gbaab = satisfies Abelian property which is contrary to our 

assumption so, ,1 aabb −
hence 51 aabb =−  

Hence   
5

5
)

1
(

5
)

1
(   thus

 
5

 and 
2

   where
5

)
1

(

baba

abbbabababb

aaebbababb

=

=
−

=
−

===
−



 

babababababaeabbaba

abababababbaaaaaeG

31534102625

54325432

     ,    ,    ,  where

  },,,,,,,,,,,{

=======

=
 

 

With this transformation, we therefore obtain the equality of the table 3.1 below  

 

Table 2: Symmetry Table of D6 

* e  a 2a  3a  4a  5a  b  ab  ba 2  ba3  ba 4  ba5  

e  e  a 2a  3a  4a  5a  b  ab  ba 2  ba3  ba 4  ba5  

a A 2a  3a  4a  5a  e  ab  ba 2  ba3  ba 4  ba5  b  
2a  2a  3a  4a  5a  e  A ba 2  ba3  ba 4  ba5  b  ab  
3a  3a  4a  5a  e  A 2a  ba3  ba 4  ba5  b  ab  ba 2  
4a  4a  5a  e  a 2a  3a  ba 4  ba5  b  ab  ba 2  ba3  
5a  5a  e  a  2a  3a  4a  ba5  b  ab  ba 2  ba3  ba 4  

b  b  ba5  ba 4  ba3  ba 2  ab  e  5a  4a  3a  2a  a  

ab  ab  b  ba5  ba 4  ba3  ba 2  a  e  5a  4a  3a  2a  

ba 2  ba 2  ab  b  ba5  ba 4  ba3  2a  a  e  5a  4a  3a  

ba3  ba3  ba 2  ab  b  ba5  ba 4  3a  2a  a  e  5a  4a  

ba 4  ba 4  ba3  ba 2  ab  b  ba5  4a  3a  2a  a  e  5a  

ba5  ba5  ba 4  ba3  ba 2  ab  b  5a  4a  3a  2a  a  e  

 

From the table, the following axioms (Identity, inverse, associativity, symetricity) are satisfied.  

 

Transformation of Group of Order-12 To Matrix in Four Equal Dimension 

The table 3.0 from left to right and down-upward can be divided equally as  
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Table 3. A: Top left Transformation  Table 3. B: Top right transformation 

 

 

 

Table 3. C: Downleft transformation  Table 3. D: Downright transformation 

 

 

 

 

 

 

 

 

 

 

 

 

 

* e  a  2a  3a  4a  5a  

e  e  a  2a  3a  4a  5a  

a  a  2a  3a  4a  a5 e  

2a  2a  3a  4a  a5 e  a  

3a  3a  4a  a5 e  a  2a  

4a  4a  a5 e  a  2a  3a  

5a  a5 e  a  2a  3a  4a  

b  ab  ba 2  ba3  ba 4  ba5  

b  ab  ba 2  ba3  ba 4  ba5  

ab  ba 2  ba3  ba 4  a5b b  

ba 2  ba3  ba 4  a5b b  ab  

ba3  ba 4  a5b b  ab  ba 2  

ba 4  a5b b  ab  ba 2  ba3  

a5b b  ab  ba 2  ba3  ba 4  

b  b  ba5  ba 4  ba3  ba 2  ab  

ab  ab  B ba5  ba 4  ba3  ba 2  

ba 2  ba 2  ab  B ba5  ba 4  ba3  

ba3  ba3  ba 2  ab  b ba5  ba 4  

ba 4  ba 4  ba3  ba 2  ab  B ba5  

ba5  ba5  ba 4  ba3  ba 2  ab  b 

e  5a  4a  3a  2a  a  

a  e 5a  4a  3a  2a  

2a  a  e 5a  4a  3a  

3a  2a  a  e 5a  4a  

4a  3a  2a   e 5a  
5a  4a  3a  2a  a  E 
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Matrix Representation 

Let A be a matrix with an independent vector representation o of every element of the Table 3 such that at every point 

of significance of interest, o=1.  

