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Abstract  

We construct an algorithm for the approximation of the common solution of the set of fixed points of a countable 

family of closed Bregman quasi-strict pseudo-contractive mappings; set of solutions of a finite system of a generalized 

mixed equilibrium problems and the set of h-fixed points of a finite family of h-pseudo-contractive mappings. A 

strong convergence theorem is proved for this algorithm in a reflexive (real) Banach space. An application is provided. 
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Introduction 

The study of fixed point theory is indeed an interesting research area for many researchers in the field of analysis and 

applied mathematics (Rockafeller, 1970; Naraghirad & Yao, 2013; Zalinescu, 2002; Chidume, 2009). The reason for 

the interest is based on the fact that many problems that occur in physical phenomena are often modeled in the form of 

fixed point problem as follows 𝑥 = 𝑇𝑥, where 𝑇 is taken to be any mapping or operator (Reich & Sabach, 2010, 

Bregman, 1967, Censor, 1981, Kato,1967). Approximation of fixed points of mappings (when it exists) is 

predominantly done through iterative methods. However, approximation of fixed points of Bregman quasi strictly 

pseudo-contractive mappings cannot be possible using classical iterative methods, as they will either give a weak 

convergence or the sequences generating the methods will not be bounded (see Reich & Sabach, 2009, Zegeye & 

Shahzad, 2014, Ugwunnadi et.al, 2014). We note that some authors have intensively studied this class of Bregman 

mapping (Wang, 2015; Wang & Wei, 2017; Yongfu & Yongchun, 2015; Ali et.al., 2019). Examples of this class of 

mapping can be found in (Ugwunnadi et.al., 2014, Zegeye et.al., 2022). In many cases, monotonicity condition of a 

mapping is very important in fixed point and optimization theories such that it often guarantees convergence. A 

closely related monotone maps is ℎ −pseudo-contractive maps. This map was originally introduced and studied by 

Zegeye et.al, 2022 and these mappings has become a motivation for the study of system of generalized mixed 

equilibrium problems. 

 

Consequently many classical methods are available in the literature (Picard, 1890; Krasnosel’skii, 1955; Mann, 1953, 

Ishikawa, 1974) for approximating common solutions of several related nonlinear problems. Many of these methods 

have been successfully applied in approximating fixed point of several mappings and for finding solutions of some 

nonlinear system of equations respectively. The literature of fixed point theory is heavily domicile in Hilbert space, 

CAT(0) space and as well as in general Banach spaces, where many valuable problems related to practical problems 

are generally defined. Two convergence results; weak and strong convergence has always been of great interest to 

researchers. 

 

Polyak (1964) became the first author to come up with acceleration process of convergence of iteration methods 

known as inertial-type algorithm. This algorithm is known for solving many smooth convex minimization problems. 

This discovery has led many authors to combine this method with other classical iterative methods to accelerate the 

rate of convergence of the sequence generated by the proposed algorithm and some references within (Ali et.al., 2019; 

Dong et.al., 2018; Ekuma-Okereke & Okoro, 2020; Padcharoen et.al 2020).  Zegeye et al. (2022), introduced an 
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algorithm for approximating common solutions of a finite family of generalized mixed equilibrium problems, the set 

of ℎ-fixed points of a finite family of ℎ-pseudo-contractive mappings and the set of solutions of a finite family of 

variational inequality problems for Lipschitz monotone mappings. Their algorithm is as follows: let {𝑥𝑛} be a 

sequence generated by the following algorithm:  

 

{
  
 

  
 
𝑢, 𝑥0 ∈ 𝐾,
𝑧𝑛 = 𝑃𝐾∇ℎ

∗(∇ℎ(𝑥𝑛) − 𝑎𝑛𝑀𝑛𝑥𝑛),

𝑤𝑛 = 𝑃𝐾∇ℎ
∗(∇ℎ(𝑥𝑛) − 𝑎𝑛𝑀𝑛𝑧𝑛),

𝑢𝑛 = 𝐺𝐻𝑀
ℎ,𝑟𝑛 ∘ 𝐺𝐻𝑀−1

ℎ,𝑟𝑛 ∘ … ∘ 𝐺𝐻2
ℎ,𝑟𝑛 ∘ 𝐺𝐻1

ℎ,𝑟𝑛𝑥𝑛 ,

𝑣𝑛 = 𝑅𝑆𝑁
ℎ,𝑟𝑛 ∘ 𝑅𝑆𝑁−1

ℎ,𝑟𝑛 ∘ … ∘ 𝑅𝑆2
ℎ,𝑟𝑛 ∘ 𝑅𝑆1

ℎ,𝑟𝑛𝑢𝑛,

𝑥𝑛+1 = ∇ℎ∗(𝑎𝑛∇ℎ(𝑢) + 𝑏𝑛∇ℎ(𝑥𝑛) + 𝑐𝑛∇ℎ(𝑤𝑛) + 𝑑𝑛∇ℎ(𝑣𝑛)),

 (1) 

  

where ∇ℎ is the gradient of ℎ on 𝑋, (𝑟𝑛) ⊂ [𝑐,∞), {𝑎𝑛}, {𝑏𝑛}, {𝑐𝑛} and {𝑑𝑛} are scalar sequence in (0,1) such 

that 𝑎𝑛 + 𝑏𝑛 + 𝑐𝑛 + 𝑑𝑛 = 1, then the sequence converges to the common element in real reflexive Banach spaces. 

Using the method of inertial algorithm combined with resolvent method, Ali et al, (2019), introduced and 

studied algorithm for approximating a common fixed point of countable families of quasi Bregman strictly 

pseudo-contractive mappings and solution of a system of generalized mixed equilibrium problems as follows:  

 

{
 
 
 

 
 
 
𝐶1 = 𝑋,
𝑧𝑛 = 𝑥𝑛 + 𝑎𝑛(𝑥𝑛 − 𝑥𝑛−1),

𝑦𝑛 = ∇ℎ
∗(𝑏𝑛∇ℎ(𝑧𝑛) + (1 − 𝑏𝑛)∇ℎ(𝑇𝑡𝑧𝑛)),

𝑢𝑛 = 𝐺𝑟𝑛𝑦𝑛,

𝐶𝑛+1 = {𝑢 ∈ 𝐶𝑛: 𝑑ℎ(𝑢, 𝑢𝑛) ≤ 𝑑ℎ(𝑢, 𝑦𝑛) ≤ 𝑑ℎ(𝑢, 𝑧𝑛) +
𝜌

1−𝜌
〈∇ℎ(𝑧𝑛) − ∇ℎ(𝑇𝑡𝑧𝑛), 𝑧𝑛 − 𝑢〉},

𝑥𝑛+1 = 𝑃𝐶𝑛+1
ℎ (𝑥0), 𝑛 ∈ ℕ.

 (2) 

 

The authors proved that the sequence generated by the algorithm converges to the common element of the set of 

solutions of a countable family of generalized mixed equilibrium problems, the set of fixed points of a countable 

families of quasi Bregman strictly pseudo-contractive mappings in real reflexive Banach spaces. 

