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Abstract 

This study explores a mathematical model to analyze the transmission dynamics of tuberculosis (TB), focusing 

on Drug-Sensitive TB (DS-TB) and Drug-Resistant TB (DR-TB). The study adopted a deterministic (SEIR) 

model where each compartment represents a distinct stage of the epidemic and the population's members are 

assigned to them (the immunized, susceptible, latently infected, infectious, and recovered compartments). 

Parameters such as transmission rates, treatment efficiencies, and vaccination coverage are incorporated into the 

model. Equilibrium analysis identifies a Disease-Free Equilibrium (DFE), and solutions are shown to be 

biologically feasible, bounded, and unique. Findings indicate that improved treatment efficiency and higher 

vaccination coverage lower the basic reproduction number (R₀) and mitigate TB spread. It is recommended that 

the government strengthen vaccination programs to maintain high coverage, particularly for newborns, and 

enhance treatment strategies to improve recovery rates. 
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Introduction 

Through quantitative analysis and abstract thinking, mathematics is a foundational science that investigates 

relationships, structures, and patterns. A strong tool for critical thinking and problem-solving is mathematics. 

Mathematics, according to Nwuke, & Anaekwe (2023), is the systematic and abstract study of numbers, 

amounts, forms, structures, and patterns, as well as their characteristics and manipulation. Models might have a 

mathematical, computational, or conceptual basis. A collection of differential equations that characterize the rate 

of change of each of these variables over time can be used to mathematically construct a model to identify 

patterns, relationships, and the behavior of mechanisms. WHO (2021) defined a model as a simplified 

representation of a system or phenomenon that is used to understand, predict, or control behaviour. Analysis is 

the methodical inspection and assessment of data or systems, frequently with the aid of statistical or 

mathematical techniques (Centers for Disease Control and Prevention, 2018). 

 

In epidemiology, mathematical modeling is a vital tool that sheds light on the mechanisms underlying disease 

transmission and the possible outcomes of public health initiatives. Understanding the transmission dynamics of 

tuberculosis (TB) is crucial for developing effective control strategies and mitigating its spread within 

populations (Pai & Schito, 2019). TB is primarily transmitted through the inhalation of respiratory droplets 

containing Mycobacterium tuberculosis (Mtb) expelled by individuals with infectious pulmonary TB during 

coughing, sneezing, or speaking (Pai & Schito, 2019). These droplets can remain suspended in the air for 

prolonged periods, potentially infecting others who inhale them (Pai & Schito, 2019). Individuals with active 

pulmonary TB disease are the most infectious (Pai & Schito, 2019). However, not everyone exposed to Mtb 

becomes ill. Many individuals develop latent TB infection (LTBI), where the bacteria are present in the body 

but are not actively multiplying or causing symptoms (Cohen et al., 2019). Latently infected individuals are not 

contagious but have the potential to develop active TB disease in the future (Cohen et al., 2019). Factors such as 

compromised immune function or other illnesses can lead to the reactivation of latent TB infection, resulting in 

the development of active TB disease (Cohen et al., 2019). Active TB is characterized by symptoms such as 

cough, fever, weight loss, and night sweats, and individuals with active TB can transmit the infection to others 

(Cohen et al., 2019). Several factors increase the risk of TB transmission and progression from latent infection 

to active disease, including close and prolonged contact with infectious individuals, overcrowded living 

conditions, poor ventilation, malnutrition, and comorbidities such as HIV infection (Dowdy et al., 2019).  

 

Tuberculosis (TB), an infectious disease primarily caused by the bacterium called Mycobacterium tuberculosis, 

continues to be a global public health issue, particularly in low- and middle-income countries. Despite 
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significant advances in control measures, TB remains a leading cause of morbidity and mortality worldwide, 

with millions of new cases reported annually (WHO, 2021). According to  Khan et al.  (2019) Tuberculosis (TB) 

is a contagious bacterial infection that is caused by a bacillus mycobacterium TB (MTB). TB is still a first-class 

public health challenge and remains the major cause of deaths at the global level, especially in low and middle 

income countries. Due to its high rate of mortality, this infection is listed in the 10 most causes of deaths in the 

world. Despite advancements in diagnosis and treatment, TB continues to pose a major global health challenge 

Drug-sensitive TB (DS-TB) refers to TB strains that respond effectively to first-line anti-TB medications, such 

as isoniazid and rifampicin. These treatments, typically administered over a 6-month regimen, have high success 

rates if adhered to correctly. DS-TB remains the most common form of TB and is usually curable with proper 

diagnosis and adherence to treatment. Drug-resistant TB (DR-TB) occurs when TB bacteria develop resistance 

to one or more anti-TB drugs. This is often due to improper use of antibiotics, incomplete treatment, or 

transmission of resistant strains. Types of DR-TB include: Mono-Resistance, Poly-Resistance etc. 

 

Tuberculosis (TB) remains a significant global health burden despite advancements in diagnosis and treatment. 

Challenges persist in addressing drug sensitive TB (DS-TB) and drug-resistant TB (DR-TB). Numerous control 

methods, including vaccination, public health campaigns, and standard treatment protocols, have struggled to 

stop the spread of TB, owing to intricate factors influencing its dynamics. Mathematical modeling of TB 

transmission dynamics is a valuable tool for gaining deeper insights into these mechanisms and can lead to more 

effective TB control strategies and ultimately reduce global TB incidence. The aim of this study is to use a 

mathematical model to analyse the transmission dynamics of tuberculosis (TB) in a populations and identify the 

parameters that will facilitate the spread and those that will impede the spread of tuberculosis TB  

 

Model Formulation 

 The study adopted a deterministic model where each compartment represents a distinct stage of the epidemic 

and the population's members are assigned to them. The Susceptible-Exposed-Infected-Recovered (SEIR) 

model, which takes into account newborns who are passively immune will be considered in this study. 

