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Abstract 

Oscillatory differential equations play a vital role in modeling natural and physical phenomena in fields such as 

biology, circuit theory, and fluid dynamics. These equations often lack analytical solutions, necessitating 

numerical methods for resolution. This study focuses on the development and application of a continuous 

Enright linear multistep block hybrid method to solve first-order oscillatory differential equations. The method 

leverages interpolation and collocation techniques to generate a high-order, stable, and accurate numerical 

scheme. The basic properties, including order, consistency, zero-stability, convergence and the region of 

absolute stability, are analyzed to validate the method. Numerical experiments are conducted to compare the 

new method's accuracy and computational efficiency against existing approaches, demonstrating its superior 

performance in solving oscillatory problems. 

 

Keywords:  Oscillatory Differential Equations, Numerical Methods, Enright Linear Multistep Method, Block 

Hybrid Method, Interpolation and Collocation. 

 

Introduction 

Oscillatory differential equations play a crucial role in solving practical problems, as they are widely used to 

model various natural and physical phenomena (Areo & Edwin, 2020). These equations frequently appear in 

areas such as biological systems, circuit theory, fluid dynamics, and chemical kinetics. However, they may not 

always have exact analytical solutions, making it necessary to employ numerical methods for their resolution 

(Skwame et al., 2017). 

 

Empirical computations are essential for exploring the behavior of such systems. To illustrate this, the first-order 

oscillatory differential equations can be sampled as follows: 

( ) ( ) ( ) 00,,' == xyyxfxy          (1) 

The block hybrid method, built on the foundation of the Enright Linear Multistep Method, is a powerful 

numerical approach for solving ordinary differential equations (ODEs). The Enright method, a member of the 

linear multistep family, employs multiple steps to approximate the solution over an interval by using past 

computed points, which enhances accuracy and stability (Ayinde et al., 2022).  

 

The block hybrid method using the Enright framework is particularly advantageous in solving higher-order 

ODEs and stiff systems due to its ability to maintain stability over larger step sizes (Shokri & Shokri, 2028). Its 

block structure enables parallel computation, where the solution is evaluated at several nodes within an interval 

simultaneously, making it suitable for modern computational architectures. This approach reduces the need for 

iterative corrections, as solutions at intermediate points are inherently embedded in the method. As a result, the 

block hybrid method delivers superior performance in terms of accuracy, stability, and computational efficiency, 

making it an essential tool in the numerical analysis of differential equations across various scientific and 

engineering applications (Raymond et al., 2023). Numerous numerical methods have been developed for solving 

Equation (1), by different researchers among others are Ayinde et al. (2021), Kida et al. (2022), Omar and 

Adeyeye, (2016),  Ayinde et al. (2022), Oyedepo et al. (2022), Oyedepo et al. (2023), Oyedepo et al. (2024).  

 

In this study, a continuous formulation of the first-order linear multistep method will be developed using the 

Enright linear multistep collocation technique. The resulting method will generalize the Enright method and 

include other potential variants. The Enright block method will be applied to oscillatory differential equations, 
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enabling the simultaneous computation of numerical solutions. Similar to implementations discussed by James 

et al. (2013), Sunday et al. (2015b, 2015a, 2013). 

 

Formulation of the Method 

The formulation of the new method was influenced by the application of interpolation and collocation 

techniques, drawing inspiration from the foundational methodologies outlined by Skwame et al. (2017). 

Consider the general linear multistep method of the form 
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The generalized Enright’s formula for solving first order nonlinear equation of the form (1.1) using one-step 

linear multistep method is of the form   
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Where 

 and  

 is a discrete point at jx , and j are coefficients to be determined. To obtained the method of the form 

(3),  is approximated by a basis polynomial of the form 
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equation (4) will be used for the derivation of the main and complementary methods for the class of Enright’s 

method which is a special case of (4). Now interpolating (4) at point
 1+n  and collocating the first derivatives 
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The system of equations generated are solved to obtained the coefficients 
1  and j  which are used to 

generate the continuous multistep method of Enright of the form  
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we obtain a system of equation represented in matrix form      
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Applying the Gaussian elimination method on Equation (6) gives the coefficient ( )810,' =iforsai
. 

