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Abstract

This research investigates the challenges of solving higher-order oscillatory ordinary differential equations (ODES),
which frequently arise in various scientific and engineering applications. Many of these problems lack explicit
solutions, necessitating the development of robust numerical methods. This study proposes a novel approach to
solving such equations by employing a two-step linear multistep method specifically designed for directly
addressing higher-order oscillatory differential equations. Key numerical properties, including consistency, zero
stability, convergence, and linear stability, are thoroughly analyzed to validate the effectiveness of the proposed
scheme. The effectiveness of the new method is illustrated through a series of numerical examples, highlighting its
accuracy and efficiency compared to existing methods in the literature. The results demonstrate that the proposed
method outperforms traditional techniques in solving complex oscillatory problems, providing reliable and
computationally efficient solutions suitable for real-world applications.

Keywords: Consistency, Convergence, Computational Efficiency, Higher-Order Oscillatory, Linear Block
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Introduction

Many physical problems in science, social science and technology remain unexplored or insufficiently addressed,
despite some receiving research attention. Oscillatory phenomena, critical in these fields, are effectively modeled by
differential equations, emphasizing the need for further study and innovation (Blanka, 2019; Adewale & Sabo, 2024;
Sabo et al., 2024). Since explicit solutions for many higher-order ordinary differential equations (ODEs) are
unavailable, developing numerical methods like implicit linear multistep methods (LMMSs) is essential. This
research focuses on solving initial value problems for general higher-order ODEs, addressing the challenges posed
by their complexity.

yI)= £y vy ) (e =10, v'(a) =7, Y a, )= 7, ®

Higher-order derivatives are traditionally solved using predictor-corrector methods, where predictors aid in
implementing the corrector, and Taylor series expansions p are utilized to establish initial values. Research suggests
that direct methods often yield more accurate and convenient results compared to reducing systems to first-order
ordinary differential equations (Ukpebor et al., 2020). Notably, Ayinde et al. (2023) have developed schemes for
solving second-order oscillatory differential equations modeling dynamic motion. Similarly, approaches for third-
order differential equations have been proposed by Duromola (2022), Kashkari and Algarni (2019), Folaranmi et al.
(2021), and Sabo et al. (2022). Additionally, researchers such as Adeyeye, and Omar, (2019), Modebei et al. (2019),
and Raymond et al. (2023) have applied their methods directly to these complex problems. Researchers such as
Adeyefa and Kuboye (2020), Donald et al. (2024), Skwame et al. (2024), Elnady et al. (2024), and Workineh et al.
(2024) have focused on solving second, third, and fourth-order initial value problems using advanced numerical
methods. By directly addressing these higher-order equations, their work aims to improve accuracy and efficiency in
both practical and theoretical applications across fields like engineering, physics, and applied mathematics. These
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studies often develop or refine methods tailored to handle the inherent complexities of higher-order differential
equations, offering reliable and computationally efficient solutions. Their contributions highlight the growing
importance of direct approaches in solving complex systems, eliminating the need for reduction to first-order
systems and advancing numerical analysis as a discipline (Adeyefa, & Kuboye, 2020; Abolarin et al., 2020; Donald
etal., 2024).

Higher-order oscillatory differential equations, often arising in simulations of physical phenomena, pose significant
challenges due to the limited availability of analytical solutions. Traditional methods frequently involve
transforming these equations into first-order systems, which can complicate the solution process and increase
computational demands. Addressing these issues, researchers like Abdulrahim (2021) have proposed innovative
numerical techniques for directly solving higher-order initial value problems. Their work focuses on enhancing the
accuracy and efficiency of these methods, providing robust tools for tackling complex differential equations in
theoretical and applied contexts. These efforts represent significant advancements in both the theory and application
of numerical methods for higher-order ordinary differential equations.

Construction of Linear Block Approach
The two-step linear multistep method

iai yn+i = h4iﬁi fn+i (2)

is consider. Derivation of a new method for the direct solution of higher-order oscillatory differential equations (1)
using the linear block approach was done.
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So, to derive the new methods, the subsequent Preposition were proved.
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Preposition 1

The linear multistep method (2), when combined with the linear block approach described in (3) and (4), exclusively
utilizes a block method structure. We then generalize this corollary to construct higher-order schemes derived from
the block algorithm.