 

Ugwunnadi et al. (2014), originally introduced a new class of Bregman mapping called quasi-Bregman strictly 

pseudo-contraction mapping. They constructed a new iterative technique called a hybrid method and proved a strong 

convergence theorem of a common element in the set of fixed points of a family of a finite family of closed 

quasi-Bregman strictly pseudo-contraction mappings and common solution to a system of equilibrium problems in 

reflexive Banach space. Below is their iterative technique:  

 

{
 
 
 
 

 
 
 
 
𝑥1 = 𝑥 ∈ 𝐾,
𝑦𝑛 = ∇ℎ

∗(𝛼∇ℎ(𝑥𝑛) + (1 − 𝛼𝑛)∇ℎ(𝑇𝑛𝑥𝑛)),

𝑢𝑗,𝑛 = 𝑅𝑒𝑠𝑔𝑗
ℎ 𝑦𝑛 , 𝑗 = 1,2, . . . , 𝑀,

𝑤𝑛 = ∇ℎ
∗(∑𝑀𝑗=1 𝛽𝑗,𝑛∇ℎ(𝑢𝑗,𝑛)),

𝐶𝑛+1 = {𝑧 ∈ 𝐶𝑛: 𝑑ℎ(𝑥𝑛 , 𝑤𝑛) ≤
1

1−𝜆
〈∇ℎ(𝑥𝑛) − ∇ℎ(𝑇𝑛𝑥𝑛), 𝑥𝑛 − 𝑧〉

+〈∇ℎ(𝑇𝑛𝑥𝑛) − ∇ℎ(𝑤𝑛), 𝑥𝑛 − 𝑧〉},

𝑥𝑛+1 = 𝑃𝐶𝑛+1
ℎ (𝑥), 𝑛 ∈ 𝑁,

 (3) 

 where 𝑇𝑛 = 𝑇𝑛(𝑚𝑜𝑑𝑁) and 𝛼𝑛 ∈ (0,1) satisfying some conditions and 𝜆 ∈ [0,1), for each 𝑖 = 1,2, . . . , 𝑁, 𝑇𝑖  is 

uniformly continuous. Then under suitable conditions, the sequence {𝑥𝑛} converges strongly to the solution set Ω. 

 

Chidume et al. (2018), formulated and studied an inertial algorithm for approximating common fixed point of a 

countable family of relatively nonexpansive mappings. Set 𝑥0, 𝑥1 ∈ 𝑋, and define a sequence {𝑥𝑛} by the following 

algorithm:  
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{
 
 

 
 
𝐶0 = 𝑋,
𝑧𝑛 = 𝑥𝑛 + 𝛼𝑛(𝑥𝑛 − 𝑥𝑛−1),

𝑦𝑛 = 𝐽
−1((1 − 𝛽)𝐽𝑧𝑛 + 𝛽𝐽𝑇𝑧𝑛),

𝐶𝑛+1 = 𝑢 ∈ 𝐶𝑛: 𝜙(𝑢, 𝑦𝑛) ≤ 𝜙(𝑢, 𝑧𝑛),

𝑥𝑛+1 = Π𝐶𝑛+1(𝑥0), 𝑛 ≥ 0,

 (4) 

 where 𝛼𝑛 ∈ (0,1), 𝛽 ∈ (0,1), 𝑇: 𝑋 → 𝑋 is a relatively nonexpansive map. The authors showed that their sequence 

converge strongly to a fixed point set of their mapping. 

 

Motivated by the above results, we introduce an inertial algorithm for approximating common element of the set of 

solutions of a finite family of generalized mixed equilibrium problems, the set of ℎ-fixed points of a finite family of 

ℎ -pseudo-contractive mappings and the set of fixed points of countable families of Bregman quasi strictly 

pseudo-contractive mappings in real reflexive Banach spaces. We prove a strong convergence theorem for it. 

Consequently we have several applications of our method. Furthermore, an efficient numerical illustration is given to 

justify the theoretical hypothesis of our results. Our method and approach is considered to generalized many existing 

problems in the literature. 

 

Methods and Model Formulations 

Hypothesis   

    1.  Let 𝐾 represent a non-empty, closed and convex subset of a reflexive real Banach space 𝑋 and its dual space 

𝑋∗;  

    2.  let ℎ: 𝑋 → (−∞,+∞] represent a strongly coercive Legendre function which is bounded, uniform Fr𝑒′chet 

differentiable and totally convex on bounded subsets of 𝑋;  

    3.  let 𝑇𝑡: 𝑋 → 𝑋, ∀𝑡 = 1,2, …, represent countable family of closed and Bregman quasi-strict pseudo-contractive 

mappings such that (𝐼 − 𝑇𝑡), 𝑡 = 1,2, …, is demi-closed at the origin;  

    4.  let 𝑆𝑖: 𝑋 → 𝑋∗, ∀𝑗 = 1,2, …𝑁 represent continuous ℎ-pseudo-contractive mappings;  

    5.  let Θ𝑖: 𝐾 × 𝐾 → ℝ, 𝑖 = 1,2, …𝑀, be a continuous bi-functionals satisfying  

Condition A;  

    6.  let 𝐴𝑖: 𝐾 → 𝑋∗, 𝑖 = 1,2, …𝑀, be a continuous monotone mappings;  

    7.  let 𝜃𝑖: 𝐾 → ℝ, 𝑖 = 1,2, …𝑀, be a real valued functions;  

    8.  let the common solution set be denoted by Ω be a non-empty set, that is  

 Ω:= [∩𝑡=1
∞ 𝐹𝑖𝑥(𝑇𝑡)] ∩ [(∩𝑖=1

𝑀 𝐺𝑀𝐸𝑃(Θ𝑖 , 𝐴𝑖 , 𝜃𝑖))] ∩ [(∩𝑗=1
𝑁 𝐹𝑖𝑥ℎ(𝑆𝑗))] ≠ ∅; 

     9.  𝐾 ⊂ 𝑖𝑛𝑡(𝑑𝑜𝑚 ℎ), interior domain of the Legendre function.  

 

Step 1: Given the initialization 𝑥0, 𝑥1 ∈ 𝐾, compute  

 𝑧𝑛 = 𝑥𝑛 + 𝑎𝑛(𝑥𝑛 − 𝑥𝑛−1), (5) 

Step 2: Define the Mann iteration to incorporate Bregman quasi-strict pseudo-contractive mappings given 

that the generating sequence is the inertial term 𝑧𝑛, and with respect to Bregman distance. Next compute the sequence 

as follows;  

 𝑦𝑛 = ∇ℎ
∗(𝑏𝑛∇ℎ(𝑧𝑛) + (1 − 𝑏𝑛)∇ℎ(𝑇𝑡𝑧𝑛)), (6) 

Step 3: Define and compute a resolvent function, composed of finite continuous ℎ-pseudo-contractive 

defined on the 𝑦𝑛 as follows:  

 𝑢𝑛 = 𝐺𝐻𝑀
ℎ,𝑟𝑛 ∘ 𝐺𝐻𝑀−1

ℎ,𝑟𝑛 ∘ … ∘ 𝐺𝐻2
ℎ,𝑟𝑛 ∘ 𝐺𝐻1

ℎ,𝑟𝑛𝑦𝑛 (7) 

Step 4: Define and compute a resolvent function, composed of finite system of generalized equilibrium 

problem involving bi-functionals defined on the 𝑢𝑛 as follows;  

