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Abstract 

This study introduces symmetric rhotrices as an extension of symmetric matrices, establishing their foundational 

structure and defining key operations. We explore their properties, particularly in function analysis, through 

Hessian rhotrices, which aid in classifying critical points—except in cases where the determinant is zero.  

The research examines fundamental concepts such as positive definiteness, diagonalization, eigenvectors, and 

eigenvalues, using the Hessian Rhotrix of 4R , an even-dimensional rhotrix, as a case study. The spectral 

theorem is employed to determine diagonalizability, analyze vector transformations, and demonstrate vector 

alignments within 4R . Additionally, we apply the second derivative test to classify critical points. 

This work contributes to the development of rhotrix algebra and its potential applications in fields such as 

machine learning, quantum mechanics, and optimization theory 

 

Keywords: Symmetric Rhotrix, Eigenvalues, Diagonalization, Hessian Rhotrix, Positive Definiteness, Spectral 

Theory. 

 

Introduction 

The study of matrix algebra has played a crucial role in numerical analysis, data science, and physics. 

Theoretical advancements in matrix representations have led to the development of new algebraic structures, 

such as rhotrices, which extend traditional matrices. Ajibade (2003) introduced rhotrices as a mathematical 

structure positioned between 22  and 33  matrices, extending earlier work on matrix-tertions and matrix-

noitrets by Atanassov (1998). Ajibade’s rhotrix is defined in its heart-oriented form as: 

( )

e

dRhb

a

 
                                                                                                                                                                                  

( )1  

where ( )Rh  is referred to as the "heart" of the rhotrix. Later, Isere (2018) introduced even-dimensional 

rhotrices, which differ from Ajibade’s definition by omitting the heart term, making them "heartless rhotrices": 

e

db

a

                                                                              ( )2  

This structural difference has led to the development of alternative multiplication methods for rhotrices. 

Notably, Sani (2004) proposed a row-column multiplication method, while Utoyo (2023) introduced a co-

minor’s approach for even-dimensional rhotrices. 

Given that matrices are typically classified as square or rectangular, while rhotrices inherently maintain equal 

numbers of rows and columns, we introduce the concept of symmetric rhotrices: Rhotrices that remain 

unchanged when transposed. These structures exhibit three fundamental properties: 

i. Real eigenvalues, 

ii. Orthogonal eigenvectors, and 

iii. Diagonalizability (also guaranteed by spectral theory). 
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To the best of our knowledge, symmetric rhotrices have not been extensively studied in prior literature. This 

work aims to establish their algebraic properties, demonstrate their role in function analysis, and explore real-

world applications. 

 

1. Preliminaries: 

The following are germane to the study: 

 

Definition 2.1 (Symmetric Rhotrix) 

A symmetric rhotrix is a rhotrix that is equal to its transpose. That is, given a rhotrix R , 
TRR =  

where transposition involves flipping the entries over the major vertical axis while preserving the diagonal. For 

example, given 

  then

a

bd

e

 R,, 

e

db

a

R t ==  

( )3  

A rhotrix is symmetric if 
TRR = , meaning if and only if b  is equal to .d  

 

Definition 2.2 (Similarity Transformation of a Rhotrix)  

A similarity transformation of a rhotrix S by an invertible rhotrix R  is define as SRRT 1−=  where 
1−R  is 

the inverse of R  and S  represents the transformed rhotrix, S  is the original rhotrix and R  is an invertible 

rhotrix. 

, 

j

ig

f

 and S

e

db

a

R ==  

The rhotrix R  has an inverse 
1−R , provided that the determinant ( ) 0det −= qrpsR . 

a

db

e

bdae
R −−

−
=− 11

 

we calculate T using the similarity transformation formula  

SRRT 1−= . 

 to obtain 

j

ig

f

a

db

e

bdae
SR −−

−
=− 11

 

therefore 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )djagebjegd

dhafebhefddjagbbjega

dhafbbhefa

bdae
−+−

−+−−+−

−+−

−
=

1
T

                                                               

 

( )4  

If R
 
is an orthogonal rhotrix ( )1−= RRT

, then the similarity transformation preserves symmetry, that is, T  

remains symmetric. 