 

Table 1 Description of Model variables with passive immunity, drug-sensitive TB and drug resistant TB.  

Variables Description             

𝑀(𝑡)  

 

the number of individuals who are immunized against TB through vaccination at time t. 

S(t) the number of susceptible individuals at time t.    

Es(t) the number of latently infected individuals with Drug-Sensitive TB at time t. 

ER(t) the number of latently infected individuals with Drug-Resistant at time t. 
 

Is(t) the number of infectious individuals with Drug-Sensitive TB at time t 
 

IR(t) the number of infectious individuals with Drug-Resistant TB at time t 
 

Rs(t) the number of recovered individuals with Drug-Sensitive TB at time t 
 

RR(t) the number of recovered individuals with Drug- Resistant TB at time t   

 

 

 

 

Table 2: Description of Model Parameters with passive immunity, drug-sensitive TB and drug resistant 

TB. 

  
           

S the transmission rate of Drug-Sensitive TB    
R the transmission rate of Drug-Resistant TB    
 the recruitment rate      
r1 the treatment efficiency of Drug-Sensitive TB    
r2 the treatment efficiency of Drug-Resistant TB    
 proportion of new births that have been immunized through vaccination 

 the rate of expiration of vaccine efficacy    
R the probability of Drug-Resistant TB emerging during treatment  
 natural mortality rate      
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 progression rate from latent TB to active TB for both DS-TB and DR-TB cases 

T mortality rate due to TB      
S the proportion of new infections that produce active TB for DS-TB Cases 

R the proportion of new infections that produce active TB for DR-TB Case 

 

 

 

The following model proposed by Momoh, et’al (2019). is considered in this study of TB transmission 

dynamics. 

 

Model Equations 
𝑑𝑀

𝑑𝑡
= 𝜎𝜋 − (𝜃 + 𝜇)𝑀,    𝑀(0) =  𝑀𝑂   (3) 

𝑑𝑆

𝑑𝑡
= (1 − 𝜎)𝜋 + 𝜃𝑀 − (𝛽𝑠𝐼𝑠 + 𝛽𝑅𝐼𝑅 + 𝜇)𝑆,  𝑆(0) = 𝑆𝑂   (4) 

𝑑𝐸𝑠

𝑑𝑡
= (1 − 𝜌𝑆) 𝛽𝑠𝐼𝑠 − (𝜈 + 𝜇)𝐸𝑠,   𝐸𝑆(0) = 𝐸𝑆𝑜   (5)  

𝑑𝐸𝑅

𝑑𝑡
= (1 − 𝜌𝑅) 𝛽𝑅𝐼𝑅𝑆 − (𝜈 + 𝜇)𝐸𝑅,   𝐸𝑅(0) = 𝐸𝑅𝑜   (6) 

𝑑𝐼𝑠

𝑑𝑡
= 𝜌𝑆𝛽𝑠𝐼𝑠𝑆𝑠 + 𝜐𝐸𝑠 − (𝜇 + 𝜇𝑇 + 𝜇2)𝐼𝑆,  𝐼𝑆(0) =  𝐼𝑆𝑜   (7) 

𝑑𝐼𝑅

𝑑𝑡
= 𝜌𝑅𝛽𝑅𝐼𝑅𝑆𝑅 + 𝜐𝐸𝑅 + 𝑟2𝑟𝐼𝑠 − (𝜇 + 𝜇𝑇 + 𝑟1)𝐼𝑅, 𝐼𝑅(0) = 𝐼𝑅𝑜   (8) 

𝑑𝑅𝑆

𝑑𝑡
= 𝑟2(1 − 𝑟)𝐼𝑠 − 𝜇𝑅𝑆,    𝑅𝑠(0) = 𝑅𝑠𝑜   (9) 

𝑑𝑅𝑅

𝑑𝑡
= 𝑟1𝐼𝑅 − 𝜇𝑅𝑅,     𝑅𝑅(0) = 𝑅𝑅𝑜   (10) 

 

Model Analysis 

In this section, the conditions for the existence of equilibria of the system was explored. 

Existence of invariant region 

From the model equations (3.3) – (3.10), the total population is given by 

N= M + S + 𝐸𝑆  + 𝐸𝑅+ 𝐼𝑆+ 𝐼𝑅 + 𝑅𝑆 + 𝑅𝑅 

𝑡ℎ𝑎𝑡 𝑖𝑠 
𝑑𝑁

𝑑𝑡
=

𝑑𝑀

𝑑𝑡
+ 

𝑑𝑆

𝑑𝑡
+

𝑑𝐸𝑆

𝑑𝑡
+ 

𝑑𝐸𝑅

𝑑𝑡
+

𝑑𝐼𝑆
𝑑𝑡

+ 
𝑑𝐼𝑅
𝑑𝑡

+
𝑑𝑅𝑆

𝑑𝑡
+ 

𝑑𝑅𝑅

𝑑𝑡
 

Therefore, adding the differential equations, we have 
𝑑𝑁

𝑑𝑡
=  𝜋 − 𝜇(M +  S +  𝐸𝑆  +  𝐸𝑅 + 𝐼𝑆 + 𝐼𝑅  +  𝑅𝑆  +  𝑅𝑅) − 𝜇𝑟(𝐼𝑆 + 𝐼𝑅) 

