FNAS Journal of Mathematical Modeling and Numerical Simulation Print ISSN: 3027-1282 www.fnasjournals.com Volume 2; Issue 2; March 2025; Page No. 165-171.



# Mathematical Modeling and Stability Analysis of the Disease-free Equilibrium of Heart Disease Transmission and Prevention Dynamics

\*Agbo, C.E., Abah, R.T., & Ogunfiditimi, F.O.

Department of Mathematics, University of Abuja, Nigeria

## \*Corresponding author email: <a href="mailto:agbo.ene@uniabuja.edu.ng">agbo.ene@uniabuja.edu.ng</a>

### Abstract

Heart disease, commonly referred to as Cardiovascular disease (CVD), encompasses a diverse array of disorders that impact the heart and vascular system, resulting in significant health consequences, including myocardial infarctions, cerebrovascular accidents, and cardiac insufficiency. This condition may present without symptoms during its initial phases, thereby rendering early identification and preventive measures essential. This research aims to formulate a mathematical model to analyze the dynamics associated with heart disease, with a particular emphasis on the disease-free equilibrium (DFE) and its stability criteria. The model employs a compartmental structure to represent the population dynamics of heart disease. The eigenvalues exhibited negativity, which signifies that the DFE possesses local asymptotic stability. The DFE signifies the condition in which heart disease requires early intervention and risk factor management.

Keywords: Heart Disease, Mathematical Modeling, Stability Analysis, Disease-Free Equilibrium (DFE), Epidemiology

## Introduction

Heart disease, commonly referred to as Cardiovascular disease (CVD), encompasses a diverse array of disorders that impact the heart and vascular system, resulting in significant health consequences, including myocardial infarctions, cerebrovascular accidents, and cardiac insufficiency (World Health Organization [WHO], 2021). The primary case of this condition is attributed to the constriction or occlusion of blood vessels attributable to the accumulation of atheromatous plaques, a pathological state identified as atherosclerosis, which impairs perfusion to essential organs (Benjamin et al., 2019). Additional classifications of heart disease encompass arrhythmias (irregularities in cardiac rhythm), congenital heart anomalies (defects present at birth), cardiomyopathy (deteriorated myocardial function), and valvular heart disease (compromised cardiac valves) (National Heart, Lung, and Blood Institute [NHLBI], 2020).

Heart disease constitutes a significant public health challenge and persists as the foremost cause of mortality globally, being responsible for approximately 17.9 million fatalities each year (WHO, 2021). This condition may present without symptoms during its initial phases, thereby rendering early identification and preventive measures essential. Numerous modifiable risk determinants, including hypertension, tobacco use, excessive body weight, diabetes mellitus, hyperlipidemia, and detrimental lifestyle choices, considerably facilitate its advancement (Roth et al., 2017). Contemporary investigations have transitioned towards elucidating the transmission dynamics of cardiovascular disease through the application of mathematical models, which facilitate the examination of how risk factors disseminate within populations and influence disease prevalence. Although traditionally classified as a non-communicable disease (NCD), cardiovascular disease demonstrates attributes of social transmission, wherein detrimental behaviors and hereditary vulnerabilities may affect the development of the disease within communities (Qu et al., 2024). When evaluating and contrasting the efficacy of various heart disease prevention strategies, mathematical modelling is essential. Numerous studies have assessed how preventative efforts affect the outcomes of heart disease using a variety of modelling techniques

The impacts of better medical treatments, secondary prevention through statin uptake, and primary prevention through salt reduction were compared in a thorough Markov model created for the Tunisian population (Saidi et al., 2019). According to the model, cutting salt might potentially reduce fatalities from ischemic heart disease and stroke by 27%, greatly surpassing secondary prevention (3%), as well as medicinal measures (1%). This demonstrates how effective primary prevention strategies are at lowering cardiovascular mortality. According to

165 *Cite this article as*:

Agbo, C.E., Abah, R.T., & Ogunfiditimi, F.O. (2025). Mathematical modeling and stability analysis of the disease-free equilibrium of heart disease transmission and prevention dynamics. *FNAS Journal of Mathematical Modeling and Numerical Simulation*, 2(2), 165-171.