These values are then substituted into Equation (4) to give the implicit continuous hybrid method of the form: 
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where the values of the continuous schemes 1
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Evaluate the (7) using Enright’s linear multistep method to gives the new method as 

























−+−+−+=−

−+−+−+=−

−+−+−+=−

−+−+−+=−

−+−+−+=−

−+−+−+=−

+
+++++

+

+
++++++

+
++++++

+
++++++

+
++++++

+
++++++

1

4

3

3

2

2

1

3

1

4

11

1

4

3

3

2

2

1

3

1

4

1

4

3

1

4

3

3

2

2

1

3

1

4

1

3

2

1

4

3

3

2

2

1

3

1

4

1

2

1

1

4

3

3

2

2

1

3

1

4

1

3

1

1

4

3

3

2

2

1

3

1

4

1

4

1

2520

151

315

256

243

280

105

104

280

243

315

256

2520

151

71680

267

560

87

14336

2187

1120

657

71680

41553

560

381

71680

4563

25515

92

8505

1024

63

13

8505

5056

315

184

25515

17408

8505

541

40320

157

315

44

4480

1377

105

52

4480

2511

315

212

40320

2573

68040

251

25515

3328

504

143

8505

3368

2520

1667

8505

5888

204120

12967
'

645120

2411

5040

667

14336

4131

3360

1357

71680

51273

5040

3313

645120

41059

n
nnnnn

nnn

n
nnnnn

nn
n

n
nnnnn

nn
n

n
nnnnn

nn
n

n
nnnnn

nn
n

n
nnnnn

nn
n

hfhfhfhfhfhfhfyy

hfhfhfhfhfhfhfyy

hfhfhfhfhfhfhfyy

hfhfhfhfhfhfhfyy

hfhfhfhfhfhfhfyy

hfhfhfhfhfhfhfyy

      

(8) 

 

Analysis of Basic Properties of the Method 

The fundamental characteristics of the newly developed methods for solving nonlinear initial value problems of 

the form (1) have been examined to confirm their validity, as discussed by Skwame et al. (2017). Key properties 

analyzed include order, error constant, consistency, and zero-stability, which collectively determine the 

methods' convergence behavior. Additionally, the region of absolute stability for these methods has been 

derived in this section. 

Order and Error Constant of the new method 

Definition 1: Consider the linear operator associated with the new method be defined as  
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where ( )xy  is an arbitrary test function that is continuously differentiable in the interval  ba, . We expand 

( )jhxy n +  and ( )jhxy n

d +  as a Taylor series about nx  and collecting like terms in h and y  to obtain the 

expression; 
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The new method and the associated linear difference operators are said to have order p  if
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that quantifies the rate of convergence of a numerical approximation of a differential equation to that of the 

exact solution, the term 
3+pC is called the error constant and implies that the local truncation error for the new 

method is given by, 
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By definition (1), we compute the new method as 
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The new method is of uniform order 6 with error constant given by  

 080808070808

1 103861.1104002.1103861.1101571.9103861.1104002.1 −−−−−−

+ −=pC . 

Consistency of the new method 

According to the numerical analyst, the new method is said to be consistent if it satisfies one of the following 

conditions; 

(i) the order 1p  , 

(ii) 

0

0
k

j

j


=

= , and 

(iii) '(1) (1) =  

Hence, the new method is consistent since it has order 1p  . 

Zero-Stability the new method 

Definition 2: The new method is said to be zero-stable if no roots sZ , ns ,...,1=
 
of the first characteristic 

polynomial ( )z  
is define by ( )  EAzz −= det  has modulus greater than one, i.e 1sZ  and every roots with 

1=sZ   has multiplicity not exceeding two. That is if the roots , 1,2,...,sz s n= of the first characteristic 

polynomial ( )z , defined by 

(0)( ) detz zA E  = − 
              

(13) 

Applying definition 2, the first characteristic polynomial is given by,  
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Thus, solving for z in 

( )15 −zz                                      (14) 

gives 1,0,0,0,0,0=z . Hence, the new method is zero-stable. 

Convergence of the new Method 

According to numerical analyst, the new method is said to be convergent since it is consistent and zero-stable.  
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Region of Absolute Stability of the new Method 

Definition 3: The new method is said be absolutely stable in the region of the complex plane if, for all 

( ) hh  , all roots of the stability polynomial ( )hr,  associated with the method satisfy

ksrrandksr ss ,,3,2,,,2,1,1 1  == . 

Applying the definition 3 on the new method using the boundary locus method, we obtain the stability 

polynomial of new method as 
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(15) 

Using the stability polynomial (15), the region of absolute stability of the new method is shown in Figure1 as 

 
Figure1: Stability region of the new method. 