𝑑𝑁

𝑑𝑡
=  𝜋 − 𝜇𝑁 − 𝜇𝑟(𝐼𝑆 + 𝐼𝑅) 

𝑑𝑁

𝑑𝑡
≤  𝜋 − 𝜇𝑁 

By using of integrating factor, it is given that 

𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡 +
𝜋

𝜇
(1 − 𝑒−𝜇𝑡) 

𝑁(𝑡) ≤
𝜋

𝜇
+ (𝑁(0) −

𝜋

𝜇
)𝑒−𝜇𝑡 

lim
𝑖→∞

𝑁(𝑡) ≤
𝜋

𝜇
 

𝐴𝑠 lim
𝑖→∞

𝑒−𝜇𝑡   

So that at 𝑖 → ∞,𝑁(𝑡) ≤  
𝜋

𝜇
 

The region in which the model makes biological sense is given by 

Ω = {M , S , 𝐸𝑆  , 𝐸𝑅 , 𝐼𝑆, 𝐼𝑅 , 𝑅𝑆 , 𝑅𝑅𝜖𝔦8+ ∶ M +  S +  𝐸𝑆  +  𝐸𝑅 + 𝐼𝑆 + 𝐼𝑅  +  𝑅𝑆  +  𝑅𝑅 ≤
𝜋

𝜇
} 

This means that every solution with initial condition in Ω remains in Ω for all t ≥0. Therefore, the region Ω, the 

model is biologically feasible, mathematically well posed and positively invariant. 

Disease Free equilibrium state 

At equilibrium, setting equations (3) – (10) to zero gives 

𝜎𝜋 − (𝜃 + 𝜇)𝑀 = 0         (11) 

(1−𝜎) 𝜋 + 𝜃𝑀 − (𝛽𝑠𝐼𝑠 + 𝛽𝑅𝐼𝑅 + 𝜇)𝑆 = 0      (12) 

(1−𝜌𝑠) 𝛽𝑠𝐼𝑠𝑆 − (𝜐 + 𝜇)𝐸𝑠 = 0       (13) 

(1−𝑝𝑅) 𝛽𝑅𝐼𝑅𝑆 − (𝜐 + 𝜇)𝐸𝑅 = 0       (14) 
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𝑝𝑆𝛽𝑠𝐼𝑠𝑆 + 𝜐𝐸𝑠 − (𝜇 + 𝜇𝑟 + 𝜇1)𝐼𝑠 = 0      (15) 

𝑝𝑅𝛽𝑅𝐼𝑅𝑆 + 𝜐𝐸𝑅 + 𝑟2𝑟𝐼𝑠−(𝜇 + 𝜇𝑟 + 𝜇1)𝐼𝑅 = 0     (16) 

𝑟2(1 − 𝑟)𝑟𝐼𝑠 − 𝜇𝑅𝑠 = 0        (17) 

𝑟1𝐼𝑅 − 𝜇𝑅𝑅 = 0         (18) 

Following equations (11) – (18) the disease – free equilibrium is given as 

 state:𝐸0 = (
𝜎𝜋

𝜃+𝜇
,
𝜋(𝜃+𝜇−𝜇𝜎)

𝜇(𝜃+𝜇)
 0,0,0,0,0,0)  

Positivity and Boundedness of solutions  

Lemma 3.1 The zeros of the system of equations (3) − (10) {M , S , 𝐸𝑆 , 𝐸𝑅 , 𝐼𝑆 , 𝐼𝑅  , 𝑅𝑆 , and 𝑅𝑅} with initial 

condition {𝑀10, 𝑆10, 𝐸𝑠10
, 𝐸𝑅10

, 𝐼𝑠10
, 𝐼𝑅10

, 𝑅𝑆10
, 𝑅𝑅10

≥ 0}𝜖 𝐴 will remain positive ∀ time 𝑡 ≥ 0. 

Proof.  From equation (3), 

 
𝑑𝑀

𝑑𝑡
= 𝜎𝜋 − (𝜃 + 𝜇)𝑀 

 ≤ −[(𝜃 + 𝜇)]𝑀 

 ⇒ 𝑀 ≥ 𝑆𝑀10𝑒
−∫[(𝜃+𝜇)]𝑑𝑡 ≥ 0 ∀ 𝑡 > 0 

Similarly, equations (4) – (10) show that ∀ 𝑡 > 0, 

𝑆 ≥ 𝑆10𝑒
−∫(𝛽𝑠𝐼𝑠+𝛽𝑅𝐼𝑅+𝜇)𝑑𝑡 ≥ 0, 𝐸𝑠 ≥ 𝐸𝑠10

𝑒−∫[(𝜈+𝜇)]𝑑𝑡 ≥ 0, 𝐸𝑅 ≥ 𝐸𝑅10
𝑒−∫((𝜈+𝜇)𝑑𝑡 ≥ 0,  𝐼𝑠 ≥

 𝐼𝑠10
𝑒∫[(𝑃𝑆𝛽𝑠𝑆𝑠)−(𝜇+𝜇𝑇+𝜇2)]𝑑𝑡 ≥ 0, 𝐼𝑅 ≥ 𝐼𝑅10

𝑒∫[(𝑃𝑅𝛽𝑅𝑆𝑅)−(𝜇+𝜇𝑇+𝑟1)]𝑑𝑡 ≥ 0 and 

𝑅𝑆 ≥ 𝑅𝑆10
𝑒−∫𝜇𝑑𝑡 ≥ 0, 𝑅𝑅 ≥ 0, 𝑅𝑅10

𝑒−∫𝜇𝑑𝑡 

Existence and Uniqueness of Solution                                                                            To determine the 

conditions for the existence and uniqueness of solution for the model equations (3) – (10), let 