(Agbo et al., 2024), The model combines agent-based modelling to simulate individual-level changes in lifestyle, and environmental exposures with interconnected ordinary differential equations to clarify populationlevel dynamics in disease transmission. The model makes the assumptions that risk factors are linearly additive, that populations are homogeneous, and that parameters remain constant across time.

Mathematical modeling has been extensively employed to investigate the transmission and management of infectious diseases; however, its utilization in the context of non-communicable diseases such as cardiovascular disease remains relatively nascent (Brauer et al., 2019). Mathematical models furnish a quantitative framework for examining disease progression, evaluating the efficacy of preventive measures, and forecasting prospective trends (Diekmann et al., 2020).

This research formulates a mathematical model to analyze the dynamics associated with heart disease, with a particular emphasis on the disease-free equilibrium (DFE) and its stability criteria. The DFE signifies a condition in which heart disease is eradicated from the population, thereby assisting policymakers in comprehending the thresholds necessary for effective disease management. Through the application of differential equations, analysis of the Jacobian matrix, and eigenvalue methodologies, this investigation delves into the stability of the DFE and its ramifications for public health interventions.

### **Method Formulation**

The model employs a compartmental structure to represent the population dynamics in relation to heart disease. The population is stratified into distinct compartments, each capturing a specific aspect of the individual's health status.

- Susceptible (S): Individuals who do not have heart diseases.
- Exposed due to lifestyle  $(E_1)$ : This compartment reflects people who have been exposed to varying degrees of heart disease. Based on lifestyle and dietary patterns, exposure levels are calculated, taking into account things like smoking, salt intake, processed food consumption, and long-term dietary habits.
  - Genetically Exposed  $(E_2)$ : individuals who are genetically inherited and hence exposed to varying degrees of heart disease.
  - Infected (I): This compartment accounts for individuals with elevated heart disease over time.
  - Treatment(T): This compartment represents individuals undergoing different types of heart disease treatment, considering factors medication and therapies.
- Recovered (R): Individuals who have recovered the heart disease impact. This compartment considers lifestyle modifications, medical interventions, or other factors influencing recovery.



#### 166 Cite this article as:

Agbo, C.E., Abah, R.T., & Ogunfiditimi, F.O. (2025). Mathematical modeling and stability analysis of the disease-free equilibrium of heart disease transmission and prevention dynamics. FNAS Journal of Mathematical Modeling and Numerical Simulation, 2(2), 165-171.

#### **Model Equations**

The transitions between these compartments are dictated by a set of ordinary differential equations, encapsulating the rates of change within each compartment over time. Model formulation factor in the natural evolution of heart health, adaptation or recovery, and mortality, acting as the propelling force influencing these transitions. The model equations are as follows:

| $\frac{dS}{dt} = \mu - (\beta + \rho)SI - \alpha S + \tau E_1 + \sigma E_2 + \zeta R$ | (1) |
|---------------------------------------------------------------------------------------|-----|
| $\frac{dE_1}{dt} = \beta SI - (\gamma + \tau + \alpha)E_1$                            | (2) |
| $\frac{dE_2}{dt} = \rho SI - (\eta + \sigma + \alpha)E_2$                             | (3) |
| $\frac{dI}{dt} = \gamma E_1 + \eta E_2 - (\alpha + \omega + \delta)I$                 | (4) |
| $\frac{dT}{dt} = \delta I - (\alpha + \theta)T$                                       | (5) |
| $\frac{dR}{dt} = \theta T - (\alpha + \zeta)R$                                        | (6) |
| Where                                                                                 |     |

S/NO Variables And Parameters Description Natural birth rate. 1 μ 2 Natural death rate. α 3 Transmission rate of heart diseases due to lifestyles such β as unhealthy dietary habit. 4 Transmission rate of heart diseases due to inheritance. ρ Infected rate due to unhealthy dietary habit. 5 Rate of change in lifestyle. γ 6 Rate of prevention on genetic disposition. τ 7 Infected rate due to genetic. σ 8 Mortality rate due to heart diseases. η 9 Treatment rate due to medication and therapies. ω 10 Recovery due to healthy lifestyle and medication. δ Loss of immunity. 11 θ 12 7