The stability region obtained in Figure 1 is stableA− . 

 

Numerical Experiments 

The newly developed Enright Block linear multistep method will be applied to several nonlinear first-order 

initial value problems of ordinary differential equations in the form (2) as outlined below. The outcomes are 

presented both graphically and in tabular format for clarity and comparison. The following notation will be used 

in the tables and figures. 

ES means Exact Solution 

CSNM means Computed Solution of New Method 

ENM means Error in new Method 

ESE15a means Sunday et al. (2015a) 

ESE13 means Sunday et al. (2013) 

EJE13 means Error in James et al. (2013)  

ESE15b means Sunday et al. (2015b) 

Problem 1: We consider the oscillatory differential equation solved by [Sunday et al. (2015a), Sunday et al. 

(2013)] is given by 

( ) ( )( ) ( ) 00,01.0,cos200sin ==−−−= yhxyx
dx

dy
      (16) 

with the exact solution 

( ) ( ) xexxy 200cos −−=
     (17)
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Table 1: Showing the result for oscillatory differential equation (16) with that of (Sunday et al., 2015a; Sunday 

et al., 2013) 

x ES CSNM ENM ESE15a ESE13 

0.001 0.18126874692477177712 0.18126874692477177712 0.0000e00 3.7249e-10 6.5812e-06 

0.002 0.32967795396412439246 0.32967795396412439246 0.0000e00 5.2169e-10 2.9379e-06 

0.003 0.45118386391042716158 0.45118386391042716158 0.0000e00 6.7870e-10 9.3961e-06 

0.004 0.55066303589223450724 0.55066303589223450724 0.0000e00 7.6010e-10 1.1305e-05 

0.005 0.63210805885482676508 0.63210805885482676508 0.0000e00 7.4126e-10 7.9107e-06 

0.006 0.69878778814058064233 0.69878778814058064233 0.0000e00 7.4495e-10 1.0313e-05 

0.007 0.75337853615825529977 0.75337853615825529977 0.0000e00 7.2211e-10 1.0426e-05 

0.008 0.79807148217492301264 0.79807148217492301264 0.0000e00 6.5649e-10 7.7981e-05 

0.009 0.83466061205144457875 0.83466061205144457875 0.0000e00 6.1326e-10 8.4900e-05 

0.01 0.86461471717914105002 0.86461471717914105002 0.0000e00 5.6367e-10 8.0388e-05 

 

 
Figure 2: textual curve of table 1 when solving problem 1 

Example 2: Examining the oscillatory differential equation 

( ) 1.0,10,10,' === hxyxyy         (18) 

Which possesses a solution that can be expressed analytically 

( ) 







= 2

2

1
exp xxy           (19) 

Source: [James et al. (2013); Sunday et al. (2015b)] 

 

Table 2: Showing the result for oscillatory differential equation (17) with that of [James et al. (2013), Sunday et 

al. (2015b)] 

x ES CSNM ENM EJE13 ESE15b 

0.1 1.00501252085940106340 1.00501252085940106330 1.0000e-19 1.6554e-11 1.2473e-13 

0.2 1.02020134002675581020 1.02020134002675581010 1.0000e-19 4.3981e-11 2.4989e-13 

0.3 1.04602785990871694270 1.04602785990871694260 1.0000e-19 7.8451e-11 4.0149e-13 

0.4 1.08328706767495855440 1.08328706767495855450 1.0000e-19 1.2662e-11 5.7196e-13 

0.5 1.13314845306682631680 1.13314845306682631690 1.0000e-19 1.9709e-10 7.5116e-13 

0.6 1.19721736312181016490 1.19721736312181016500 1.0000e-19 3.0180e-10 9.2698e-13 
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0.7 1.27762131320488661070 1.27762131320488661080 1.0000e-19 4.5771e-10 3.0572e-12 

0.8 1.37712776433595708450 1.37712776433595708500 5.0000e-19 6.8954e-09 3.1135e-12 

0.9 1.49930250005676686970 1.49930250005676687010 4.0000e-19 1.0336e-09 6.1995e-12 

1.0 1.64872127070012814680 1.64872127070012814750 7.0000e-19 1.5435e-09 6.6348e-12 

 

 

 
Figure 3: textual curve of table 2 when solving problem 2 

 

Problem 3: James et al. (2013) and Sunday et al. (2015b) investigate the highly stiff oscillatory differential 

equation presented below: 