 𝑣𝑛 = 𝑅𝑆𝑁
ℎ,𝑟𝑛 ∘ 𝑅𝑆𝑁−1

ℎ,𝑟𝑛 ∘ … ∘ 𝑅𝑆2
ℎ,𝑟𝑛 ∘ 𝑅𝑆1

ℎ,𝑟𝑛𝑢𝑛, (8) 

Step 5: Define the half-closed feasible solution set with respect to the Bregman function as follows:  

 𝐶𝑛+1 = {𝑢 ∈ 𝐶𝑛: 𝑑ℎ(𝑢, 𝑣𝑛) ≤ 𝑑ℎ(𝑢, 𝑢𝑛) ≤ 𝑑ℎ(𝑢, 𝑦𝑛) ≤ 𝑑ℎ(𝑢, 𝑧𝑛) +
𝜌

1−𝜌
〈∇ℎ(𝑧𝑛) −

∇ℎ(𝑇𝑡𝑧𝑛), 𝑧𝑛 − 𝑢〉} (9) 

Step 5 Compute the next iterate using the Bregman projection method so that the solution lies in the feasible 

set as follows:  

 𝑥𝑛+1 = 𝑃𝐶𝑛+1
ℎ (𝑥0), 𝑛 ∈ ℕ. (10) 

https://doi.org/10.63561/jmns.v2i3.860


 

A Hybrid Algorithm for Solving Nonlinear Problems. 

4 Cite this article as:   

Ekuma-Okereke E., & Okudu G. O. (2025). A hybrid algorithm for solving nonlinear problems. FNAS Journal of Mathematical 

Modeling and Numerical Simulation, 2(3), 1-14. https://doi.org/10.63561/jmns.v2i3.860  
 

If 𝑧𝑛 = 𝑦𝑛 = 𝑢𝑛 = 𝑣𝑛 = 𝑥𝑛+1 = 0 for 𝑛 = 1, then stop the process. If not, repeat Step 1-Step 5 until it 

converges and the solution found to belong to the common feasible sets Ω. 

From the above steps, we now have the coupled algorithm below.  

Algorithm 2.1. 

Initialize {𝑥0, 𝑥1}. Let the sequence {𝑥𝑛} and {𝑧𝑛} be generated by the following algorithm:  

{
 
 
 
 

 
 
 
 
𝐶1 = 𝑋,
𝑧𝑛 = 𝑥𝑛 + 𝑎𝑛(𝑥𝑛 − 𝑥𝑛−1),

𝑦𝑛 = ∇ℎ
∗(𝑏𝑛∇ℎ(𝑧𝑛) + (1 − 𝑏𝑛)∇ℎ(𝑇𝑡𝑧𝑛)),

𝑢𝑛 = 𝐺𝐻𝑀
ℎ,𝑟𝑛 ∘ 𝐺𝐻𝑀−1

ℎ,𝑟𝑛 ∘ … ∘ 𝐺𝐻2
ℎ,𝑟𝑛 ∘ 𝐺𝐻1

ℎ,𝑟𝑛𝑦𝑛 ,

𝑣𝑛 = 𝑅𝑆𝑁
ℎ,𝑟𝑛 ∘ 𝑅𝑆𝑁−1

ℎ,𝑟𝑛 ∘ … ∘ 𝑅𝑆2
ℎ,𝑟𝑛 ∘ 𝑅𝑆1

ℎ,𝑟𝑛𝑢𝑛,

𝐶𝑛+1 = {𝑢 ∈ 𝐶𝑛: 𝑑ℎ(𝑢, 𝑣𝑛) ≤ 𝑑ℎ(𝑢, 𝑢𝑛) ≤ 𝑑ℎ(𝑢, 𝑦𝑛) ≤ 𝑑ℎ(𝑢, 𝑧𝑛) +
𝜌

1−𝜌
〈∇ℎ(𝑧𝑛) − ∇ℎ(𝑇𝑡𝑧𝑛), 𝑧𝑛 − 𝑢〉},

𝑥𝑛+1 = 𝑃𝐶𝑛+1
ℎ (𝑥0), 𝑛 ∈ ℕ,

 (11) 

  

where ∇ℎ is the gradient of ℎ on 𝑋, (𝑟𝑛) ⊂ [𝑐,∞), {𝑎𝑛}, {𝑏𝑛} ∈ (0,1) are scalar control sequences. 

The following definitions and concept will be used in what follows. 

 

Definition 2.1 Let ℎ  be a convex and G 𝑎̂ teaux differentiable function at 𝑥 , then the bi-function 

𝑑ℎ(. , . ): 𝑑𝑜𝑚 ℎ × 𝑖𝑛𝑡(𝑑𝑜𝑚 ℎ) → ℝ+ defined by  

 𝑑ℎ(𝑦, 𝑥) = ℎ(𝑦) − ℎ(𝑥) − ⟨∇ℎ(𝑥), 𝑦 − 𝑥⟩ (12) 

 is the Bregman distance induced by the convex function ℎ (see Reich & Sabach, 2010, Bregman, 1967, Censor & 

Lent, 1981 and the references contain therein). 

Definition 2.2 A map 𝑇: 𝐾 → 𝑖𝑛𝑡(𝑑𝑜𝑚 ℎ) with respect to a convex function ℎ: 𝑋 → (−∞,+∞] is called   

    1.  Bregman quasi-strict pseudo-contraction (shortly,(BQSPC))(see Ugwunnadi et.al 2014) if there 

exists a constant 𝜌 ∈ [0,1) and 𝐹𝑖𝑥(𝑇) ≠ ∅ such that the following conditions holds  

 𝑑ℎ(𝑝, 𝑇𝑥) ≤ 𝑑ℎ(𝑝, 𝑥) + 𝜌𝑑ℎ(𝑥, 𝑇𝑥), ∀𝑥 ∈ 𝐾, ∀𝑝 ∈ 𝐹𝑖𝑥(𝑇) (13) 

     2.  𝑇 is called closed if for any {𝑥𝑛} ⊂ 𝐾 with 𝑥𝑛 → 𝑥 and 𝑇𝑥𝑛 → 𝑧 ∈ 𝐾 as 𝑛 → ∞, then 𝑇𝑥 = 𝑧.  

Definition 2.3 A mapping 𝑀:𝑋 → 𝑋∗ is monotone if for all 𝑥, 𝑦 ∈ 𝑑𝑜𝑚(𝑀), we have  

 〈𝑀𝑥 − 𝑀𝑦, 𝑥 − 𝑦〉 ≥ 0. (14) 

 Similarly,  

Definition 2.4 𝑇: 𝑋 → 𝑋∗ is said to be ℎ −pseudo-contractive maps if for each 𝑥, 𝑦 ∈ 𝑋, we have  

 〈𝑥 − 𝑦, 𝑇(𝑥) − 𝑇(𝑦)〉 ≤ 〈𝑥 − 𝑦, ∇ℎ(𝑥) − ∇ℎ(𝑦)〉. (15) 

 Also, 𝑇 is called 𝜌 −strictly ℎ −pseudo-contractive maps if for each 𝑥, 𝑦 ∈ 𝑋, we have  

 〈𝑥 − 𝑦, 𝑇(𝑥) − 𝑇(𝑦)〉 ≤ 〈𝑥 − 𝑦, ∇ℎ(𝑥) − ∇ℎ(𝑦)〉 − 𝜌 ∥ (∇ℎ(𝑥) − ∇ℎ(𝑦)) − (𝑇(𝑥) − 𝑇(𝑦)) ∥2. (16) 

 Observe that ℎ −fixed point problem of this mapping is to find a fixed point say 𝑞 ∈ 𝐾 such that  

 𝑇𝑞 = ∇ℎ(𝑞). (17) 

  Note that 𝑇 is ℎ-pseudo-contractive ⇐ ∇ℎ − 𝑇 is monotone, (see Zegeye et.al 2022) for more information). 