From table 3.3 A  



























=

0   0   0   0   0   1

0   0   0   0   1   0

0   0   0   1   0   0

0   0   1   0   0   0

0   1   0   0   0   0

1   0   0   0   0   0

5a

 



























=

1   0   0   0   0   0

0   0   0   0   0   1

0   0   0   0   1   0

0   0   0   1   0   0

0   0   1   0   0   0

0   1   0   0   0   0

4a

, 



























=

0   1   0   0   0   0

1   0   0   0   0   0

0   0   0   0   0   1

0   0   0   0   1   0

0   0   0   1   0   0

0   0   1   0   0   0

3a

,



























=

0   0   1   0   0   0

0   1   0   0   0   0

1   0   0   0   0   0

0   0   0   0   0   1

0   0   0   0   1   0

0   0   0   1   0   0

2a

, 



























=

0   0   0   1   0   0

0   0   1   0   0   0

0   1   0   0   0   0

1   0   0   0   0   0

0   0   0   0   0   1

0   0   0   0   1   0

a

,   



























=

0   0   0   0   1   0

0   0   0   1   0   0

0   0   1   0   0   0

0   1   0   0   0   0

1   0   0   0   0   0

0   0   0   0   0   1

e

 

From table 3.3 B  



























=

0   0   0   0   0   1

0   0   0   0   1   0

0   0   0   1   0   0

0   0   1   0   0   0

0   1   0   0   0   0

1   0   0   0   0   0

5ba

, 



























=

1   0   0   0   0   0

0   0   0   0   0   1

0   0   0   0   1   0

0   0   0   1   0   0

0   0   1   0   0   0

0   1   0   0   0   0

4ba

,



























=

0   1   0   0   0   0

1   0   0   0   0   0

0   0   0   0   0   1

0   0   0   0   1   0

0   0   0   1   0   0

0   0   1   0   0   0

3ba
,



























=

0   0   1   0   0   0

0   1   0   0   0   0

1   0   0   0   0   0

0   0   0   0   0   1

0   0   0   0   1   0

0   0   0   1   0   0

2ba

 , 



























=

0   0   0   1   0   0

0   0   1   0   0   0

0   1   0   0   0   0

1   0   0   0   0   0

0   0   0   0   0   1

0   0   0   0   1   0

ab

,  



























=

0   0   0   0   1   0

0   0   0   1   0   0

0   0   1   0   0   0

0   1   0   0   0   0

1   0   0   0   0   0

0   0   0   0   0   1

b

 

From table 3.3 C  



























=

0   0   0   0   0   1

1   0   0   0   0   0

0   1   0   0   0   0

0   0   1   0   0   0

0   0   0   1   0   0

0   0   0   0   1   0

5ba

, 



























=

0   0   0   0   1   0

0   0   0   0   0   1

1   0   0   0   0   0

0   1   0   0   0   0

0   0   1   0   0   0

0   0   0   1   0   0

4ba

, 



























=

0   0   0   1   0   0

0   0   0   0   1   0

0   0   0   0   0   1

1   0   0   0   0   0

0   1   0   0   0   0

0   0   1   0   0   0

3ba
, 



























=

1   0   0   0   0   0

0   1   0   0   0   0

0   0   1   0   0   0

0   0   0   1   0   0

0   0   0   0   1   0

0   0   0   0   0   1

b

, 



























=

0   1   0   0   0   0

0   0   1   0   0   0

0   0   0   1   0   0

0   0   0   0   1   0

0   0   0   0   0   1

1   0   0   0   0   0

ab

,  



























=

0   0   1   0   0   0

0   0   0   1   0   0

0   0   0   0   1   0

0   0   0   0   0   1

1   0   0   0   0   0

0   1   0   0   0   0

2ba

 

From table 3.3 D 



























=

0   0   0   0   0   1

1   0   0   0   0   0

0   1   0   0   0   0

0   0   1   0   0   0

0   0   0   1   0   0

0   0   0   0   1   0

5a

, 



























=

0   0   0   0   1   0

0   0   0   0   0   1

1   0   0   0   0   0

0   1   0   0   0   0

0   0   1   0   0   0

0   0   0   1   0   0

4a
,  



























=

0   0   0   1   0   0

0   0   0   0   1   0

0   0   0   0   0   1

1   0   0   0   0   0

0   1   0   0   0   0

0   0   1   0   0   0

3a
,  



























=

1   0   0   0   0   0

0   1   0   0   0   0

0   0   1   0   0   0

0   0   0   1   0   0

0   0   0   0   1   0

0   0   0   0   0   1

e
 



























=

0   1   0   0   0   0

0   0   1   0   0   0

0   0   0   1   0   0

0   0   0   0   1   0

0   0   0   0   0   1

1   0   0   0   0   0

a
, 



























=

0   0   1   0   0   0

0   0   0   1   0   0

0   0   0   0   1   0

0   0   0   0   0   1

1   0   0   0   0   0

0   1   0   0   0   0

2a

 

Comparing matrices, A and B 

     ,55 baa = ,44 baa =      ,33 baa =      ,22 baa =    ,aba =    ,be =  

Comparing matrices, C and D 

     ,55 baa = ,44 baa =      ,33 baa =      ,22 baa =    ,aba =    ,be =  

 

Model Representation With Respect To Pipeline Network Flow. 