### as

 $N(t) = S(t) + E_1(t) + E_2(t) + I(t) + T(t) + R(t)$ 

#### **Basic Properties of the Model Invariant and Feasibility Analysis**

Since the model formulation deals with the living population, it is assume that the variables and the parameters used are positive such that

(7)

| $t \to \infty N(t) \le \frac{\mu}{\alpha}$ | (8) |
|--------------------------------------------|-----|
| Then                                       |     |

| $\dot{N}(t) = S'(t) + E'_{1}(t) + E'_{2}(t) + I'(t) + T'(t) + R'(t)$                    | (9)  |
|-----------------------------------------------------------------------------------------|------|
| From Equation (3.9). The rate of change in total population at initial time $t = 0$ is, |      |
| $\dot{N} = \mu - \alpha (S + E_1 + E_2 + I + T + R)$                                    | (10) |
| Substituting equation (1-6) into equation (10) gives                                    |      |
| $\dot{N} = \mu - \alpha(N)$                                                             | (11) |
| Hence the positive invariant region for model (1)-(6) is                                |      |
| $\Psi = (S + E_1 + E_2 + I + T + R) \in \mathbb{R}^6 \le \frac{\mu}{\pi}$               | (12) |
|                                                                                         |      |

Therfore, if  $N_0 > \frac{\mu}{\alpha}$  then either the solution of equation (1-6) enter  $\Psi$  of N(t)  $\rightarrow \frac{\mu}{\alpha}$  asymptotically. Hence the region  $\Psi$  attract solution of model (1-6) in  $\mathbb{R}^6$ .

#### **Model Equilibrium Point**

The equilibrium state is carried out to determine the disease-free equilibrium point the model. At the equilibrium Point  $\frac{ds}{dt} = 0$ ,  $\frac{dE_1}{dt} = 0$ ,  $\frac{dI}{dt} = 0$ ,  $\frac{dI}{dt} = 0$ ,  $\frac{dI}{dt} = 0$ ,  $\frac{dI}{dt} = 0$ ,  $\frac{dR}{dt} = 0$  thus obtained

$$\mu - (\beta + \rho)SI - \alpha S + \tau E_1 + \sigma E_2 + \zeta R = 0$$

$$\beta SI - (\gamma + \tau + \alpha)E_1 = 0$$
(13)
(14)

167 *Cite this article as:* 

Agbo, C.E., Abah, R.T., & Ogunfiditimi, F.O. (2025). Mathematical modeling and stability analysis of the disease-free equilibrium of heart disease transmission and prevention dynamics. FNAS Journal of Mathematical Modeling and Numerical Simulation, 2(2), 165-171.