 

Definition 2.3 (A Self-Adjoint Rhotrix) 

A self-adjoint rhotrix (or Hermitian rhotrix) on a finite-dimensional real or complex inner product space is a 

type of linear operator  

RRT →:  
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that satisfies:  

( ) ( )yTxyxT ,, −  for all vectors yx,  in the space R , where,  ,  denotes the inner product. In rhotrix 

representation, a linear operator T  acting on 
n  or ( )nC  is self-adjoint if and only if its rhotrix representation 

S  satisfies:  

SS T =  for real rhotrices, 

SS =
 for complex rhotrices, 

where 
S  is the conjugate transpose. This means that S  must be symmetric (or Hermitian in the complex 

case). Given 

, 

j

ig

f

 and S

e

db

a

R ==  

For S  to be self-adjoint, we need SS T =  which implies that gh = . Thus, we assume SR 1−
 is 

j

ig

f

a

db

e

bdae
SR −−

−
=− 11

 

Obtaining SRRT 1−=  

The transpose is given as: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )djagebjegd

dhafebhefddjagbbjega

dhafbbhefa

bdae
−+−

−+−−+−

−+−

−
=

1
T  

eajeagdbj

edgeafdbgdefbajbagabjaeg

bdgbafabgaef

bdae
+−−

+−−+−−

+−−

−
=

deg

1
 

   

                                                                                                                 

( )5  

For T  to be self-adjoint, it must satisfy TT T = . This does not always hold unless R  is orthogonal. 

We solve this system for ix  and iy  in terms of each other, which gives the eigenvector corresponding to i . 

Explicitly, we solve for the eigenvectors. 

i

i

i
y

x
v =  

Results 

 

A symmetric rhotrix of 2R   is a 22  rhotrix. R  satisfies ,RRT =  meaning, it is equal to its transpose. This 

plays a fundamental role in numerical analysis, physics and machine learning. 

 

Definition 3.1 (Fundamental Properties of Symmetric Rhortices)} 

The eigenvalues of a rhotrix transformation can be determined by solving the characteristic equation, (Zhang, 

2021): 

( ) 0det =− IR   

where I  is the identity rhotrix and   is an eigenvalue. 

For a given rhotrix 4R : 
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l

kji

hgfe

dcb

a

R =   

the characteristic equation is derived as follows: 

0

0
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0

λI) - (det

4
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1

==

λ

λ

λ

λ

R





 

Solving for   gives the eigenvalues of 4R  as 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
2

4
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( )6  

Since the rhotrix is symmetric, the discriminant 

( ) ( ) ( ) ,4  ,4  ,4
222

fgjcdikbehla +−=+−=+−=  ensures that all eigenvalues are real, 

making symmetric rhotrices always diagonalizable. 

 

Definition 3.2 (Eigenvectors Corresponding to the Eigenvalues Are Orthogonal.) 

 (Aminu, 2010) . An eigenvector is a non-zero vector that, when a linear transformation (represented by a 

rhotrix) is applied to it, changes only in scale and not in direction. For each eigenvalue i , the corresponding 

eigenvector iv  is found by solving  

( ) 0=− ii vIR   

If 

l

kji

hgfe

dcb

a

R =  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
 . 

2

4
  ; 

2

4
  ; 

2

4

2

4
  ;

2

4
  ; 

2

4

2

6

2

5

2

4

2

3

2

2

2

1

fgcjjcjcdibkkbkbehallala

fgcjjcjcdibkkbkbehallala

−−+−+
=

−−+−+
=

−−+−+
=

−−+++
=

−−+++
=

−−+++
=





 

Substituting i  into iR −4 , we obtain 
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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iv
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To proof that eigenvectors corresponding to distinct eigenvalues are orthogonal, we consider the rhotrix 4R  and 

its eigenvalues , , , , , , 654321  we solve 

( ) 04 =− iji vR   

Substituting , , , , , , 654321   to find the corresponding eigenvectors . , , , , , 654321 vvvvvv   

We solve 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
0

000

0000

000

0

2

4
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2

4
0

0000
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2

4

2

4

2

4

1
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1

2
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2
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−−+−+
−

−−+−+
−

−−+−+
−

−−+++
−

−−+++
−

−−+++
−

y

yy

xx

x
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l
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k
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j
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c
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b
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a

 

This represents a system of linear equations. Using the element-wise multiplication method which is associative 

and the rhotrix-scalar multiplication property, which is commutative, we can move the scalar freely.  The 

systems of equations then simplifies to:  

e

λl

d

λk

f

λj

λc

f

λb

d

λa

e

RT

4

56

32

1

1

1111

1

−
−

−
−

−
−

−
−

−
−

−
−

=  

( )7  

After rewriting ix  in terms of iy .  