According to the pipeline state model, of this section, it is illustrated that the condition of the pipeline entity can be is 

defined into ready state, running state, and blocking state. Within this system, the pipeline object in the running state 

operates with its own distinct state. Let us consider the Jianqing et al. (2018), telecommunication model plane for 

improving telecommunication network services below. 

 

 

 

Table 4: telecommunication model plane table  
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S/

N 

Pipeline 

object 

State of an object Status 

Symbol 

Related to traffic movement 

 

Explanation of the 

function of the pipeline 

Configuration 

 

1 Undertaking 

pipeline 

(UP) 

* Retail Facility 

*Goods bearing 

*Business 

interface 

C: construct 

L: load 

U: union 

*Generate information flow. 

*Generate information flow. 

*Pass information flow. 

Router, linker, 

2G/3G/4G/WiFi 

2 Service 

pipeline (SP) 

*Advisory 

Services 

*Marketing of 

Service 

C: consult 

S: sale 

*Generate information flow. 

*Push information flow. 

Mobile phone app, 

mall application 

software 

 

3 Payment 

channel 

(PC) 

*Merchandise 

quotation. 

*Integral payment 

O: offer 

P: pay 

*Generate information flow. 

*Generate information flow. 

Mobile shopping mall, 

Mobile phone 

customers, 

rewarding system 

4 Logistics 

pipeline 

* Merchandise 

logistics access 

*Logistics 

integration 

A: add 

L: link 

*Pass information flow. 

*Pass information flow. 

Logistics business 

Commodity storage 

5 Data 

pipeline 

(DP) 

*Data acquisition 

*Data summary 

*Data mining and 

Transportation 

G: gather 

T: total 

D: dig 

*Generate information flow. 

*Pass information flow. 

*Pass information flow. 

Customers, order, 

delivery 

Mall business, chart 

Excavating tools 

6 Dis/Normal(

DN) 

Negative Negative Negative Negative 

Source of table: Jianqing et al. (2018). 

 

Let the component elements of Table 4 

Above be categorized into six (6) groups defined by 

12D.T,G,L,A,P,O,S,C,U,L,C,   is that order6 of D6 with equality   symetricin  arewhich 

Identity).(DN        and  

Dig :D

Total :T

Gather :G

   DP                   
Link :L

Add :A
LP  

 
Pay :P

Offer :O
   PC          ,

Sale :S

Consult:C
 SP               

union :U

load :L

Construct :C

 C
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The components are 12 of six groups, generated from Table 3.2. We comfortably will proceed to the judgment of our 

analysis by group of order 12. From the symmetry group property of order 12, since it can be seen in two dimensions, 

we can say that. 
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,(PK)    KeepPart   Pipeline

1   0   0   0   0   0

0   1   0   0   0   0

0   0   1   0   0   0

0   0   0   1   0   0

0   0   0   0   1   0

0   0   0   0   0   1

Let  



























== be , 

 ,(PB)  BigPart    Pipeline 

0   0   0   0   0   1

1   0   0   0   0   0

0   1   0   0   0   0

0   0   1   0   0   0

0   0   0   1   0   0

0   0   0   0   1   0

55



























== aba ,  

,(UC)conflict   UniformPipeline  

0   0   0   0   1   0

0   0   0   0   0   1

1   0   0   0   0   0

0   1   0   0   0   0

0   0   1   0   0   0

0   0   0   1   0   0

44



























== aba

 

,(EA)Abstract  Entity   Pipeline

,

0   0   0   1   0   0

0   0   0   0   1   0

0   0   0   0   0   1

1   0   0   0   0   0

0   1   0   0   0   0

0   0   1   0   0   0

33



























== aba

(OP), PlusObject  Pipeline

0   0   1   0   0   0

0   0   0   1   0   0

0   0   0   0   1   0

0   0   0   0   0   1

1   0   0   0   0   0

0   1   0   0   0   0

22



























== aba

, 

,(PS) SmallPart  Pipeline

0   1   0   0   0   0

0   0   1   0   0   0

0   0   0   1   0   0

0   0   0   0   1   0

0   0   0   0   0   1

1   0   0   0   0   0



























== aab

 