| $\rho SI - (\alpha r)$ $\gamma E_1 + r$ $\delta I - (\alpha r)$ $\theta T - (\alpha r)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{aligned} (\eta + \sigma + \alpha) \\ \eta E_2 - (\alpha + \alpha) \\ (\alpha + \theta)T = 0 \\ (\alpha + \zeta)R = 0 \end{aligned}$ | $E_2 = 0$<br>$\omega + \delta I = 0$<br>0       |                                                 |                               |                 |                     |             | (15)<br>(16)<br>(17)<br>(18) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------|-----------------|---------------------|-------------|------------------------------|
| Then th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e equilibriu                                                                                                                                | m point of S,                                   | $E_1, E_2, I, T$                                | and R is for                  | und.            |                     |             |                              |
| Equilibri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rium point f                                                                                                                                | for disease-fre                                 | e is a point                                    | where there                   | is no dis       | ease whi            | ich implies |                              |
| $E_1 = E_2 = I = T = R = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             |                                                 |                                                 |                               |                 |                     | (19)        |                              |
| From (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18)                                                                                                                                         |                                                 |                                                 |                               |                 |                     |             |                              |
| $R = \frac{\alpha}{\alpha + \alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                           |                                                 |                                                 |                               |                 |                     |             | (20)                         |
| From (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17)                                                                                                                                         |                                                 |                                                 |                               |                 |                     |             | (21)                         |
| $T = \frac{1}{\alpha + 6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ð                                                                                                                                           |                                                 |                                                 |                               |                 |                     |             | (21)                         |
| From (1) $I = \frac{\gamma E_1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10)<br>+ηE <sub>2</sub>                                                                                                                     |                                                 |                                                 |                               |                 |                     |             | (22)                         |
| $\frac{1-\alpha}{\alpha+\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\omega + \delta = 0$ and sub                                                                                                               | stitute 0 for 1                                 | E <sub>2</sub> in (22) w                        | hich gives                    |                 |                     |             | (22)                         |
| $I = \frac{\gamma E}{\gamma E}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                             | Stitute o for f                                 | 12 m (22) w                                     | liten gives                   |                 |                     |             | (23)                         |
| α+ω<br>Substitu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\delta^{+\delta}$<br>(23) into                                                                                                             | (14) yeld                                       |                                                 |                               |                 |                     |             |                              |
| $\beta S \frac{\gamma E_{f}}{(\alpha + \omega)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{1}{1+\delta} - (\gamma +$                                                                                                            | $(\tau + \alpha)E_1 = 0$                        | )                                               |                               |                 |                     |             | (24)                         |
| $E_1 \begin{bmatrix} \beta S \gamma - \beta S \gamma $ | $(\gamma + \tau + \alpha)(\alpha + \alpha)$                                                                                                 | $\left(\frac{\delta+\delta}{\delta}\right) = 0$ |                                                 |                               |                 |                     |             | (25)                         |
| From (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(\alpha + \omega + \delta)$<br>25) either $E_{2}$                                                                                          | I = 0  or  S =                                  | $\frac{(\gamma + \tau + \alpha)}{\beta \gamma}$ |                               |                 |                     |             | ~ /                          |
| For $E_1$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0                                                                                                                                         |                                                 | PT                                              |                               |                 |                     |             |                              |
| Substitu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | te $E_1 = 0$ i                                                                                                                              | nto (23) give                                   | 5                                               |                               |                 |                     |             |                              |
| I = 0<br>Substitu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ite (26) into                                                                                                                               | (21) we have                                    | e.                                              |                               |                 |                     |             | (26)                         |
| T = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>(20)</i> Into                                                                                                                            | (21)                                            | -                                               |                               |                 |                     |             | (27)                         |
| Substitu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | te (27) into                                                                                                                                | (20) gives                                      |                                                 |                               |                 |                     |             |                              |
| R = 0<br>Substitute (26) into (15) gives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |                                                 |                                                 |                               | (28)            |                     |             |                              |
| $E_2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>(20)</i> Into                                                                                                                            | (10) 51 (05                                     |                                                 |                               |                 |                     |             | (29)                         |
| Then su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ibstitute $E_1$                                                                                                                             | $= 0, E_2 = 0$                                  | I = 0, and                                      | d R = 0 into                  | o (13) wh       | ich give            | S           |                              |
| $\mu - \alpha S$<br>$S - \frac{\mu}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 0                                                                                                                                         |                                                 |                                                 |                               |                 |                     |             | (30)                         |
| $S = \frac{\alpha}{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ne equilibrii                                                                                                                               | um point of d                                   | isease free f                                   | or the heart                  | disease m       | nodel are           | 2           | (30)                         |
| $K_0 = (S_0)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $S, E_1, E_2, I, T$                                                                                                                         | $(T, R) = (\frac{\mu}{T}, 0),$                  | 0,0,0,0)                                        |                               |                 | 10 401 410          | -           | (31)                         |
| The Jac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | obian matri                                                                                                                                 | x for $(1-6)$ is                                | obtained as                                     |                               |                 |                     |             |                              |
| [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-(\beta+\rho)I-a$                                                                                                                          | <i>τ</i>                                        | $\sigma$                                        | $(\beta + \rho)S$             | 0               | ζ                   | 7           |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ιβ                                                                                                                                          | $-(\gamma + \tau + \alpha)$                     | 0                                               | βS                            | 0               | 0                   |             |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ιρ                                                                                                                                          | 0                                               | $-(\eta + \sigma + \alpha)$                     | $\rho S$                      | 0               | 0                   |             |                              |
| $J(K_0) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                           | γ                                               | n                                               | $-(\alpha + \delta + \omega)$ | 0               | 0                   |             | (32)                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                           | ,<br>0                                          | 0                                               | δ                             | $-(\alpha + A)$ | 0<br>0              |             |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                           | 0                                               | 0                                               | 0                             | (u + v)<br>N    | $-(\alpha + \beta)$ |             |                              |
| Į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 0                                                                                                                                         | 0                                               | U                                               | 0                             | U               | $-(u+\zeta)$        | 'J          |                              |