11 3 5 3 7
0O~ -, —1—=,—,2
This can be verified with the help of the equation (3) and (4) as a block at the points 4 2 4 4 2 4 .
Proof
Now, by simplifying (3) and (4) using the partitioned points and solving these equations sequentially, the
coefficients of the polynomial are determined., ,_g1 1 3,5 37,
e 4 2 4 4 2 4
Substituting 7 = &, + xh , the polynomial takes the form
ﬁofn_'_ﬂlf 1+ﬁ1f 1_'_183f 3+ﬁ1fn+l
y(z, +xh)=a,y , +a Y, +asy s+a,y,,,+h* e Me 2 M2 e ®)
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The block algorithm (3) is expanded to yield
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4 2 4

Similarly, the linear block algorithm (6) is extended to derive the higher-order derivatives as
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Therefore, to determine the unknown coefficients of @, we consider ., =X"M.
Likewise, the unknown coefficients of Q isgivenby o = XE

The Numerical Properties of the Numerical Scheme
The basic properties of the new scheme were numerically analyzed according to Skwame et al. (2024). These
properties are order and error constant, consistency, zero-stable, convergence and linear stability of the method.

Order and Error Constant
We consider the linear operator |_[y(xn );h], along with Corollaries 2 and 3, to determine the order and error

constant of the new method.
Preposition 2
The linear operator L[y(x,);h], associated with the local truncation error of the new method, is denoted as

C:07hO7 y07 (tn)+ O(hll)

Proof
The linear difference operators associated with the new method are given by

Ly k=%, 2=y (30 30 ety ) (0 30, 2 S+ 22001,

Ly k= %, 5=y (3 0 30 sy o) (xS0, 2 S+ 22001,
Ly k= %, 30 <[y (3 0 30 ey )y (4, 30, 2 S+ 22001,
LIy k= v, + )=y, 2 a0y (30 20, 0 2000035 8,001 0 2, 001,.0)|

)

Lly(x, ) h]= h) % d Ih +a1(x h)+a, (x +gh)+a2(xn+zh)+h4§(ﬁ,(x)fn“+ﬁz(x)fm)]
3
2

=

L[y(xn);h]= X, +Zh) a, | x, + +a1(x +h)+a, (xn+gh)+a2(xn+2h)+h4§(ﬁl(x)fmi+ﬂ2(x)fn+2)] (10)

N\oo .Mcn

o
Lly(x, )h]= [a%(x 200,y (x, +fhj+az(xn+zh>+h4§(ﬂ.<x)fmi%(x)fm)]
(=

L[y(x, );h]= y(x, +2h)— ( (x j+al(x +h)+a, (xn +gh]+a2(xn +2h)+ h4g‘(ﬂ' () o + B (X)), )J

The local truncation error of the new method is derived by assuming y(t) to be sufficiently differentiable.

Expanding y(x, +qgh) and y(x, +ih) about x_ using a Taylor series yields:

L, [y(x, )] =(~2.2175x10" ) L, [y(x, )k h] = (-3.2795x10% ), L, [y(x, )k h] = (-1.3228x 107} L, [y(x, ); h] = (- 3.3986 x 10 )
z 2 z

Ly [y(x, )k h]=(~6.9487x10° ) L, [y(x, )k h] = (-1.2373x10 ) L, [y(x, ) h] = (~1.9840x10"* ), L, [y(x, }:h] = (- 2.8618x10*)

4 2 4
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Proof
Expanding Equation (10) with the aid of Corollary 2 and grouping like terms in powers ofh, gives
L, [y(x, ;h]=(-2..2175x107 Jc ,,h y7 (¢, )+ O(h™)
n
L, [y(x, kh]= (-3.2795x10°% Jc,,h™ y (t, )+ O(n* )
2
L [y(x, kh]=(-1.3228x10"% Jc,.hy™ (t, )+ O(h*)

4

[y( n),h] ( 6.9487 10" °5)c07h°7 °7(n)+0(h“)
y(xn),h] (-1.2373x10™ kc,,h7y (t, )+ 0(h™)
y(xn),h] (-1.9840x10% Jc ., h y7 (¢, )+ 0(h™)

h]=(-2.8618x10* c,,h” y” (t, )+ 0(h")

Con5|stency
A numerical scheme is said to be consistent if it has an order of convergence greater than or equal to zero, i.e.,
(p>1). Thus, our new schemes are consistent, since the orders are 5.
Zero Stability
A numerical scheme is said to be Zero-stable for any well behaved initial value problem provided if

i.  allroots of p(r) li

ii. any roots on the unit circle Qr\ <1)are simple
Setting Equation (10) equal to zero and solving for z yields z = 1, confirming that the method is zero-stable.

Convergence

The necessary and sufficient conditions for a numerical scheme to be convergent are consistency and zero
stability. Since the new scheme satisfies both consistency and zero stability, it is therefore convergent.

Linear Stability

The set of complex values th for which all solutions of the test problem y'""'=_2%y will remain limited as
N — oo (Aloko et al., 2024) marks the region of absolute stability of a numerical system.