 ℎ1(𝑡,𝑚) = 𝜎𝜋 − (𝜃 + 𝜇)𝑀                                                      (19) 

 ℎ2(𝑡,𝑚) = (1 − 𝜎)𝜋 + 𝜃𝑀 − (𝛽𝑠𝐼𝑠 + 𝛽𝑅𝐼𝑅 + 𝜇)𝑆,                             (20) 

 ℎ3(𝑡, 𝑥) = (1 − 𝜌𝑆) 𝛽𝑠𝐼𝑠 − (𝜈 + 𝜇)𝐸𝑠,                   (21) 

 ℎ4(𝑡,𝑚) = (1 − 𝜌𝑅) 𝛽𝑠𝐼𝑠 − (𝜈 + 𝜇)𝐸𝑅 ,        (22) 

 ℎ5(𝑡,𝑚) = 𝜌𝑆𝛽𝑠𝐼𝑠𝑆𝑠 + 𝜐𝐸𝑠 − (𝜇 + 𝜇𝑇 + 𝜇2)𝐼𝑆.       (23) 

 ℎ6(𝑡,𝑚) = 𝜌𝑅𝛽𝑅𝐼𝑅𝑆𝑅 + 𝜐𝐸𝑅 + 𝑟2𝑟𝐼𝑠 − (𝜇 + 𝜇𝑇 + 𝑟1)𝐼𝑅                 (24) 

 ℎ7(𝑡,𝑚) = 𝑟2(1 − 𝑟)𝐼𝑠 − 𝜇𝑅𝑆                                                                 (25) 

            ℎ8(𝑡,𝑚) = 𝑟1𝐼𝑅 − 𝜇𝑅𝑅                                                                                       (26) 

Such that 

 
𝑑𝑚

𝑑𝑡
= ℎ(𝑡,𝑚) = ℎ(𝑚).           (27) 

 

Theorem 3.1 Let 𝐴 represent the region 

|𝑡 − 𝑡0| ≤ 𝑘1,  ‖𝑚 − 𝑚0‖ ≤ 𝑘2, and  𝑚 = (𝑚1, 𝑚2, … ,𝑚𝑛) = (𝑚10, 𝑚20, … ,𝑚𝑛0)    (28) 

with ℎ(𝑡,𝑚) satisfying the Lipschitz condition 

 ‖ℎ(𝑡,𝑚1) − ℎ(𝑡1, 𝑚2)‖ ≤ 𝑘‖𝑚1 − 𝑚2‖          (29) 

for (𝑡,𝑚1) and (𝑡1, 𝑚2) in 𝐴 and 𝑘 > 0. Then, there exists a constant 𝛿 > 0 such that a unique continuous 

vector solution 𝑚̅(𝑡) of equations (19) – (26) exists in  |𝑡 − 𝑡0| ≤ 𝛿. 
𝜕ℎ𝑖

𝜕𝑚𝑗
, 𝑖, 𝑗 = 1, 2, … , 𝑛 is continuous and bounded in 𝐴 and fulfilled the condition in equation             (30) 

Lemma 3.2. If ℎ(𝑡,𝑚) is continuous and has partial derivative  
𝜕ℎ𝑖

𝜕𝑚𝑗
 on a bounded closed convex domain ℝ, then 

it satisfies a Lipschitz condition in ℝ. 
The region of interest is given by 

 1 ≤ 𝜖 ≤ ℝ             (31) 

and bounded solution of the form below is sought for: 

 0 < ℝ < ∞            (32) 

Below is the proof of the existence theorem: 

Theorem 3.2: If 𝐴 represents the region defined in (29) such that (28) and (31) hold, then ∃ a solution of the 

model equations (19) – (26) bounded in the region 𝐴. 

Proof. Considering equations (19) − (26),        

It will be shown that the continuity of 
𝜕ℎ𝑖

𝜕𝑚
, 𝑖 =  𝑗 = 1, 2, 3, 4, 5, 6, 7,8 exists. Differentiating  ℎ𝑖 partially with 

respect to  M , S , 𝐸𝑆  , 𝐸𝑅, 𝐼𝑆, 𝐼𝑅 , 𝑅𝑆 , and 𝑅𝑅, give:  
𝜕ℎ𝑖

𝜕𝑚 
= −(𝜃 + 𝜇),                                    |

𝜕ℎ𝑖

𝜕𝑚 
| = −|(𝜃 + 𝜇)| < ∞     (33) 

𝜕ℎ𝑖

𝜕𝑠 
= 0,                                                    |

𝜕ℎ𝑖

𝜕𝑠 
| = |0|  < ∞      (34) 

𝜕ℎ𝑖

𝜕𝐸𝑠 
= 0,                                                   |

𝜕ℎ𝑖

𝜕𝐸𝑠 
| = |0|  < ∞      (35) 
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𝜕ℎ𝑖

𝜕𝐸𝑅 
= 0,                                                  |

𝜕ℎ𝑖

𝜕𝐸𝑅 
| = |0|  < ∞      (36) 

𝜕ℎ𝑖

𝜕𝐼𝑆 
= 0,                                                   |

𝜕ℎ𝑖

𝜕𝐸𝑅 
| = |0|  < ∞      (37) 

𝜕ℎ𝑖

𝜕𝐼𝑅 
= 0,                                                   |

𝜕ℎ𝑖

𝜕𝐼𝑅 
| = |0|  < ∞      (38) 