Furthermore, system of generalized mixed equilibrium problems is defined as follows:  

Definition 2.5 For each 𝑖 = 1,2, . . . , 𝑁, we let 𝐾𝑖 represent a non empty, closed and convex subset of 𝑋 and 

∩𝑖=1
𝑁 𝐾𝑖 ≠ ∅. Let 𝛩𝑖 : 𝐾𝑖 × 𝐾𝑖 → 𝑅 be a bifunctions, 𝜃𝑖: 𝐾𝑖 → 𝑅 be a convex and lower semicontinuous functions, 

𝐴𝑖: 𝐾𝑖 → 𝑋∗ be nonlinear mappings, for each 𝑖 = 1,2. . . , 𝑁. The system of generalized mixed equilibrium problems 

(SGMEP) is to find a point 𝑧 ∈∩𝑖=1
𝑁 𝐾𝑖  such that  

 𝐺𝑖(𝑧, 𝑦): = Θ𝑖(𝑧, 𝑦) + 〈𝐴𝑖𝑧, 𝑦 − 𝑧〉 + 𝜃𝑖(𝑦) + 𝜃𝑖(𝑧) ≥ 0, ∀𝑦 ∈ 𝐾𝑖 , 𝑖 = 1,2. . . , 𝑁. (18) 

  We observe for each 𝑖 = 1,2, . . . , 𝑁, (SGMEP)(18) is reduced to the generalized mixed equilibrium problems 

(𝐺𝑀𝐸𝑃𝑖) which is to find 𝑧 ∈ 𝐾𝑖 such that  

 𝐺𝑖(𝑧, 𝑦): = Θ𝑖(𝑧, 𝑦) + 〈𝐴𝑖𝑧, 𝑦 − 𝑧〉 + 𝜃𝑖(𝑦) + 𝜃𝑖(𝑧) ≥ 0, ∀𝑦 ∈ 𝐾𝑖 , 𝑖 = 1,2. . . , 𝑁. (19) 

 

 The solution set of (??) is denoted by 𝐺𝑀𝐸𝑃𝑖(Θ𝑖 , 𝐴𝑖 , 𝜃𝑖) = Λ𝑖 . Thus, the solution set of SGMEP(18) is denoted by 

𝑆𝐺𝑀𝐸𝑃(Θ𝑖 , 𝐴𝑖 , 𝜃𝑖) =∩𝑖=1
𝑁 𝐺𝑀𝐸𝑃𝑖(Θ𝑖 , 𝐴𝑖 , 𝜃𝑖). 

The bi-function Θ is said to satisfied Condition A (A1)-(A4) if the following conditions hold   

    1.  Θ(𝑥, 𝑥) = 0, ∀𝑥 ∈ 𝐾,  

    2.  Θ:𝐾 × 𝐾 → ℝ is monotone, that is Θ(𝑢, 𝑥) + Θ(𝑥, 𝑢) ≤ 0,  
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    3.  limsup𝑡⇂0Θ(𝜇𝑥 + (1 − 𝜇)𝑢, 𝑦) ≤ Θ(𝑢, 𝑦), ∀𝑥, 𝑦, 𝑢 ∈ 𝐾,  

    4.  The function 𝑥 ↦ Θ(𝑢, 𝑥) is convex and lower-semicontinuous.  

Observe that the above equilibrium problem can be treated as a fixed point problem as follows. Given that 

𝐺ℎ,𝑟𝑛 : 𝑋 → 𝐾  is a resolvent mapping corresponding to a bi-function Θ, defined for 𝑟𝑛 > 0  by 𝐺ℎ,𝑟𝑛(𝑥) = {𝑧 ∈

𝐾: Θ(𝑧, 𝑦) +
1

𝑟𝑛
〈∇ℎ(𝑧) − ∇ℎ(𝑥), 𝑦 − 𝑧〉 ≥ 0, ∀𝑦 ∈ 𝐾 ∀𝑥 ∈ 𝑋}, then by means of resolvent method, we have that 𝑥 is 

a fixed point of 𝐺ℎ,𝑟𝑛  provided it is a solution of fixed point. These notion of equilibrium and generalized mixed 

equilibrium problems were originally introduced and studied by (Blum and Oettli, 1994, Mouda and Thera, 1999, 

Browder, 1966, Zegeye, 2022, Payvand & Jahedi 2016, Yousuf, 2019) and have been further studied by various 

authors cited in the literature. 

Definition 2.6 If ℎ is strictly convex on 𝑖𝑛𝑡(𝑑𝑜𝑚 ℎ) and 𝐾 is a subset of 𝑋 such that 𝑖𝑛𝑡(𝑑𝑜𝑚 ℎ) ∩ 𝐾 ≠
∅, then there exists at most one point 𝑃𝐾

ℎ(𝑥) ∈ 𝑖𝑛𝑡(𝑑𝑜𝑚 ℎ) ∩ 𝐾 satisfying  

 𝑑ℎ(𝑃𝐾
ℎ(𝑥), 𝑥) = 𝑖𝑛𝑓{𝑑ℎ(𝑧, 𝑥): 𝑧 ∈ 𝑖𝑛𝑡(𝑑𝑜𝑚 ℎ) ∩ 𝐾}. (20) 

  

This point if exist is called the Bregman Projection of 𝑥 ∈ 𝑖𝑛𝑡(𝑑𝑜𝑚 ℎ) onto a nonempty closed and convex set 𝐾. 

For more information on important function properties, the reader may consult the following references (Reich & 

Sabach, 2010, Bregman, 1967, Censor & Lent, 1981, Phelps, 1993, Bauschke & Borwein, 1997, Bauschke et.al 2001, 

Butnariu & Resmerita, 2006, Butnariu & Iusem. 2000, Bonnas & Shapiro, 2000, Ekuma-Okereke & Oladipo, 2020, 

Alber, 1996 and host of others). 

 

Main results 

In this section, we introduce and solve the problems [∩𝑖=1
∞ 𝐹𝑖𝑥(𝑇𝑡)] ∩ [(∩𝑖=1

𝑀 𝐺𝑀𝐸𝑃(Θ𝑖 , 𝐴𝑖 , 𝜃𝑖))] ∩

[(∩𝑗=1
𝑁 𝐹𝑖𝑥ℎ(𝑆𝑗))] ≠ ∅ and prove that sequence of iterates strongly converges to the feasible set of these problems. To 

achieve this, we have the following results: 

 

Lemma 3.1  Assume that conditions (𝐻1) − (𝐻9)  hold, then Algorithm 2.1 defined by (11) is 

well-defined.  

Proof. The proof severally separated in steps; Step 1: Show that Ω = [∩𝑖=1
𝐶 𝐹𝑖𝑥(𝑇𝑡)] ∩

[(∩𝑖=1
𝑀 𝐺𝑀𝐸𝑃(Θ𝑖 , 𝐴𝑖 , 𝜃𝑖))] ∩ [(∩𝑗=1

𝑁 𝐹𝑖𝑥ℎ(𝑆𝑗))] ≠ ∅ is closed and convex. 