Applying the test equation y®) = 20y helps to derive the idea of A-stability following (Raymond et al.,

2023).

to yield

Y, = u(2)Y, ,, z=2h (11)
where 4(z) is the amplification matrix given by

w(z)=(£° — 257 — 25 @) (& — 27® — 27 ™) (12)

The matrix 4(z) has Eigen values (0, O, -- -, £, ) where ¢ is called the stability function.
Thus, the stability function for of the method is given by
1315895675852° - 34689863194862" + 42210 644799840z° — 412492 6078968522° + 2664153 2365042562
B [-13438340 5220211842° - 44356479 0523921922 - 95879531652710400Z + 94389581 905920000 J
~(800150400002° -1739 755584000z + 22504 0394880002° - 205094 5505280002° +1368577 244160000z
(- 6636767 477760000z° + 22368364 46208000022 - 47194790 9529600002 + 47194790 952960000 ]

(13)

Numerical Examples
This section evaluates and validates the effectiveness of the derived methods by applying them to solve selected

higher-order initial value problems represented by equation (1). To enable a meaningful comparison with results
from the literature, the step size h is varied rather than kept constant. The following notations were used in the

subsequent tables.
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ES means Exact Solution

CS means Computed Solution

AENS means Abstalute Error in New Scheme

AES20 means Skwame et al., (2020);

AES21 means Sabo et al. (2021);

AEAO18 means Adeyeye and Omar (2018);

AEAO20 means Aizenofe and Olaoluwa (2020)

AEA16 means Akinfenwa et al. (2016);

AEFO17 means Familua and Omole (2017).

Example 1 Consider the Second Order Oscillatory Real-Life Problem (Dynamic Problem)

A 10 kilogram mass is attached to a spring having a spring constant 0f140 N/M . The mass is started in
motion from the equilibrium position with an initial velocity of 1 m/sec in the upward direction and with an
applied external force F(x)=5sinx . Find the subsequent motion of the mass (x :0.10<x< 1.00) if the force
due to air resistance is QO[QJN .

dx
Applying the procedure, where m =10, k =140, a =90 and F(t) =5sinx

example 1 reduces to

d’y dy _1. PN (18)
dsolver({ e +9 ™ +14y(x)= 2sm(x), y(0)=0, y'(0)= 1”

with the exact solution of (4.1) is given by,

y(x)= 5;0(_ 90e 2" +99ex +13sin x—9cos x) (19)

Source (Skwame et al., 2020; Sabo et al., 2021).

Example 2
Let's investigate a differential equation describing oscillatory behavior up to the third order.

y"'(x)=3sin(x)=0, y(0)=1 y'(0)=0,y"(0)=-2 (20)

with the exact solution given by
2
X
y(x)=3cos(t) + &2 1)

Source: (Adeyeye & Omar, 2018; Aizenofe & Olaoluwa, 2020)
Example 3
Consider the highly stiff system of fourth order oscillatory problem

y"(x)=4y"(x) y(0)=1,y'(0)=3,y"(0)=0,y™(0)=16 (22)
with exact solution given by

y(x)=1-v + 2exp(2x)— 2exp(— 2x) (23)
Source: (Akinfenwa et al., 2016; Familua & Omole, 2017).
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Results
Table 1 Showing the numerical results (Skwame et al., 2020; Sabo et al., 2021)