𝜕ℎ𝑖

𝜕𝑅𝑆 
= 0,                                                   |

𝜕ℎ𝑖

𝜕𝑅𝑆 
| = |0|  < ∞      (39) 

𝜕ℎ𝑖

𝜕𝑅𝑅 
= 0,                                                   |

𝜕ℎ𝑖

𝜕𝑅𝑅 
| = |0|  < ∞      (40) 

Also, 
𝜕ℎ2

𝜕𝑀  
= 𝜃,                                                   |

𝜕ℎ2

𝜕𝑀  
| = |𝜃|  < ∞      (41) 

𝜕ℎ2

𝜕𝑆  
= −(𝛽𝑆𝐼𝑆 + 𝛽𝑅𝐼𝑅 + 𝜇),                  |

𝜕ℎ2

𝜕𝑆  
| = |𝛽𝑆𝐼𝑆 + 𝛽𝑅𝐼𝑅 + 𝜇| < ∞    (42) 

𝜕ℎ2

𝜕𝐸𝑆 
= 0,                                                      |

𝜕ℎ2

𝜕𝐸𝑆 
| = |0| < ∞      (43) 

𝜕ℎ2

𝜕𝐸𝑅 
= 0,                                                      |

𝜕ℎ2

𝜕𝐸𝑅 
| = |0| < ∞      (44) 

𝜕ℎ2

𝜕𝐼𝑆 
= −(𝛽𝑆𝐼𝑆 + 𝛽𝑅 + 𝜇) 𝑆,                     |

𝜕ℎ2

𝜕𝐼𝑆 
| = |(𝛽𝑆 + 𝛽𝑅𝐼𝑅 + 𝜇)𝑆| < ∞    (45) 

𝜕ℎ2

𝜕𝐼𝑅 
= −(𝛽𝑆𝐼𝑆 + 𝛽𝑅 + 𝜇) 𝑆,                    |

𝜕ℎ2

𝜕𝐼𝑅 
| = |−(𝛽𝑆𝐼𝑆 + 𝛽𝑅 + 𝜇)𝑆| < ∞    (46) 

𝜕ℎ2

𝜕𝑅𝑆 
= 0,                                                      |

𝜕ℎ2

𝜕𝑅𝑆 
| = |0| < ∞      (47) 

𝜕ℎ2

𝜕𝑅𝑅 
= 0,                                                      |

𝜕ℎ2

𝜕𝑅𝑅 
| = |0| < ∞      (48) 

Similarly, 
𝜕ℎ3

𝜕𝑀 
= 0,                                                        |

𝜕ℎ3

𝜕𝑀 
| = |0| < ∞      (49) 

𝜕ℎ3

𝜕𝑆 
= (1 − 𝜌𝑠)𝛽𝑠𝐼𝑠  ,                                  |

𝜕ℎ3

𝜕𝑆 
| = |[(1 − 𝜌𝑠)𝛽𝑠𝐼𝑠]| < ∞    (50) 

𝜕ℎ3

𝜕𝐸𝑆 
= −(𝑉 + 𝜇) ,                                      |

𝜕ℎ3

𝜕𝐸𝑆 
| = |−(𝑉 + 𝜇)| < ∞     (51) 

𝜕ℎ3

𝜕𝐸𝑅 
= 0 ,                                                      |

𝜕ℎ3

𝜕𝐸𝑅 
| = |0| < ∞      (52) 

𝜕ℎ3

𝜕𝐼𝑆 
= 0 ,                                                       |

𝜕ℎ3

𝜕𝐼𝑆 
| = |0| < ∞      (35) 

𝜕ℎ3

𝜕𝐼𝑅 
= 0 ,                                                       |

𝜕ℎ3

𝜕𝐼𝑅 
| = |0| < ∞      (54) 

𝜕ℎ3

𝜕𝑅𝑆 
= 0 ,                                                      |

𝜕ℎ3

𝜕𝑅𝑆 
| = |0| < ∞      (55) 

𝜕ℎ3

𝜕𝑅𝑅 
= 0 ,                                                     |

𝜕ℎ3

𝜕𝑅𝑅 
| = |0| < ∞      (56) 

Furthermore, 
𝜕ℎ4

𝜕𝑀 
= 0,                                                         |

𝜕ℎ4

𝜕𝑀 
| = |0| < ∞      (57) 

𝜕ℎ4

𝜕𝑆 
= −(1 − 𝜌𝑅) 𝛽𝑅𝐼𝑅  ,                             |

𝜕ℎ4

𝜕𝑆 
| = |(1 − 𝜌𝑅) 𝛽𝑅𝐼𝑅| < ∞    (58) 

𝜕ℎ4

𝜕𝐸𝑆 
= 0 ,                                                       |

𝜕ℎ4

𝜕𝐸𝑆 
| = |0| < ∞      (59) 

𝜕ℎ4

𝜕𝐸𝑅 
= −(𝑉 + 𝜇),                                        |

𝜕ℎ4

𝜕𝐸𝑅 
| = −|(𝑉 + 𝜇)| < ∞     (60) 

𝜕ℎ4

𝜕𝐼𝑆 
= 0 ,                                                        |

𝜕ℎ4

𝜕𝐼𝑆 
| = |0| < ∞      (61) 

𝜕ℎ4

𝜕𝐼𝑅 
= (1 − 𝜌𝑅) 𝛽𝑅𝑆 ,                                  |

𝜕ℎ4

𝜕𝐼𝑅
| = |(1 − 𝜌𝑅) 𝛽𝑅𝑆| < ∞    (62) 