This is obviously true from a Lemma in Ugwunnadi et.al 2014, that 𝐹𝑖𝑥(𝑇𝑡) is closed and convex for any 

𝑡 = 1,2, . . .,. From Lemmas in Yongfu & Yongchun, 2015 and Zeeye, 2022, we get that 𝐺𝑀𝐸𝑃(Θ𝑖 , 𝐴𝑖, 𝜃𝑖) and 

𝐹𝑖𝑥ℎ(𝑆𝑗) are closed and convex for any 𝑖 = 1,2, … ,𝑀  and 𝑗 = 1,2, … , 𝑁  respectively. Consequently, since the 

intersection of two or more convex set is convex, we get that Ω is closed and convex. 

Step 2: Show that the set 𝐶𝑛 is closed and convex for all 𝑛 ∈ ℕ. 

It is clear that 𝐶1 = 𝑋 is closed and convex for 𝑛 = 1. We assume that 𝐶𝑛 is closed and convex for some 

𝑛 ≥ 1 and 𝑢 ∈ 𝐶𝑛+1. Set  

 𝑄𝑛 = {𝑢 ∈ 𝑋: 𝑑ℎ(𝑢, 𝑦𝑛) ≤ 𝑑ℎ(𝑢, 𝑧𝑛) +
𝜌

1−𝜌
〈∇ℎ(𝑧𝑛) − ∇ℎ(𝑇𝑡𝑧𝑛), 𝑧𝑛 − 𝑢〉} 

 𝐴𝑛 = {𝑢 ∈ 𝑋: 𝑑ℎ(𝑢, 𝑢𝑛) ≤ 𝑑ℎ(𝑢, 𝑦𝑛)} 
 𝐵𝑛 = {𝑢 ∈ 𝑋: 𝑑ℎ(𝑢, 𝑣𝑛) ≤ 𝑑ℎ(𝑢, 𝑢𝑛)}, 

 such that 𝐶𝑛+1 = 𝐶𝑛 ∩ 𝑄𝑛 ∩ 𝐴𝑛 ∩ 𝐵𝑛. We need to show that 𝑄𝑛 , 𝐴𝑛, and 𝐵𝑛 are closed and convex. First, we show 

that 𝑄𝑛 is closed and convex for 𝑛 ≥ 1.  

 𝑄𝑛 = {𝑢 ∈ 𝑋: 𝑑ℎ(𝑢, 𝑦𝑛) ≤ 𝑑ℎ(𝑢, 𝑧𝑛) +
𝜌

1−𝜌
〈∇ℎ(𝑧𝑛) − ∇ℎ(𝑇𝑡𝑧𝑛), 𝑧𝑛 − 𝑢〉} 

 = {𝑢 ∈ 𝑋: 𝑑ℎ(𝑢, 𝑦𝑛) − 𝑑ℎ(𝑢, 𝑧𝑛) ≤
𝜌

1−𝜌
〈∇ℎ(𝑧𝑛) − ∇ℎ(𝑇𝑡𝑧𝑛), 𝑧𝑛 − 𝑢〉} 

 = {𝑢 ∈ 𝑋: ℎ(𝑧𝑛) − ℎ(𝑦𝑛) − 〈∇(𝑦𝑛), 𝑢 − 𝑦𝑛〉 + 〈∇(𝑧𝑛), 𝑢 − 𝑧𝑛〉 ≤
𝜌

1−𝜌
〈∇ℎ(𝑧𝑛) − ∇ℎ(𝑇𝑡𝑧𝑛), 𝑧𝑛 −

𝑢〉} 

 = {𝑢 ∈ 𝑋: 〈∇(𝑧𝑛), 𝑢 − 𝑧𝑛〉 − 〈∇(𝑦𝑛), 𝑢 − 𝑦𝑛〉 ≤ ℎ(𝑦𝑛) − ℎ(𝑧𝑛) +
𝜌

1−𝜌
〈∇ℎ(𝑧𝑛) − ∇ℎ(𝑇𝑡𝑧𝑛), 𝑧𝑛 −

𝑢〉} 

 = {𝑢 ∈ 𝑋: 〈∇(𝑧𝑛), 𝑢〉 +
𝜌

1−𝜌
〈∇(𝑧𝑛), 𝑢〉 − 〈∇(𝑦𝑛), 𝑢〉 −

𝜌

1−𝜌
〈∇(𝑇𝑧𝑛), 𝑢〉 

 ≤ ℎ(𝑦𝑛) − ℎ(𝑧𝑛) + 〈∇(𝑧𝑛), 𝑧𝑛〉 − 〈∇(𝑦𝑛), 𝑦𝑛〉 +
𝜌

1−𝜌
〈∇ℎ(𝑧𝑛), 𝑧𝑛〉 −

𝜌

1−𝜌
〈∇ℎ(𝑇𝑡𝑧𝑛), 𝑧𝑛〉} 
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 = {𝑢 ∈ 𝑋: 〈
𝜌

1−𝜌
∇(𝑧𝑛) − ∇(𝑦𝑛) −

𝜌

1−𝜌
∇(𝑇𝑧𝑛), 𝑢〉+≤ ℎ(𝑦𝑛) − ℎ(𝑧𝑛) + 〈

𝜌

1−𝜌
∇(𝑧𝑛), 𝑧𝑛〉 

 −〈∇(𝑦𝑛), 𝑦𝑛〉 − 〈
𝜌

1−𝜌
∇ℎ(𝑇𝑧𝑛), 𝑧𝑛〉}. 

 This shows that 𝑄𝑛 is closed and convex for all 𝑛 ≥ 1. Next, we show that 𝐴𝑛 is closed and convex for all 𝑛 ≥ 1.  

 𝐴𝑛 = {𝑢 ∈ 𝑋: 𝑑ℎ(𝑢, 𝑢𝑛) ≤ 𝑑ℎ(𝑢, 𝑦𝑛)} 
 = {𝑢 ∈ 𝑋: ℎ(𝑢𝑛) − ℎ(𝑦𝑛) + 〈∇ℎ(𝑢𝑛), 𝑢 − 𝑢𝑛} − 〈∇(𝑦𝑛), 𝑢 − 𝑦𝑛〉 ≤ 0〉 
 = {𝑢 ∈ 𝑋: ℎ(𝑢𝑛) − ℎ(𝑦𝑛) + 〈∇ℎ(𝑦𝑛), 𝑦𝑛〉 − 〈∇(𝑢𝑛), 𝑢𝑛〉 ≤ 〈∇ℎ(𝑦𝑛) − ∇(𝑢𝑛), 𝑢〉}. 

 Similarly,  

 𝐵𝑛 = {𝑢 ∈ 𝑋: 𝑑ℎ(𝑢, 𝑣𝑛) ≤ 𝑑ℎ(𝑢, 𝑢𝑛)} 
 = {𝑢 ∈ 𝑋: ℎ(𝑣𝑛) − ℎ(𝑢𝑛) + 〈∇ℎ(𝑣𝑛), 𝑢 − 𝑢𝑛} − 〈∇ℎ(𝑢𝑛), 𝑢 − 𝑢𝑛〉 ≤ 0〉 
 = {𝑢 ∈ 𝑋: ℎ(𝑣𝑛) − ℎ(𝑢𝑛) + 〈∇ℎ(𝑢𝑛), 𝑢𝑛〉 − 〈∇ℎ(𝑣𝑛), 𝑣𝑛〉 ≤ 〈∇ℎ(𝑢𝑛) − ∇(𝑣𝑛), 𝑢〉}. 