 

,(TP) Positive  Trend Pipeline

,

0   0   0   0   0   1

0      0   0   1   0

0   0   0   1   0   0

0   0   1   0   0   0

0   1   0   0   0   0

1   0   0   0   0   0

Let  55



























== aba

    

 ,(UD)  Double  UniformPipeline

1   0   0   0   0   0

0   0   0   0   0   1

0   0   0   0   1   0

0   0   0   1   0   0

0   0   1   0   0   0

0   1   0   0   0   0

44



























== aba

 

,(UM)  Measure  UniformPipeline

0   1   0   0   0   0

1   0   0   0   0   0

0   0   0   0   0   1

0   0   0   0   1   0

0   0   0   1   0   0

0   0   1   0   0   0

44



























== aba

 

 

,(TN) Negative Trend Pipeline 

0   0   1   0   0   0

0   1   0   0   0   0

1   0   0   0   0   0

0   0   0   0   0   1

0   0   0   0   1   0

0   0   0   1   0   0

33



























== baa

(UD) Double  UniformPipeline

0   0   0   1   0   0

0   0   1   0   0   0

0   1   0   0   0   0

1   0   0   0   0   0

0   0   0   0   0   1

0   0   0   0   1   0

22



























== aba

 

(OM) MinusObject  Pipeline

0   0   0   0   1   0

0   0   0   1   0   0

0   0   1   0   0   0

0   1   0   0   0   0

1   0   0   0   0   0

0   0   0   0   0   1



























== aba

 

 

We may verify that the transformation meets all group properties with regard to linear mapping and homomorphism 

from the group to the converted network table by looking at the trace of a specific element. By applying the pipeline 

state model with M nodes, as indicated in the above table, we may use the following formulas to get solutions for every 

given system, which are then presented. 

 

The pipeline entity encompasses various components, including the operational pipeline, service pipeline, payment 

channel, logistics pipeline, and data pipeline, is a platform system of business support services at the software 

application level of the pipeline system. A pipeline entity can connect, convey, and package data at the physics and 

system levels. All types pertaining to the connections between objects, including payment and logistics systems, as 

well as application and physical connection nodes, can be completed by the pipeline entity. The pipeline system's one-

dimensional pipe has connection, support, and transmission effects. It is an entity object that is connected and a conduit 

for information transmission. The pipeline system will evolve into a platform for increased operating output when the 

pipeline entity is built to grow. 

 

Within the pipeline group 𝐺, the elements 
ji GG or     must ensure that the outcome of the calculation 

ji GG • is 

contained within the group G ; the symbol ""•  represents a particular type of calculation, akin to integer addition. The 

formula for the characteristic matrix of a group element can be expressed as follows: 
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Pipeline System Model Based on Group Theory 

Case of Independence of Pipeline Elements 

Let the component elements of the table 3.1 above be of six (6) categories defined by 

12D.T,G,L,A,P,O,S,C,U,L,C,  arewhich 

.Identity).(DN             

Dig :D

Total :T

Gather :G

   DP

               
Link :L

Add :A
LP                

Pay :P
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   PC
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The components are 12 of six groups, generated from table 3.1.we comfortably will proceed to the judgment of our 

analysis by group of order 12. 

 

Pipeline Entity Object State Transition and Simulation Model Equation. 

The pipeline object's state, which is separated into three states: ready, running, and blocking, in the system where the 

running state's pipeline object has its own state. Table 3.1 illustrates that 𝑔 is a group element of 𝐺 within the pipeline 

entity group. 

The base vector can represent 𝑔 as follows: 


=












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6
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6

1

'
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'
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'

4

'

3

'

2
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.

.
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i

iii GGGGGGGg






                               (7) 

According to the definition of pipeline Entity Object status and state, pipeline object in Hilbert Space is measured by 

the state and is a space vector, respectively, R1, R2, R3,……… which complies with principle of superposition in Hilbert 

space. 

According to GggAAI =    ,  The base vector representation approach, as outlined, for the pipeline group within a 

6-dimensional space can be defined as follows: 
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Consequently, by extending this approach to the pipeline object O, it conforms to the following equation: 

OGO *'=            (9) 
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For the pipeline entity, O denotes the initial state of the pipeline object, while 𝑂I signifies the inherent vector of the 

pipeline object, representing the state vector of the pipeline entity subjected to the transformation process. 