𝜕ℎ4

𝜕𝑅𝑆 
= 0 ,                                                       |

𝜕ℎ4

𝜕𝑅𝑆 
| = |0| < ∞      (63) 

𝜕ℎ4

𝜕𝑅𝑅 
= 0 ,                                                       |

𝜕ℎ4

𝜕𝑅𝑅 
| = |0| < ∞      (64) 

Likewise, 
𝜕ℎ5

𝜕𝑀 
= 0,                                                          |

𝜕ℎ5

𝜕𝑀 
| = |0| < ∞      (65) 

𝜕ℎ5

𝜕𝑆 
= 𝜌𝑠 𝛽𝑠𝐼𝑠  ,                                              |

𝜕ℎ5

𝜕𝑆 
| = |𝜌𝑠 𝛽𝑠𝐼𝑠  | < ∞     (66) 

𝜕ℎ5

𝜕𝐸𝑆 
= 𝑉 ,                                                       |

𝜕ℎ5

𝜕𝐸𝑆 
| = |𝑉| < ∞      (67) 

𝜕ℎ5

𝜕𝐸𝑅 
= 0 ,                                                       |

𝜕ℎ5

𝜕𝐸𝑅 
| = |0| < ∞      (68) 

𝜕ℎ5

𝜕𝐼𝑆 
= 𝜌𝑠 𝛽𝑠𝑆 − (𝜇 + 𝜇𝑅 + 𝑟2)𝐼𝑠  ,      |

𝜕ℎ5

𝜕𝐼𝑆 
| = |[𝜌𝑠 𝛽𝑠𝑆 − (𝜇 + 𝜇𝑅 + 𝑟2)𝐼𝑠]| < ∞   (69) 



 
A Mathematical Model on the Transmission Dynamics of Tuberculosis 

 

 

79 Cite this article as:   
Nwuke, N., George, I., & Ojimba, D.P.  (2025).  A mathematical model on the transmission dynamics of tuberculosis. FNAS 

Journal of Mathematical Modeling and Numerical Simulation, 2(2), 74-84 

 

𝜕ℎ5

𝜕𝐼𝑅 
= 0 ,                                                          |

𝜕ℎ5

𝜕𝐼𝑅
| = |0| < ∞      (70) 

𝜕ℎ5

𝜕𝑅𝑆 
= 0 ,                                                         |

𝜕ℎ5

𝜕𝑅𝑆 
| = |0| < ∞        (71) 

𝜕ℎ5

𝜕𝑅𝑅 
= 0 ,                                                         |

𝜕ℎ5

𝜕𝑅𝑅 
| = |0| < ∞      (72) 

Analogously, 
𝜕ℎ6

𝜕𝑀 
= 0,                                                           |

𝜕ℎ6

𝜕𝑀 
| = |0| < ∞      (73) 

𝜕ℎ6

𝜕𝑆 
= 𝜌𝑅 𝛽𝑅𝐼𝑅  ,                                              |

𝜕ℎ6

𝜕𝑆 
| = |𝜌𝑅  𝛽𝑅𝐼𝑅  | < ∞     (74) 

𝜕ℎ6

𝜕𝐸𝑆 
= 0 ,                                                         |

𝜕ℎ6

𝜕𝐸𝑆 
| = |0| < ∞      (75) 

𝜕ℎ6

𝜕𝐸𝑅 
= 𝜐 ,                                                         |

𝜕ℎ6

𝜕𝐸𝑅 
| = |𝜐| < ∞      (76)  

𝜕ℎ6

𝜕𝐼𝑆 
= 𝑟2𝑟,                                                       |

𝜕ℎ6

𝜕𝐼𝑆 
| = |𝑟2𝑟| < ∞      (77) 

𝜕ℎ6

𝜕𝐼𝑅 
= 𝜌𝑅  𝛽𝑅𝑆 − (𝜇 + 𝜇𝑟 + 𝑟1),            |

𝜕ℎ6

𝜕𝐼𝑅
| = |[𝜌𝑅  𝛽𝑅𝑆 − (𝜇 + 𝜇𝑟 + 𝑟1)]| < ∞   (78) 

𝜕ℎ6

𝜕𝑅𝑆 
= 0 ,                                                         |

𝜕ℎ6

𝜕𝑅𝑆 
| = |0| < ∞      (79) 

𝜕ℎ6

𝜕𝑅𝑅 
= 0 ,                                                         |

𝜕ℎ6

𝜕𝑅𝑅 
| = |0| < ∞      (80) 

Correspondingly, 
𝜕ℎ7

𝜕𝑀 
= 0,                                                            |

𝜕ℎ7

𝜕𝑀 
| = |0| < ∞      (81) 

𝜕ℎ7

𝜕𝑆 
= 0 ,                                                           |

𝜕ℎ7

𝜕𝑆 
| = |0| < ∞      (82) 

𝜕ℎ7

𝜕𝐸𝑆 
= 0 ,                                                           |

𝜕ℎ7

𝜕𝐸𝑆 
| = |0| < ∞      (83) 

𝜕ℎ7

𝜕𝐸𝑅 
= 0 ,                                                           |

𝜕ℎ7

𝜕𝐸𝑅 
| = |0| < ∞      (84) 

𝜕ℎ7

𝜕𝐼𝑆 
= 𝑟2(1 − 𝑟)                                               |

𝜕ℎ7

𝜕𝐼𝑆 
| = |𝑟2(1 − 𝑟)| < ∞     (85) 

𝜕ℎ7

𝜕𝐼𝑅 
= 0 ,                                                            |

𝜕ℎ7

𝜕𝐼𝑅
| = |0| < ∞      (86) 