 

This shows that 𝐴𝑛 and 𝐵𝑛 are closed and convex for all 𝑛 ≥ 1. Hence, for all 𝑛 ≥ 1, 𝐶𝑛 is closed and 

convex. 

Step 3: Show that Ω ⊂ 𝐶𝑛, for all 𝑛 ∈ ℕ. 

Let 𝛿0 = 𝛾0 = 𝐼, 𝛿𝑗 = 𝑅𝑆𝑗
ℎ,𝑟𝑛 ∘ 𝑅𝑆𝑗−1

ℎ,𝑟𝑛 ∘ …𝑅𝑆2
ℎ,𝑟𝑛 ∘ 𝑅𝑆1

ℎ,𝑟𝑛 , for 𝑗 = 1,2, …𝑁  and 𝛾𝑖 = 𝐺𝐻𝑖
ℎ,𝑟𝑛 ∘ 𝐺𝐻𝑖−1

ℎ,𝑟𝑛 …∘ 𝐺𝐻2
ℎ,𝑟𝑛 ∘

𝐺𝐻1
ℎ,𝑟𝑛 , for 𝑖 = 1,2, …𝑀. Let 𝑞 ∈ Ω, then by invoking Lemmas in Yongfu & Yongchun, 2015 and Zeeye, 2022, 

Ugwunnadi, 2014, we compute as follows:  

 𝑑ℎ(𝑞, 𝑣𝑛) = 𝑑ℎ(𝑞, 𝛿𝑗𝑢𝑛) ≤ 𝑑ℎ(𝑞, 𝛿𝑁−1𝑢𝑛) − 𝑑ℎ(𝑢𝑛 , 𝛿𝑁−1𝑢𝑛) 

 ≤ 𝑑ℎ(𝑞, 𝛿𝑁−2𝑢𝑛) − 𝑑ℎ(𝛿𝑁−1𝑢𝑛, 𝛿𝑁−2𝑢𝑛) − 𝑑ℎ(𝑢𝑛, 𝛿𝑁−1𝑢𝑛) 
 ⋮ 
 ≤ 𝑑ℎ(𝑞, 𝛿0𝑢𝑛) − 𝑑ℎ(𝛿1𝑢𝑛, 𝛿0𝑢𝑛) − 𝑑ℎ(𝑢𝑛, 𝛿1𝑢𝑛). 

 By induction, we get  

 𝑑ℎ(𝑞, 𝑣𝑛) ≤ 𝑑ℎ(𝑞, 𝑢𝑛) − ∑
𝑁−1
𝑗=0 𝑑ℎ(𝛿𝑗+1𝑢𝑛, 𝛿𝑗𝑢𝑛). (21) 

 Continuing the process  

 𝑑ℎ(𝑞, 𝑢𝑛) ≤ 𝑑ℎ(𝑞, 𝛾𝑀−1𝑦𝑛) − 𝑑ℎ(𝑦𝑛 , 𝛾𝑀−1𝑦𝑛) 
 ≤ 𝑑ℎ(𝑞, 𝛾𝑀−2𝑦𝑛) − 𝑑ℎ(𝛾𝑀−1𝑦𝑛 , 𝛾𝑀−2𝑦𝑛) − 𝑑ℎ(𝑦𝑛 , 𝛾𝑀−1𝑦𝑛) 
 ⋮ 
 ≤ 𝑑ℎ(𝑞, 𝛾0𝑦𝑛) − 𝑑ℎ(𝛾1𝑦𝑛 , 𝛾0𝑦𝑛) − 𝑑ℎ(𝑦𝑛, 𝛾1𝑦𝑛). 

 Again by induction, we get  

 𝑑ℎ(𝑞, 𝑢𝑛) ≤ 𝑑ℎ(𝑞, 𝑦𝑛) − ∑
𝑀−1
𝑖=0 𝑑ℎ(𝛾𝑖+1𝑦𝑛 , 𝛾𝑖𝑦𝑛). (22) 

 In addition, we get  

 𝑑ℎ(𝑞, 𝑦𝑛) = 𝑑ℎ(𝑞, ∇ℎ
∗(𝑏𝑛∇ℎ(𝑧𝑛) + (1 − 𝑏𝑛)∇ℎ(𝑇𝑡𝑧𝑛))) 

 ≤ 𝑑ℎ(𝑞, 𝑧𝑛) + 𝜌𝑑ℎ(𝑧𝑛, 𝑇𝑧𝑛) 

 ≤ 𝑑ℎ(𝑞, 𝑧𝑛) +
𝜌

1−𝜌
〈∇ℎ(𝑧𝑛) − ∇(𝑇𝑧𝑛), 𝑧𝑛 − 𝑞〉. (23) 

 Combining inequalities (21), (22) and (23) together with Lemma in Wega & Zegeye, 2020, we get  

𝑑ℎ(𝑞, 𝑣𝑛) ≤ 𝑑ℎ(𝑞, 𝑢𝑛) ≤ 𝑑ℎ(𝑞, 𝑦𝑛) ≤ 𝑑ℎ(𝑞, 𝑧𝑛) +
𝜌

1 − 𝜌
〈∇ℎ(𝑧𝑛) − ∇(𝑇𝑧𝑛), 𝑧𝑛 − 𝑞〉 

 −∑𝑁−1𝑗=0 𝑑ℎ(𝛿𝑗+1𝑢𝑛, 𝛿𝑗𝑢𝑛) − ∑
𝑀−1
𝑖=0 𝑑ℎ(𝛾𝑖+1𝑦𝑛 , 𝛾𝑖𝑦𝑛) 

𝑑ℎ(𝑞, 𝑣𝑛) ≤ 𝑑ℎ(𝑞, 𝑢𝑛) ≤ 𝑑ℎ(𝑞, 𝑦𝑛) ≤ 𝑑ℎ(𝑞, 𝑧𝑛) +
𝜌

1 − 𝜌
〈∇ℎ(𝑧𝑛) − ∇(𝑇𝑧𝑛), 𝑧𝑛 − 𝑞〉 

 −
𝜇

2
(∑𝑁−1𝑗=0 ∥ 𝛿𝑗+1𝑢𝑛 − 𝛿𝑗𝑢𝑛 ∥

2+ ∑𝑀−1𝑖=0 ∥ 𝛾𝑖+1𝑦𝑛 − 𝛾𝑖𝑦𝑛 ∥
2) (24) 

𝑑ℎ(𝑞, 𝑣𝑛) ≤ 𝑑ℎ(𝑞, 𝑢𝑛) ≤ 𝑑ℎ(𝑞, 𝑦𝑛) ≤ 𝑑ℎ(𝑞, 𝑧𝑛) +
𝜌

1−𝜌
〈∇ℎ(𝑧𝑛) − ∇(𝑇𝑧𝑛), 𝑧𝑛 − 𝑞〉. (25) 

 

 Hence 𝑞 ∈ 𝐶𝑛+1 and consequently, Ω ∈ 𝐶𝑛+1 for 𝑛 ≥ 1. Thus, Ω ⊂ 𝐶𝑛. This completes the proof that Algorithm 

2.1 defined by (11) is well-defined.  