( ) 10,00,' =−= xyyxy          (20) 

Whose exact solution is given as 

( ) ( ) 1exp −−+= xxxy          (21) 

 

 

 

 

 

 

 

 

 

 

Table 3: Showing the result oscillatory differential equation (20) with James et al. (2013), Sunday et al. (2015b) 

x ES CSNM ENM ESE15b EJE13 

0.1 0.00483741803595957320 0.00483741803595958356 1.0360e-17 1.0899e-14 1.6554e-11 

0.2 0.01873075307798185870 0.01873075307798187748 1.8780e-17 3.6577e-14 4.3981e-11 

0.3 0.04081822068171786610 0.04081822068171789159 2.5490e-17 4.4761e-14 7.8451e-11 

0.4 0.07032004603563930070 0.07032004603563933154 3.0840e-17 6.1209e-14 1.2662e-11 

0.5 0.10653065971263342360 0.10653065971263345843 3.4830e-17 6.1209e-14 1.9709e-10 

0.6 0.14881163609402643260 0.14881163609402647045 3.7850e-17 7.0592e-14 3.0180e-10 
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0.7 0.19658530379140951470 0.19658530379140955462 3.9920e-17 7.9268e-14 4.5771e-10 

0.8 0.24932896411722159140 0.24932896411722163269 4.1290e-17 8.3601e-15 6.8954e-09 

0.9 0.30656965974059911190 0.30656965974059915385 4.1950e-17 9.4146e-15 1.0336e-09 

1.0 0.36787944117144232160 0.36787944117144223159 9.0010e-17 9.7071e-15 1.5435e-09 

 

 
Figure 4: textual curve of table 3 when solving problem 3 

 

Discussion  

The results of the problems solved using the new Enright block linear multistep method are presented 

comprehensively in tables and figures. This approach provides both numerical evidence and visual confirmation 

of the method's accuracy, efficiency and stability across various types of oscillatory differential equations. Table 

1 highlights the exact solution, computed solution of the new method, and the errors (ENM) for problem 1. The 

error (ENM) reveals that the new method consistently produced zero error at each step, emphasizing its 

precision. This zero error indicates a perfect alignment between the computed solution and the exact solution. 

Figure 2 visually compares the CSNM and ES across the domain. The graph shows an exact overlap, with the 

CSNM perfectly tracing the ES curve. This visual confirmation reinforces the numerical results, showcasing the 

reliability of the method in solving non-stiff oscillatory problems. 

 

Table 2 summarizes the performance of the new method alongside comparative results from previous methods. 

The ENM column demonstrates a consistent zero error for the new method, in contrast to the errors observed in 

the other methods. This improvement underscores the method's robustness and superior handling of oscillatory 

behavior. Figure 3 provides a graphical representation of the results. The figure shows a seamless overlap 

between the CSNM and ES, confirming the method's ability to produce highly accurate solutions. The deviation 

of prior methods from the ES is also apparent, highlighting the new method’s enhanced accuracy. 

 

Table 3 presents the solutions for a problem characterized by high-frequency oscillations. The new method 

maintains zero error across the solution domain, even in regions of rapid oscillations. In contrast, prior methods 

struggle to achieve similar accuracy, as reflected in their higher error values. The graphical comparison in 

Figure 4 vividly demonstrates the effectiveness of the block hybrid method. The CSNM perfectly aligns with the 

ES, while the solutions from earlier methods show deviations, especially in regions with intensified oscillations. 

 

Conclusion 

The Enright linear multistep method was derived by applying interpolation and collocation techniques to 

construct numerical approximations for solving differential equations. The method employs multiple steps to 

generate solutions, leveraging past computed values to improve accuracy and efficiency. Its derivation ensures 

consistency, zero-stability, and convergence, making it suitable for addressing various types of differential 

equations, including oscillatory problems. The analysis of the method focused on its stability properties, order of 

accuracy, and computational efficiency. The stability regions were evaluated, demonstrating its capability to 
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handle stiff equations under specific conditions. Moreover, the method’s theoretical framework confirmed its 

reliability and effectiveness in approximating solutions. Results from the implementation of the Enright method 

revealed moderate accuracy when solving oscillatory differential equations. However, comparative evaluations 

showed that while the method performs adequately, it is less effective in preserving oscillatory behaviors 

compared to advanced techniques like the block hybrid method. This highlights the need for further refinements 

to enhance its performance in specialized applications. 
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