𝜕ℎ7

𝜕𝑅𝑆 
= −𝜇 ,                                                        |

𝜕ℎ7

𝜕𝑅𝑆 
| = −|𝜇| < ∞     (87) 

𝜕ℎ7

𝜕𝑅𝑅 
= 0 ,                                                           |

𝜕ℎ7

𝜕𝑅𝑅 
| = |0| < ∞      (88) 

Finally, 
𝜕ℎ8

𝜕𝑀 
= 0,                                                              |

𝜕ℎ8

𝜕𝑀 
| = |0| < ∞      (89) 

𝜕ℎ8

𝜕𝑆 
= 0 ,                                                             |

𝜕ℎ8

𝜕𝑆 
| = |0| < ∞      (90) 

𝜕ℎ8

𝜕𝐸𝑆 
= 0 ,                                                            |

𝜕ℎ8

𝜕𝐸𝑆 
| = |0| < ∞      (91) 

𝜕ℎ8

𝜕𝐸𝑅 
= 0 ,                                                            |

𝜕ℎ8

𝜕𝐸𝑅 
| = |0| < ∞      (92) 

𝜕ℎ8

𝜕𝐼𝑆 
= 0,                                                              |

𝜕ℎ8

𝜕𝐼𝑆 
| = |0| < ∞      (93) 

𝜕ℎ8

𝜕𝐼𝑅 
= 𝑟1  ,                                                            |

𝜕ℎ8

𝜕𝐼𝑅
| = |𝑟1| < ∞     (94) 

𝜕ℎ8

𝜕𝑅𝑆 
= 0 ,                                                             |

𝜕ℎ8

𝜕𝑅𝑆 
| = |0| < ∞     (95) 

𝜕ℎ8

𝜕𝑅𝑅 
= −𝜇 ,                                                         |

𝜕ℎ8

𝜕𝑅𝑅 
| = −|𝜇| < ∞     (96) 

The partial derivatives (33) – (96) of the right hand side of (3) – (10) with respect M , S , 𝐸𝑆  , 𝐸𝑅, 𝐼𝑆, 𝐼𝑅 , 𝑅𝑆 , and 

𝑅𝑅are continuously differentiable and bounded. Hence, by Theorem 2, it is locally Lipschitz, therefore, M(t), 

S(t) , 𝐸𝑆(𝑡) , 𝐸𝑅(𝑡), 𝐼𝑆(𝑡), 𝐼𝑅(𝑡) , 𝑅𝑆(𝑡) , and 𝑅𝑅(𝑡) is a unique solution to the system of equations (3) – (10) 

with the initial conditions 𝑀10, 𝑆10, 𝐸𝑠10
, 𝐸𝑅10

, 𝐼𝑠10
, 𝐼𝑅10

, 𝑅𝑆10
, 𝑅𝑅10

 in the region 𝐴. 

Basic reproduction number 

The basic reproduction number for both drug sensitive TB and drug-resistant TB is denoted by𝑅𝑜𝑠 and 𝑅𝑜𝑅 

respectively. It is defined as the average number of secondary infections infected by an infective individual 

during an infective period provided that all members of the population are susceptible. 

The next generation matrix technique by Diekman and Heesterbeck (2002) was applied to obtain the basic 

reproduction numbers, 𝑅𝑜𝑠 and 𝑅𝑜𝑅 by considering the drug sensitive infected compartments of the system (3) to 

(10). That in equations (5), (6), (7) and (8). 

Reproduction number for drug – sensitive TB 
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From equation (5) and (7) it is given that 
𝑑𝐸𝑆

𝑑𝑡
=  (1 − 𝜌𝑠)𝛽𝑠𝐼𝑠𝑆 − (𝜐 + 𝜇)𝐸𝑠 

𝑑𝐼𝑆
𝑑𝑡

= 𝜌𝑆𝛽𝑠𝐼𝑠𝑆 + 𝜐𝐸𝑠 − (𝜇 + 𝜇𝑟 + 𝜇1)𝐼𝑠 

Evaluating 𝐹 and 𝑉, which are the Jacobian matrices of 𝐹 and 𝑉, respectively at disease free equilibrium 𝐸0 

gives 

𝐹 =

[
 
 
 0 

(1 − 𝜌𝑆)𝛽𝑠𝜋(𝜃 + 𝜇 − 𝜇𝜃)

𝜇(𝜃 + 𝜇)

0          
𝜌𝑆𝛽𝑠𝜋(𝜃 + 𝜇−𝜇𝜃)

𝜇(𝜃 + 𝜇)
            

]
 
 
 

,
𝑉 = [

(𝜐 + 𝜇)               0          
       −𝜐      (𝜇 + 𝜇𝑟 + 𝜇2)

]
 

The spectral radius 𝜌(𝐹𝑉−1), which is defined as the largest eigenvalue of 𝐹𝑉−1 is obtained. Thus the basic 

reproduction number for drug sensitive TB, 𝑅𝑜𝑠 is 

𝑅𝑜𝑠 =
𝜐(1 − 𝜌𝑆)𝛽𝑠𝜋(𝜃 + 𝜇 − 𝜇𝜎)

𝜇(𝜃 + 𝜇)(𝜐 + 𝜇)(𝜇 + 𝜇𝑇 + 𝑟2)
+ 

𝜌𝑆𝛽𝑠𝜋(𝜃 + 𝜇−𝜇𝜎)

𝜇(𝜃 + 𝜇)(𝜇 + 𝜇𝑇 + 𝑟2)
 