Theorem 3.2  Assume that conditions (𝐻1) − (𝐻9) hold, then the sequences {𝑥𝑛}, {𝑧𝑛} generated by 

Algorithm 2.1 converges strongly to 𝑞 = 𝑃𝛺
ℎ(𝑥0) nearest to 𝑥0, as 𝑛 → ∞ and where 𝑃𝛺

ℎ is the Bregman projection 

mapping of 𝐶𝑛+1 onto 𝛺.  

Proof. The proof is as follows. Step 4: Show that the sequences are bounded. 
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To justify, notice in (11), that 𝑥𝑛 = 𝑃𝐶𝑛
ℎ (𝑥0) and 𝑥𝑛+1 = 𝑃𝐶𝑛+1

ℎ (𝑥0) ∈ 𝐶𝑛+1 ⊂ 𝐶𝑛. Thus, using part b of the 

Lemma in Reich & Sabach, 2010, we have that  

 𝑑ℎ(𝑥𝑛 , 𝑥0) ≤ 𝑑ℎ(𝑥𝑛+1, 𝑥0) − 𝑑ℎ(𝑥𝑛+1, 𝑥𝑛) 
 𝑑ℎ(𝑥𝑛+1, 𝑥0) ≥ 𝑑ℎ(𝑥𝑛 , 𝑥0). (26) 

 This shows that the sequence {𝑑ℎ(𝑥𝑛 , 𝑥0)} is increasing. Again, we have ∀𝑛 ∈ ℕ, 𝑞 ∈ Ω that  

 𝑑ℎ(𝑥𝑛 , 𝑥0) = 𝑑ℎ(𝑃𝐶𝑛
ℎ (𝑥0), 𝑥0) 

 ≤ 𝑑ℎ(𝑞, 𝑥0) − 𝑑ℎ(𝑞, 𝑃𝐶𝑛
ℎ (𝑥0)) 

 ≤ 𝑑ℎ(𝑞, 𝑥0). (27) 

 This proves that {𝑑ℎ(𝑥𝑛 , 𝑥0)} is bounded. From Lemma in Butnariu & Iusem, 2000, {𝑥𝑛} is bounded. Combining 

(26) and (27) proves that lim𝑛→∞𝑑ℎ(𝑥𝑛 , 𝑥0) exist. Now, without loss of generality, let  

 lim
𝑛→∞

𝑑ℎ(𝑥𝑛 , 𝑥0) = 𝑙. (28) 

 In addition to (28), we get for any positive integer 𝑘 and as 𝑛 → ∞, that  

 𝑑ℎ(𝑥𝑛+𝑘, 𝑥𝑛) = 𝑑ℎ(𝑥𝑛+𝑘 , 𝑃𝐶𝑛
ℎ (𝑥0)) 

 ≤ 𝑑ℎ(𝑥𝑛+𝑘 , 𝑥0) − 𝑑ℎ(𝑥𝑛 , 𝑥0) → 0. (29) 

 So that lim𝑘→∞𝑑ℎ(𝑥𝑛+𝑘, 𝑥𝑛) = 0. In particular,  

 lim
𝑛→∞

𝑑ℎ(𝑥𝑛+1, 𝑥𝑛) = 0. (30) 

 Thus we obtain using Lemma in Butnariu & Iusem, 2000, that  

 lim
𝑛→∞

||𝑥𝑛+1 − 𝑥𝑛|| = 0. (31) 

 This implies that {𝑥𝑛} is a Cauchy sequence. Now since ∇ℎ is bounded and uniformly norm-to-norm continuous on 

bounded subsets of 𝑋 by the Lemmas of . Naraghirad & Yao, 2013, Zegeye & Shahzad, 2014, we obtain that  

 lim
𝑛→∞

||∇ℎ(𝑥𝑛+1) − ∇ℎ(𝑥𝑛)|| = 0. (32) 

Furthermore, we obtain from the definition of 𝑧𝑛 and together with (31) as 𝑛 → ∞, that  

 ||𝑥𝑛 − 𝑧𝑛|| = ||𝑥𝑛 − 𝑥𝑛 − 𝛼𝑛(𝑥𝑛 − 𝑥𝑛−1)|| 
 = ||𝛼𝑛(𝑥𝑛−1 − 𝑥𝑛)|| 
 ≤ ||𝑥𝑛−1 − 𝑥𝑛|| → 0. 

 We get that  

 lim
𝑛→∞

||𝑥𝑛 − 𝑧𝑛|| = 0. (33) 

 Consequently, we obtain that  

 lim
𝑛→∞

||∇ℎ(𝑥𝑛) − ∇ℎ(𝑧𝑛)|| = 0. (34) 

 By (33), 𝑧𝑛 is bounded. Consequent upon the boundedness of ∇ℎ and by (34), ∇ℎ(𝑧𝑛) and ∇ℎ(𝑥𝑛) are bounded. 

Moreover, since 𝑥𝑛 , 𝑧𝑛 are bounded, together with (33) and (34), we get that  

 lim
𝑛→∞

𝑑ℎ(𝑥𝑛 , 𝑧𝑛) = − lim
𝑛→∞

𝑑ℎ(𝑧𝑛 , 𝑥𝑛) + lim
𝑛→∞

〈𝑥𝑛 − 𝑧𝑛 , ∇ℎ(𝑥𝑛) − ∇ℎ(𝑧𝑛)〉 

 ≤ lim
𝑛→∞

∥ 𝑥𝑛 − 𝑧𝑛 ∥. lim
𝑛→∞

∥ ∇ℎ(𝑥𝑛) − ∇ℎ(𝑧𝑛) ∥= 0. (35) 

 Thus  

 lim
𝑛→∞

𝑑ℎ(𝑥𝑛 , 𝑧𝑛) = 0. (36) 

 Consequently, since ∇ℎ is bounded, we have  

 𝑑ℎ(𝑥𝑛+1, 𝑧𝑛) = 𝑑ℎ(𝑥𝑛+1, 𝑥𝑛) + 𝑑ℎ(𝑥𝑛 , 𝑧𝑛) + ⟨∇ℎ(𝑥𝑛) − ∇ℎ(𝑧𝑛), 𝑥𝑛+1 − 𝑥𝑛⟩ 
 ≤ 𝑑ℎ(𝑥𝑛+1, 𝑥𝑛) + 𝑑ℎ(𝑥𝑛, 𝑧𝑛) + ||∇ℎ(𝑥𝑛) − ∇ℎ(𝑧𝑛)||. ||𝑥𝑛+1 − 𝑥𝑛||. 