### Local Stability Analysis

In the previous section, the number of the disease free equilibrium in the model equation (3.1- 3.6) is determined. In this section, To ascertain the system's local stability, we applied the Jacobian stability technique. Examine the Jacobian matrix (32) by substituting the value  $S = \frac{\mu}{\alpha}$  and I = 0 gives

Agbo, C.E., Abah, R.T., & Ogunfiditimi, F.O. (2025). Mathematical modeling and stability analysis of the disease-free equilibrium of heart disease transmission and prevention dynamics. *FNAS Journal of Mathematical Modeling and Numerical Simulation*, 2(2), 165-171.

$$J(K_0) = \begin{bmatrix} -\alpha & \tau & \sigma & (\beta + \rho)\frac{\mu}{\alpha} & 0 & \zeta \\ 0 & -(\gamma + \tau + \alpha) & 0 & \beta\frac{\mu}{\alpha} & 0 & 0 \\ 0 & 0 & -(\eta + \sigma + \alpha) & \rho\frac{\mu}{\alpha} & 0 & 0 \\ 0 & \gamma & \eta & -(\alpha + \delta + \omega) & 0 & 0 \\ 0 & 0 & 0 & \delta & -(\alpha + \theta) & 0 \\ 0 & 0 & 0 & 0 & \theta & -(\alpha + \zeta) \end{bmatrix}$$
(33)

For simplicity, let  $n_1 = (\beta + \rho)$ ,  $n_2 = (\alpha + \gamma + \tau)$ ,  $n_3 = (\alpha + \eta + \sigma)$ ,  $n_4 = (\alpha + \delta + \omega)$ ,  $n_5 = (\alpha + \theta)$ ,  $n_6 = (\alpha + \zeta)$ Then (33) become

$$J(K_0) = \begin{bmatrix} -\alpha & \tau & \sigma & \frac{\mu n_1}{\alpha} & 0 & \zeta \\ 0 & -n_2 & 0 & \beta \frac{\mu}{\alpha} & 0 & 0 \\ 0 & 0 & -n_3 & \rho \frac{\mu}{\alpha} & 0 & 0 \\ 0 & \gamma & \eta & -n_4 & 0 & 0 \\ 0 & 0 & 0 & \delta & -n_5 & 0 \\ 0 & 0 & 0 & 0 & \theta & -n_6 \end{bmatrix}$$
(34)

Using echelon row reduced method gives

$$J(K_{0_{ref}}) = \begin{bmatrix} -\alpha & \tau & \sigma & \frac{\mu n_1}{\alpha} & 0 & \zeta \\ 0 & -n_2 & 0 & \beta \frac{\mu}{\alpha} & 0 & 0 \\ 0 & 0 & -n_3 & \rho \frac{\mu}{\alpha} & 0 & 0 \\ 0 & \gamma & \eta & -n_4 - \frac{\gamma \beta \mu}{\alpha n_2} & 0 & 0 \\ 0 & 0 & 0 & \delta & -n_5 & 0 \\ 0 & 0 & 0 & 0 & \theta & -n_6 \end{bmatrix}$$
(35)