 

Reproduction number for drug-resistance TB 

From equations (5) and (7) we have 
𝑑𝐸𝑆

𝑑𝑡
=  (1 − 𝜌𝑅)𝛽𝑅𝐼𝑅𝑆 − (𝜐 + 𝜇)𝐸𝑅 

𝑑𝐼𝑅
𝑑𝑡

= 𝜌𝑅𝛽𝑅𝐼𝑅𝑆 + 𝜐𝐸𝑅 + 𝑟2𝑟𝑙𝑠 − (𝜇 + 𝜇𝑇 + 𝜇1)𝐼𝑅  

We evaluated 𝐹 and  𝑉 are evaluated, which are the Jacobian matrices of 𝐹 and 𝑉, respectively at disease free 

equilibrium 𝐸0 to get 

𝐹 =

[
 
 
 0 

(1 − 𝜌𝑆)𝛽𝑅𝜋(𝜃 + 𝜇 − 𝜇𝜃)

𝜇(𝜃 + 𝜇)

0          
𝜌𝑆𝛽𝑅𝜋(𝜃 + 𝜇−𝜇𝜃)

𝜇(𝜃 + 𝜇)
            

]
 
 
 

 and 𝑉 = [
(𝜐 + 𝜇)               0          

       −𝜐      (𝜇 + 𝜇𝑇 + 𝜇1)
] 

The spectral radius 𝜌(𝐹𝑉−1) is obtained and the basic reproduction number for drug resistant TB, 𝑅0𝑅 is 

𝑅𝑜𝑅 =
𝜐(1 − 𝜌𝑅)𝛽𝑅𝜋(𝜃 + 𝜇 − 𝜇𝜎)

𝜇(𝜃 + 𝜇)(𝜐 + 𝜇)(𝜇 + 𝜇𝑇 + 𝑟1)
+  

𝜌𝑅𝛽𝑅𝜋(𝜃 +  𝜇 − 𝜇𝜎)

𝜇(𝜃 + 𝜇)(𝜇 + 𝜇𝑇 + 𝑟1)
                                  

Table3.3: Variables and parameters values used for computational results 

Variable / Parameter Values Source(s) 

𝛽𝑠 0.0290 Jung, E., Lenhart, S., & Feng, Z. (2002) 

𝛽𝑅 0.0290 Jung, E., Lenhart, S., & Feng, Z. (2002) 

Π 200 Jung, E., Lenhart, S., & Feng, Z. (2002) 

𝜇 0.02 Bhunu, C. P., et. al., (2012) 

𝜇𝑇 0.3 Bhunu, C. P., et. al., (2012) 

𝜈 0.0013 Bhunu, C. P., et. al., (2012) 

𝜌𝑆 0.1 Bhunu, C. P., et. al., (2012) 

𝜌𝑅 0.1 Bhunu, C. P., et. al., (2012) 

𝑟1 0.2 Bhunu, C. P., et. al., (2012) 

𝑟2 0.3 Bhunu, C. P., et. al., (2012) 

𝜃 0.7 Bhunu, C. P., et. al., (2012) 

𝑟 0.9 Assumed 

𝜎 0.10 Cagri, O., et. al., (2012) 

M(0) 950 Assumed 

S(0) 3800 Cagri, O., et. al., (2012) 

𝐸𝑆(0) 1800 Cagri, O., et. al., (2012) 

𝐸𝑅(0) 100 Cagri, O., et. al., (2012) 

𝐼𝑆(0) 200 Cagri, O., et. al., (2012) 

𝐼𝑅(0) 50 Cagri, O., et. al., (2012) 

𝑅𝑆(0) 30 Assumed 

𝑅𝑅(0) 20 Assumed 

 

Sensitivity analysis: sensitivity analysis illuminates the path through the uncertainties, helping you understand 

how variations in model parameters affect disease transmission dynamics. The process involves identifying 

which parameters significantly influence the spread of disease for better prioritization, management of risks, 
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decision-making, and model validation. It is a method used to determine how different values of an independent 

variable. 
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Summary of the sensitivity indices 

 

Parameters Sensitivity index 

S  

R  

  

r1 -0.3846 
r2 -0.5 

  

  

  

 − 

T − 

S − 

R -0.2515  

A positive index show that increasing the Parameter, increases Ro, whereby making the disease more 

transmissible. While A negative index indicates that an increase in the parameter, reduces Ro making the 

disease less transmissible. If >1 𝑅₀ the infection will spread in the population; if 𝑅₀ =1, means the infection is 

steady but if 𝑅₀ <1 the infection is likely to die out  

 

Effects of the Parameters on the Reproduction number 

The rates of improved treatment efficiency (r1 and r2), higher vaccination coverage (σ), and reduced mortality 

(μ, μT) help lower basic reproduction number (𝑅₀) Thereby reducing transmission rate; (r1, r2, μ, and μT ) Which 

are the negative indexed number. Conversely, higher transmission rates (βS, βR, π) which are the positive index 

number increases 𝑅₀. Increasing these Parameter, will increase the value of the reproduction number and the 

disease will spread. 

 

Conclusion 

Parameters with negative indices are particularly significant because increasing these parameters will decrease 

R₀, thereby reducing disease transmission. In epidemiological models, parameters such as the rate of vaccination 

and the efficacy of treatment often exhibit negative sensitivity indices. Enhancing these parameters can lead to a 

decrease in R₀, contributing to better disease control. but if  transmission rates, vaccination and treatment efforts 

are insufficient, R₀ will rise, leading to more widespread disease transmission. 
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