 

Definition 3.3 (Symmetric rhotrices are always Diagonalizable)  

(Usaini Salisu, 2014), introduced a classic problem in linear algebra, the diagonalization problem in terms of 

rhotrices (RDP). Since the eigenvectors of a symmetric rhotrix form an orthogonal basis, every symmetric 

rhotrix is diagonalizable. This implies that we can express 4R  as  

1

4

−= HH RRR  

If  
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=  

Multiplying HR  with   and then by 
1−

HR  we recover 4R , confirming that 4R  is diagonalizable.  From the 

definition of similarity transformation, the rhotrix 4R  is similar to a diagonal rhotrix. If a rhotrix is symmetric, 

then it is diagonalizable using a rhotrix whose columns are its eigenvectors. Hence, 

e
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( )8  

This means that applying the transformation 
1− HH RR  preserves the properties of the symmetric rhotrix while 

simplifying computations. 

Since diagonalization represents a rhotrix in terms of its eigenvalues and eigenvectors, it simplifies various 

operations, such as rhotrix exponentiation and solving differential equations involving rhortices. 

 

Applications in Symmetric Rhotrix 

Symmetric rhotrices are essential in the study of abstract structure, where their real eigenvalues, orthogonality 

and computational efficiency enable applications in eigendecomposition, spectral clustering, stability analysis, 

and so on. 

 

Theorem 1. Spectral Theory 

Spectral theory states that every symmetric rhotrix can be diagonalized by an orthogonal rhotrix. Thus, the 

eigenvalues of a symmetric rhotrix are always real and its eigenvectors are linearly independent. The set of all 

the eigenvalues of a rhotrix is called a spectrum. Also, the eigenvalue-eigenvector pairs tell us in which 

direction a vector is distorted after a given linear transformation. This is shown in the following figure. 
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Figure 1. Comparing an un-stretched vector (left) to a stretched vector (right). 

After transformation, in the direction of iv , the figure is stretched a lot. But in the direction of 
jv it’s not 

stretched very much. Hence, if 
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then, the symmetric rhotrix 4R  is diagonalizable as 
TQQR =4 . That is, 
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( )9  

4R  is diagonalizable because it has real eigenvalues, orthogonal eigenvectors and satisfies 
TQQ . Therefore, 

in the process of the diagonalization 
TQQR =4 , Q  sends a vector from the standard basis to the 

eigenvectors,   scales it, and then 
TQ  sends the vector back to the standard basis. From the perspective of the 

vector, the coordinate system is aligned with the standard basis with the eigenvectors. For example, 

 

Figure 2. Alignment of the basis of 4R  

The rhotrix used in the alignment of the basis is: 
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1

−= vv  

Symmetry and Positive-definiteness  

Positive-definiteness refers to a specific property of a rhotrix that indicates how it behaves when applied to 

vectors. To determine the definiteness of a symmetric (or Hermitian) rhotrix, we evaluate its eigenvalues. The 

definiteness of a rhotrix can be classified based on the signs of its eigenvalues. They are positive definite, 

positive semi-definite, negative definite, negative semi-definite and definite. Positive-definite rhotrices ensures 

that a quadratic form RxxT
  has a unique minimum and positive for all non-zero vectors which is critical in 

convex optimization and in stability analysis. If, 
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 then, 4R  is positive-definite since   ,0  ,0  ,0 +++ jckbla and

0  ,0  ,0 +−− fgcjdibkehal  

 

Hessian Rhotrices and Function Behaviour 

Brown (2014) explores the relationship between curvature, concavity and the eigenvalues of the Hessian Matrix 

providing insights into its role in determining the nature of critical points. This offers a good computation and 

application of a symmetric rhotrix. The theorem of the second derivative test for functions of several variables 

offers analyzes on function behavior of rhotrices. The test helps to determine whether a critical point of a 

function is a local minimum, local maximum or a saddle point. Formally, let →nf :  be a function, the 

Hessian is defined as 

( ) ( )
( )

ji

ij
dxdx

xfd
xhxH

2

== . 

The Hessian matrix is widely used to analyze function concavity, local extrema, and critical points (Omolehin, 

2006). The Hessian rhotrix extends this concept by storing second-order partial derivatives in a rhotrix structure. 