Referencing equation (8) and formula (9), the entity state transition formula can be obtained:  

EndStart OEOG ** =          (10) 

 

At this stage, the formula for the state of the pipeline object has been defined. 𝑂Start represents the expression for the 

initial state space of the pipeline system, while 𝑂end denotes the expression for the terminal state space. In the equation 

for state transitions (10)  

There are a number of pipeline sections connected at each stage; the sections and node flow equation can be obtained 

as 




==+
jSi

ji NjQq ,.......5,4,3,2,1  ,0)(       (11) 

Where qi = is the flow of section𝑖; 
𝑄𝑗= represents the flow through the node 𝑗; 
𝑆𝑗= refers to the sets of node correlations 𝑗; and 

𝑁= represents the total count of nodes within the network model. 

∑𝑖∈𝑆𝑗(±𝑞𝑖) = the total of the nodes connected to the focal section; a minus sign indicates that the section is heading 

toward the node, while a plus sign indicates that it is leaving the node. The traffic section receives a plus sign when it 

flows from the node. Traffic enters a minus sign when it enters a node. The equations governing node flow within the 

network model can be composed of simultaneous equations for every 𝑁 node. The pipeline network model's node flow 

equations can be represented using (11) as:  
−−−

=+ 0.QqA           (12) 

Where 𝐴= the incidence matrix of network graph; 

 flow node oftor column vec is  .......    Q

and flowsection  oftor column vec is  .......    

321

-

321

T

n

T

n

QQQQ
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The object "state space explosion" is caused by the vast majority of Communication pipeline system components and 

the intricate interconnections between complex variables that influence each other. The state variable cannot be 

addressed directly due to the size of the correlation matrix 𝐴. As a result, symmetrically simplified equations are used 

to achieve stat status solutions. It is assumed that traffic flow can be represented as a vector of pipeline objects. When 

the flow conservation equations (12) and the state equation of the object (10) are applied to the pipeline system, they 

demonstrate that the overall conservation of flow equates to the aggregate of traffic inflows and outflows. During the 

process of transmitting and receiving information, the rate of flow entering the system matches the rate of flow exiting 

the pipeline system This is define by 

  ==+
N M

FlowFlowQq   *        (13) 

 

where 𝑞 is the section's output flow rate (takes a negative value if it flows against the pipeline's direction); Any node's 

input flow rate, represented by 𝑄 (which takes a negative value if it is flowing against the pipeline's direction); The 

total number of sections is 𝑁, and the total number of nodes is 𝑀. 

 

 

Results 

Correlation matrix 𝐴 The pipeline network flow formula outlines the N×M configuration of pipeline network 

connections, and it can be generally represented as follows:: 
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Element 𝑘𝑖𝑗 indicates whether nodes 𝑖 and 𝑗 are connected or not;  

When 𝑘𝑖𝑗 =0, nodes 𝑖 and 𝑗 are connected; 

When 𝑘𝑖𝑗=1, nodes 𝑖 and 𝑗 are not connected. Particularly when 𝑖=𝑗, 𝑘𝑖𝑗=0. 

 

Results 

When evaluating a multipoint crossover pipeline system, the parameters of the pipeline section and node differ, making 

it challenging to describe the symmetrical feature of the network in two dimensions. Large volume pipeline network 

system status problems are typically hard to solve, hence the following steps in the Group theory-solving process are 

designed to help. 

 Step 1. 

Under pipeline entity 𝐺 group symmetry transformation operation, the flow of the pipeline network where 𝑀nodes are 

connected to each other is transformed for a pipeline network composed of nodes and pipeline sections. The pipeline 

network traffic incidence matrix is constructed using the demand response model of the pipeline network, as shown in 

(3.8), and the pipeline sections and nodes flow expressions regarding a single pipeline segment are as follows: 
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For 𝑁pipeline sections,          (15) 
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According to (4.2), (4.3), (4.4), and (4.5), 
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And the end Flow state of the pipeline grid is as follows:
n

n

n

M

l

N
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l Flow
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FlowBpstFlowfinal **)(  +=    (20) 

 

When the pipeline network system is in both its initial and final states, the traffic balance equation can be derived 

using equations (4.6) and (4.7) 
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Where: Bps’ intensity n = are the characteristics of the pipeline segment and the constant node parameters within the 

pipeline network, and
i

n

i

n

i

l PandPt 01  ,,  The variables associated with pipeline network transmission typically 

represent only a portion of the overall informational potential within the pipeline network
i

n

i

n PP 01  , . 
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Step 2.  