Using the method in (Abah et al., 2015) to find the eigenvalues of the row reduce matrix  $J(K_{0ref})$  the characteristics equation  $|J(K_{0ref}) - \lambda| = 0$  is expanded and simplified as follow

$$\left|J(K_{0_{ref}}) - \lambda\right| = \begin{vmatrix} -\alpha - \lambda & \tau & \sigma & \frac{\mu m_1}{\alpha} & 0 & \zeta \\ 0 & -n_2 - \lambda & 0 & \beta \frac{\mu}{\alpha} & 0 & 0 \\ 0 & 0 & -n_3 - \lambda & \rho \frac{\mu}{\alpha} & 0 & 0 \\ 0 & \gamma & \eta & -n_4 - \frac{\gamma \beta \mu}{\alpha n_2} - \lambda & 0 & 0 \\ 0 & 0 & 0 & \delta & -n_5 - \lambda & 0 \\ 0 & 0 & 0 & 0 & \theta & -n_6 - \lambda \end{vmatrix} = 0$$
(36)

The determinant of an upper triangular matrix is the product of its diagonal elements. Therefore:

169 *Cite this article as*:

Agbo, C.E., Abah, R.T., & Ogunfiditimi, F.O. (2025). Mathematical modeling and stability analysis of the disease-free equilibrium of heart disease transmission and prevention dynamics. *FNAS Journal of Mathematical Modeling and Numerical Simulation*, 2(2), 165-171.

$$\begin{split} \left| J(K_{0ref}) - \lambda \right| &= (-\alpha - \lambda)(-n_2 - \lambda)(-n_3 - \lambda)(-n_4 - \frac{\gamma\beta\mu}{\alpha n_2} - \lambda)(-n_5 - \lambda)(-n_6 - \lambda) \quad (37) \\ \text{From (37) the characteristics polynomial is obtained as} \\ (-\alpha - \lambda)(-n_2 - \lambda)(-n_3 - \lambda)(-n_4 - \frac{\gamma\beta\mu}{\alpha n_2} - \lambda)(-n_5 - \lambda)(-n_6 - \lambda) = 0 \quad (38) \\ \text{Each factor corresponds to an eigenvalue:} \\ -\alpha - \lambda = 0 \Longrightarrow \lambda = -\alpha \quad (39) \\ -n_2 - \lambda = 0 \Longrightarrow \lambda = -n_2 \quad (40) \\ -n_3 - \lambda = 0 \Longrightarrow \lambda = -n_3 < 0 \quad (41) \\ -n_4 - \frac{\gamma\beta\mu}{\alpha n_2} - \lambda = 0 \Longrightarrow \lambda = -n_4 - \frac{\gamma\beta\mu}{\alpha n_2} < 0 \quad (42) \\ -n_5 - \lambda = 0 \Longrightarrow \lambda = -n_5 < 0 \quad (43) \\ -n_6 - \lambda = 0 \Longrightarrow \lambda = -n_6 < 0 \quad (44) \end{split}$$

### Results

The eigenvalues  $\lambda_1 = -\alpha$ ,  $\lambda_2 = -n_2$ ,  $\lambda_3 = -n_3$ ,  $\lambda_4 = -n_4 - \frac{\gamma\beta\mu}{\alpha n_2}$ ,  $\lambda_5 = -n_5$ ,  $\lambda_6 = -n_6$  exhibit negativity, which signifies that the disease-free equilibrium (DFE) possesses local asymptotic stability. This implies that should the system initiate in proximity to the DFE, it will asymptotically approach the DFE over time. In pragmatic terms, this suggests that the disease will extinguish if the initial count of infected individuals remains minimal and the system is situated near the DFE.

### Discussion

The eigenvalues are dependent on the parameters of the model, and their respective values yield valuable insights into the manner in which various factors affect the stability of the system:

 $\lambda_1 = -\alpha$ 

This eigenvalue is influenced by the intrinsic mortality rate of susceptible individuals. An elevated death rate accelerates the stability of the system.

 $\lambda_2 = -n_2$ 

This eigenvalue pertains to the rate at which exposed individuals  $(E_1)$  transition to the subsequent stage by becoming infected. An increased rate of progression facilitates the stabilization of the system.

 $\lambda_3 = -n_3$ 

This eigenvalue is connected to the velocity at which exposed individuals  $(E_2)$  advance to the next phase. Analogous to the preceding rate, an enhanced value contributes to a more rapid stabilization.