For a function ( )yxf , , the Hessian rhotrix is defined as: 
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Theorem 4.2. The Second Derivative Test 

The second derivative test states that: 

If all eigenvalues are positive, the function has a local minimum. 
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If all eigenvalues are negative, the function has a local maximum. 

If eigenvalues have mixed signs, the function has a saddle point. 

By applying rhotrix algebra, Hessian rhotrices can be used in machine learning (for curvature-aware 

optimization), economics (for stability analysis), and physics (for energy minimization problems). We use the 

Hessian rhotrix at this point to determine the nature of the critical point. If the vector of the partial derivatives of 

a function f is zero at some point x, then f has a critical point at x. The determinant of the Hessian at x is called a 

discriminant. If the discriminant is zero then x is called a degenerate critical point of f or a called a non-Morse 

Critical point of f. otherwise it is non-degenerate and called a Morse Critical point. If 
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Differentiate ( )22 , yxf  first with respect to 2x  then with respect to 
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 Therefore, the Hessian rhotrix ( )
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System iii. Given the function ( ) 2
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, yxyxf +=  , its second-order partial derivatives 32
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  Differentiate ( )33, yxf  first with respect to 3y  then 

with respect to 3x , 3
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 Therefore, the Hessian rhotrix 

( )

2

00

1

, 33 =yxH . 

 

Notice that it’s symmetric, which is always true for a Hessian rhotrix of a function with continuous second-order 

partial derivatives. The Hessian rhotrix at a critical point (where the gradient is zero) determines the nature of 

that critical point. The positive definite operation of the hessian rhotrix is positive definite at a critical point, the 

critical point is a local minimum. A rhotrix is positive definite if all it’s eigenvalues are positive or equivalently, 

if all its leading principal minors are positive. Negative definite occurs if the Hessian is negative definite at a 

critical point, the critical point is local maximum. A rhotrix is negative definite if all it’s eigenvalues are 

negative. Indefinite, if the Hessian is indefinite (has both positive and negative eigenvalues), the critical point is 

a saddle point and Semidefinite if the Hessian is semidefinite (has some zero eigenvalues), however, further 

analysis is needed to determine the nature of the critical point. Thus, the Hessian rhotrix for the three system 

becomes 

( )

2

723

1001

315

1

, ii yxH  

For all three functions, the Hessian rhotrix at any critical point is positive definite. Therefore, any critical points 

of these functions are local minima. The images of the functions are shown below: 
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Figure 3. Images of the functions 

Rhotrices that are equal to their transpose are called symmetric rhotrices. To transpose a rhotrix, one flips its 

entries over the major vertical axis, keeping the entries on this axis unchanged. The graphs of the functions 

when flipped represents a concave surface showing that in all directions, the functions decreases as the 

eigenvalues remain positive, signifying a flipped  growth pattern in the eigenvectors directions as: 

 
Figure 4.  Images of the transposed functions 

 

The relative maxima occur when the graph is concave down and relative minima occur when the graph is 

concave up through the application of Hessian rhotrices in function analysis. By examining the second-order 

partial derivatives of a function, the Hessian rhotrix helps classify critical points based on its eigenvalues. When 

all eigenvalues are negative, the function is concave down at that point, indicating a local maximum. 

Conversely, when all eigenvalues are positive, the function is concave up, signifying a local minimum. This is 

crucial in optimization and stability analysis, as the study confirms that positive definite Hessian rhotrices lead 

to stable minima, while negative definite Hessian rhotrices indicate peak values in function behavior. 

 

Conclusion 

This study introduces symmetric rhotrices and explores their algebraic properties, including eigenvalues, 

eigenvectors, diagonalization, Positive-definitness and Hessian rhotrices. The key findings include: Symmetric 

rhotrices always have real eigenvalues and eigenvectors that are orthongonal ensuring diagonalizability. 

Positive-definiteness ensures stability, optimization, and function classification, making it essential in spectral 

analysis. Hessian rhotrices provide a robust framework for function classification, extending classical second-

order tests. Potential applications exist in numerical optimization, machine learning, and quantum mechanics. 

 

Acknowledgements. We are indebted to the anonymous referees for their valuable corrections and suggestions 
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Future work should explore numerical implementations of symmetric rhotrices and their integration into 

computational frameworks like MATLAB and Python.  
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