X ES Cs AENS AES21 AES20
0.1 -0.06436205154552458248 -0.06436205153777350685 7.7511e-12  2.0453e-10  4.4268e-09
0.2 -0.08430720522644774945 -0.08430720521677549486 9.6723e-12  4.8485e-10  2.2383e-08
0.3 -0.08405225313390041905 -0.08405225312996529403 3.9351e-12  6.6174e-10  3.5865e-08
0.4 -0.07529304213333374810 -0.07529304213221919545 1.1146e-12  7.2649%-10  4.2157e-08
0.5 -0.06357063960355798563 -0.06357063960508161767 1.5236e-12  7.1295e-10  4.2895e-08
0.6 -0.05142117069384508163 -0.05142117069633407740 2.4890e-12  6.5550e-10  4.0288e-08
0.7 -0.03993052956438697070 -0.03993052956738402335 2.9971e-12  5.7884e-10  3.6051e-08
0.8 -0.02949865862803573900 -0.02949865863097370062 2.9380e-12  4.9808e-10  3.1287e-08
0.9 -0.02021269131259124546 -0.02021269131532159058 2.7304e-12  4.2140e-10  2.6618e-08
1.0 -0.01202699425403169607 -0.01202699425643041008 2.3987e-12  3.5257e-10  2.2352e-08
See: (Skwame et al., 2020; Sabo et al., 2021).
Table 2 Showing the numerical results for example 2
X ES CS ENS AEAQ18 AEAQ020
0.100  0.99001249583407729830 0.99001249583407729828 8.0000e-18  1.7282e-12  4.8906e-10
0.200 0.96019973352372489340 0.96019973352372489333 3.1899e-16  6.3179e-12  3.2663e-09
0.300 0.91100946737681805890 0.91100946737681805886 2.0048e-15  1.4295e-11  1.0296e-08
0.400 0.84318298200865524840 0.84318298200865524823 7.0916e-15  2.5020e-11  2.3509e-08
0.500 0.75774768567111814840 0.75774768567111814812 1.8540e-14  3.8928e-11  4.4764e-08
0.600 0.65600684472903489170 0.65600684472903489137 4.0216e-14  55360e-11  7.5847e-08
0.700 0.53952656185346527880 0.53952656185346527833 7.6851e-14  7.4644e-11  1.1844e-07
0.800 0.41012012804149626280 0.41012012804149626223 1.3400e-13  9.6128e-11  1.7411e-07
0.900 0.26982990481199336940 0.26982990481199336883 2.1796e-13  1.2002e-10  2.4429e-07
1.000  0.12090691760441915220 0.12090691760441915146 3.3577e-13  1.4570e-10  3.3028e-07
See: (Adeyeye & Omar, 2018; Aigbiremhon & Omole, 2020).
Table 3 Showing the numerical results for example 3 when h=0.003125
X ES Cs ENS
0.003125 1.00937508138036727920 1.00937508138036727920 0.0000(00)
0.006250 1.01875065104675294860 1.01875065104675294860 0.0000(00)
0.009375 1.02812719730424913310 1.02812719730424913310 0.0000(00)
0.001250 1.03750520849609617210 1.03750520849609617210 0.0000(00)
0.015625 1.04688517302275858900 1.04688517302275858900 0.0000(00)
0.018750 1.05626757936100329750 1.05626757936100329750 0.0000(00)
0.021875 1.06565291608298078600 1.06565291608298078600 0.0000(00)
0.025000 1.07504167187531003060 1.07504167187531003060 0.0000(00)
0.028125 1.08443433555816787740 1.08443433555816787740 0.0000(00)
0.031250 1.09383139610438364350 1.09383139610438364350 0.0000(00)

See: (Akinfenwa et al., 2016; Familua & Omole, 2017).

Discussion

The table 1 shows the numerical result for the second-order oscillatory problem, highlighting the errors from the

proposed new scheme (AENS) and those from previous studies (Skwame et al., 2020; Sabo et al., 2021). The

results demonstrate that new scheme achieves significantly smaller absolute errors compared to the methods of

(Skwame et al., 2020; Sabo et al., 2021). This indicates superior accuracy of the new scheme in approximating

the motion of the mass. The errors in the new scheme remain consistently low across all computations,

showcasing its reliability and precision for solving dynamic problems of this nature.

The table 2 for example 2 also shows the numerical result for a third-order oscillatory differential equation. It
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highlights the errors from the new scheme and those from previous methods, including (Adeyeye & Omar,
2018; Aizenofe, & Olaoluwa, 2020). The results reveal that the new scheme consistently achieves exceptionally
low absolute errors, with AENS values significantly smaller than those of the other methods. This demonstrates
the superior accuracy and stability of the new scheme in solving high-order oscillatory problems, emphasizing
its effectiveness in providing reliable approximations. The trend of increasing errors in prior methods as

computations progress further underlines the precision of the new approach.

Finally, Tables 3 and 4, for example 3 display the numerical results for a highly stiff fourth-order oscillatory

problem at two different step sizes, h=0.003125 and h=0.01. In both cases, the Exact Solution and
Computed Solution are identical, indicating that the new scheme produces highly accurate solutions. The
Absolute Error in New Scheme (AENS) is consistently zero across all time points for both step sizes, suggesting
that the computed solution matches the exact solution without error. Furthermore, the table 5 show the absolute
errors for previous methods, Akinfenwa et al. (2016) and Familua and Omole (2017), where the errors are
significantly larger than those in the new scheme, emphasizing the precision and effectiveness of the proposed

approach in solving stiff oscillatory systems.

Conclusion

The research focuses on a new numerical method for solving higher-order oscillatory ordinary differential
equations (ODEs). A two-step linear multistep method based on a linear block approach is developed. This
method aims to improve the accuracy and efficiency of solving such ODEs by considering factors like
consistency, convergence, and zero stability. The proposed method is evaluated using a variety of test problems
to compare its performance with other existing methods. The results show that the new method offers higher
accuracy and computational efficiency, making it suitable for solving complex higher-order oscillatory ODEs.
The study concludes that the newly developed two-step linear multistep method based on a linear block
approach is an effective tool for solving higher order oscillatory ODEs. The method exhibits good consistency,
convergence, and zero stability properties, along with superior computational efficiency. Its accuracy in solving
test problems surpasses that of traditional methods, indicating its potential for broader application in solving
complex differential equations in various scientific and engineering fields. Further research could focus on
extending this method to more complicated systems and real-world applications.
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