Based on equation (16), the matrix representation of the traffic demand response model is determined as follows  
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Equation (17) can be simplified as follows: 
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Where 
it1  = the pipeline section’s effective transmission time; 

iBps1 = the pipeline section’s rate of information transmission; 

1I = the first node capacity; 

𝑃1= the first throughput traffic; 

𝐾 = the ratio of pipeline section to node flow direction; and 

Flowpipeline section and Flownode are pipeline sections and node vector units. 

Step 3. 

The Transformation Matrix of Pipeline network GM is as follows:  
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Where N represents the number of pipeline segments connected to a single node. The traffic balance equation indicates 

that, as transmission time and node potential differences vary within pipeline systems, the pipeline network establishes 

a GM  matrix based on the known group G, transfer rate of information, and the informational capacity linked to the 

pipeline's structural features. Assuming this setup, the pipeline network is made up of 𝑀 Nodes and 𝑁pipeline sections. 

Pipeline sections and nodes link to a network under 𝐺 group operation, and the pipeline network is represented by the 

𝐺𝑀 matrix. The aforementioned matrix represents 𝑀 nodes that are connected to a pipeline network. In general, (24) 

states that 𝐺𝑀 can be used to characterize the pipeline network system in its whole. 
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Group theory irreducible representation technique states that {𝐺𝑀} group homomorphism in pipeline entity group 𝐺 

group:{𝑔𝑖},{𝐺𝑀}∼ follows 𝐺 group, provided that pipeline network flow conservation is met. Therefore, the number 

of nodes has no bearing on the network structure. Three intrinsic properties determine network structure: transfer duty 

cycle time (𝑡), potential strength (information capacity) intensity (𝐼), and information transformation rate (𝐵𝑝𝑠). Hence, 

the expression of 𝐺𝑀 can be primarily stated as a linear integration of the 6-dimensional field. Node flows, Flow1, 

Flow2,..., Flow𝑀. Where M is 6 and it define the 𝐺𝑀 matrix, whereas group transformations, 𝑓1,2,𝑓3,𝑓4,𝑓5,𝑓6, define 

the  homomorphism of matrix of transformations within the pipeline entity category: 𝐺 group: {𝑔𝑖}.

 

Step 4.  Six base vectors of pipeline entity 𝐺 group are as follows: 
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Within the pipeline entity category, Gii are linearly independent. Based on the characterization of the group elements 

matrix, there exists a collection of real numbers, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6 that satisfy the following equation:, 
iiiiii

M GaGaGaGaGaGaG 665544332211

'
{ +++++=          (27) 

 

From Step 1, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, can be calculated according to G1
i, G2

 i, G3
i, G4

i, G5
i, G6

i, t1, t2, t3,……, tn ,of GM. 

The above describes the method of utilizing Group theory in the context of the information pipeline system. 

Regardless of the quantity of nodes and pipeline sections, the 𝐺𝑀 matrix can be reduced to a 6-dimensional matrix. 

Consequently, the issue of 'state space explosion' in the pipeline network can be addressed, providing a universal 

solution. 

 

Conclusion 

In this work, the state elements of the pipeline system were modelled and judged using group order 12 which was 

partitioned into six dimensional order and 3 basic flow model.s. Using the principles and properties of Group, the 

pipeline complex state nodes system is generated with respect to flux state and mass conservation. The cyclic group of 

order 12 was generated with regards to the flow state with two generators, while the Alternating group has three 

generators, with the relationships a2=b2=e,a-1b=ab, b2=e. The multiplication table was obtained for group order 12. 

Also, transformation matrices of flow trend and the transformation equations are defined. 

 The inner product automorphism (𝑓1,𝑓2,𝑓3,𝑓4,𝑓5,𝑓6 ) which represents the vector associated with the pipeline entity 

flow state at any given point and time can be computed using  fy(x) = y-1xy  for all x in G. 

 

Recommendations 

Though the method needs commitment and broad in nature, it is recommended that; 

1. Software application of this work should be considered using Math Lab, Python and other computer. 

2. Application of group automorphism in solving technical engineering problems should as well be considered. 
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3. The symmetry generators should be applied in modelling of various physical systems, such as crystals, and 

hydrogen atom. 

4. The application of group should be considered alongside with graph theory in marriage and matching. 

5. Finally we recommend review of this work for numerical solutions 
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