 $\lambda_4 = -n_4 - rac{\gamma eta \mu}{lpha n_2}$ 

This eigenvalue is contingent upon the rate of lifestyle change of infected individuals(I) and the transmission coefficient. An elevated recovery rate coupled with a diminished transmission coefficient promotes system stability.

 $\lambda_5 = -n_5$ 

This eigenvalue is related to the rate at which individuals receiving treatment(T) recover or are eliminated. An increased recovery rate aids in stabilizing the system.

$$\lambda_6 = -n_6$$

This eigenvalue is associated with the rate at which recovered individuals(R) experience a loss of immunity or succumb. An accelerated loss of immunity contributes positively to system stability.

### Conclusion

The study offers a mathematical framework for comprehending the prevention and transmission of heart disease. It supports the notion that lowering the prevalence of heart disease requires early intervention and risk factor management by validating the diseas-free equilibrium(DFE) local stability. This model could be expanded in future studies by adding stochastic components, demographic changes, or outside impacts like socioeconomic variables.

### References

Abah, R. T., Akinwande, N. I., Enagi, A. I., Kuta, F. A., Abdulrahaman, S., & Somma, S. A. (2015). Stability analysis of the disease-free equilibrium state of a mathematical model of Ebola fever disease epidemic. *International Journal of Innovation in Science and Mathematics*, 3(2), 118–123. Retrieved from <u>https://www.ijism.org/administrator/components/com\_jresearch/files/publications/IJISM-363\_updated\_Final.pdf</u>

Agbo, C., Abah, R., & Abdullahi, A. M. (2024). A mathematical modeling on the stability analysis of heart

<sup>170</sup> *Cite this article as:* 

Agbo, C.E., Abah, R.T., & Ogunfiditimi, F.O. (2025). Mathematical modeling and stability analysis of the disease-free equilibrium of heart disease transmission and prevention dynamics. *FNAS Journal of Mathematical Modeling and Numerical Simulation*, 2(2), 165-171.

disease dynamics: Mathematical modeling on the stability analysis of heart disease. Journal of Institutional Research, Big Data **Analytics** and Innovation. 1(1).https://universityjournals.com.ng/index.php/jirbdai/article/view/54/24

- Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., & Virani, S. S. (2019). Heart disease and stroke statistics-2019 update: A report from the American Heart Association. Circulation, 139(10), e56-e528. https://doi.org/10.1161/CIR.000000000000659
- Brauer, F., Castillo-Chavez, C., & Feng, Z. (2019). Mathematical models in epidemiology (Vol. 32). Springer. https://doi.org/10.1007/978-1-4939-9828-9
- Diekmann, O., Heesterbeek, J. A. P., & Britton, T. (2020). Mathematical tools for understanding infectious disease dynamics. Princeton University Press. https://doi.org/10.1515/9781400845620
- National Heart, Lung, and Blood Institute (NHLBI). (2020). What is heart disease? Retrieved from https://www.nhlbi.nih.gov/health-topics/heart-disease
- Qu, Q., Guo, Q., Shi, J., Chen, Z., Sun, J., Cheang, I., ... & Li, X. (2024). Trends in cardiovascular risk factor prevalence, treatment, and control among US adolescents aged 12 to 19 years, 2001 to March 2020. BMC medicine, 22(1), 245. https://doi.org/10.1186/s12916-024-03453-5
- Roth, G. A., Johnson, C., Abajobir, A., Abd-Allah, F., Abera, S. F., Abyu, G., ... & Ukwaja, K. N. (2017). Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. Journal of the American college of cardiology, 70(1), 1-25.
- Saidi, O., O'Flaherty, M., Zoghlami, N., Malouche, D., Capewell, S., Critchley, J. A., & Guzman-Castillo, M. (2019). Comparing strategies to prevent stroke and ischemic heart disease in the Tunisian population: Markov modeling approach using a comprehensive sensitivity analysis algorithm. Computational and Mathematical Methods in Medicine, 2019, 2123079. https://doi.org/10.1155/2019/2123079
- World Health Organization (WHO). (2021). Cardiovascular diseases (CVDs) fact sheet. Retrieved from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

171