 Using (30),(31), (34) and (36) we get  

 lim
𝑛→∞

𝑑ℎ(𝑥𝑛+1, 𝑧𝑛) = 0. (37) 

 Using Lemma in [32], we obtain as 𝑛 → ∞ that  

 lim
𝑛→∞

||𝑥𝑛+1 − 𝑧𝑛|| = 0. (38) 

 

Since from (11), 𝑥𝑛+1 ∈ 𝐶𝑛+1 ⊂ 𝐶𝑛,  

 𝑑ℎ(𝑥𝑛+1, 𝑣𝑛) ≤ 𝑑ℎ(𝑥𝑛+1, 𝑢𝑛) ≤ 𝑑ℎ(𝑥𝑛+1, 𝑦𝑛) ≤ 𝑑ℎ(𝑥𝑛+1, 𝑧𝑛) +
𝜌

1−𝜌
〈∇ℎ(𝑧𝑛) − ∇(𝑇𝑧𝑛), 𝑧𝑛 −

𝑥𝑛+1〉. (39) 

 It follows from (37),(38) and the boundedness of ∇ℎ that (39) becomes  

 lim
𝑛→∞

𝑑ℎ(𝑥𝑛+1, 𝑣𝑛) = 0 (40) 
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 Thus, by the Lemma in Butnariu and Iusem, 2000, we obtain that since from the hypothesis, ℎ is totally convex on 

bounded subset of 𝑋, ℎ is sequentially consistent.So it follows that  

 lim
𝑛→∞

||𝑥𝑛+1 − 𝑣𝑛|| = 0. (41) 

 Besides,  

 ||𝑥𝑛 − 𝑣𝑛|| ≤ ||𝑥𝑛 − 𝑥𝑛+1|| + ||𝑥𝑛+1 − 𝑣𝑛|| 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 lim
𝑛→∞

||𝑥𝑛 − 𝑣𝑛|| = 0, (42) 

 and  

 ||𝑣𝑛 − 𝑧𝑛|| ≤ ||𝑣𝑛 − 𝑥𝑛|| + ||𝑥𝑛 − 𝑧𝑛||  implies lim
𝑛→∞

||𝑣𝑛 − 𝑧𝑛|| = 0. (43) 

 This demonstrates that {𝑣𝑛} is bounded. Now since ∇(ℎ)  is norm-to-norm uniformly continuous on bounded 

subsets of 𝑋, we get  

 lim
𝑛→∞

||∇ℎ(𝑣𝑛) − ∇ℎ(𝑧𝑛)|| = 0. (44) 

 Now since 𝑣𝑛 = 𝛿𝑗𝑢𝑛, we have for any 𝑞 ∈ Ω that  

 𝑑ℎ(𝑞, 𝑣𝑛) ≤ 𝑑ℎ(𝑞, 𝑧𝑛) +
𝜌

1−𝜌
〈∇ℎ(𝑧𝑛) − ∇(𝑇𝑡𝑧𝑛), 𝑧𝑛 − 𝑞〉 

 −
𝜇

2
(∑𝑁−1𝑗=0 ∥ 𝛿𝑗+1𝑢𝑛 − 𝛿𝑗𝑢𝑛 ∥

2+ ∑𝑀−1𝑖=0 ∥ 𝛾𝑖+1𝑦𝑛 − 𝛾𝑖𝑦𝑛 ∥
2) 

 ≤ 𝑑ℎ(𝑞, 𝑧𝑛) − 𝑑ℎ(𝑞, 𝑣𝑛) +
𝜌

1−𝜌
〈∇ℎ(𝑧𝑛) − ∇(𝑇𝑡𝑧𝑛), 𝑧𝑛 − 𝑞〉 

 = ℎ(𝑣𝑛) − ℎ(𝑧𝑛) − 〈∇ℎ(𝑧𝑛) − ∇ℎ(𝑣𝑛), 𝑣𝑛 − 𝑧𝑛〉 

 +
𝜌

1−𝜌
〈∇ℎ(𝑧𝑛) − ∇(𝑇𝑡𝑧𝑛), 𝑧𝑛 − 𝑞〉 

 = 𝑑ℎ(𝑣𝑛 , 𝑧𝑛) + 〈∇ℎ(𝑣𝑛), 𝑣𝑛 − 𝑧𝑛〉 

 +
𝜌

1−𝜌
〈∇ℎ(𝑧𝑛) − ∇(𝑇𝑡𝑧𝑛), 𝑧𝑛 − 𝑞〉 

 = −𝑑ℎ(𝑧𝑛, 𝑣𝑛) + 〈𝑣𝑛 − 𝑧𝑛 , ∇ℎ(𝑣𝑛) − ∇ℎ(𝑧𝑛)〉 

 +〈∇ℎ(𝑣𝑛), 𝑣𝑛 − 𝑧𝑛〉 +
𝜌

1−𝜌
〈∇ℎ(𝑧𝑛) − ∇(𝑇𝑡𝑧𝑛), 𝑧𝑛 − 𝑞〉 

 ≤∥ 𝑣𝑛 − 𝑧𝑛 ∥∥ ∇ℎ(𝑣𝑛) − ∇ℎ(𝑧𝑛) ∥ +∥ ∇ℎ(𝑣𝑛) ∥∥ 𝑣𝑛 − 𝑧𝑛 ∥ 

 +
𝜌

1−𝜌
∥ ∇ℎ(𝑧𝑛) − ∇(𝑇𝑡𝑧𝑛) ∥∥ 𝑧𝑛 − 𝑞 ∥ (45) 

 Invoking (43), (44) and for any 𝑞 ∈ Ω in inequality (45), we have that  

 lim
𝑛→∞

(∑𝑁−1𝑗=0 ∥ 𝛿𝑗+1𝑢𝑛 − 𝛿𝑗𝑢𝑛 ∥
2+∑𝑀−1𝑖=0 ∥ 𝛾𝑖+1𝑦𝑛 − 𝛾𝑖𝑦𝑛 ∥

2) = 0. (46) 

 This implies that  

 lim
𝑛→∞

∥ 𝛿𝑗+1𝑢𝑛 − 𝛿𝑗𝑢𝑛 ∥= 0,0 ≤ 𝑗 ≤ 𝑁 − 1, (47) 

 and hence  

 lim
𝑛→∞

∥ 𝑣𝑛 − 𝑢𝑛 ∥= 0. (48) 

 Since ∇(ℎ) is norm-to-norm uniformly continuous on bounded subsets of 𝑋, we get  

 lim
𝑛→∞

∥ ∇ℎ(𝑣𝑛) − ∇ℎ(𝑢𝑛) ∥= 0. (49) 

 In view of these, we get  

 lim
𝑛→∞

𝑑ℎ(𝑣𝑛 , 𝑢𝑛) = − lim
𝑛→∞

𝑑ℎ(𝑢𝑛, 𝑣𝑛) + lim
𝑛→∞

〈𝑣𝑛 − 𝑢𝑛, ∇ℎ(𝑣𝑛) − ∇ℎ(𝑢𝑛)〉 

 ≤ lim
𝑛→∞

∥ 𝑣𝑛 − 𝑢𝑛 ∥. lim
𝑛→∞

∥ ∇ℎ(𝑣𝑛) − ∇ℎ(𝑢𝑛) ∥= 0. 

 Thus  

 lim
𝑛→∞

𝑑ℎ(𝑣𝑛 , 𝑢𝑛) = 0 (50) 

 Similarly,  

 lim
𝑛→∞

∥ 𝛾𝑖+1𝑢𝑛 − 𝛾𝑖𝑢𝑛 ∥= 0,0 ≤ 𝑖 ≤ 𝑀 − 1, (51) 

 and hence  

 lim
𝑛→∞

∥ 𝑢𝑛 − 𝑦𝑛 ∥= 0. (52) 

 Since ∇(ℎ) is norm-to-norm uniformly continuous on bounded subsets of 𝑋, we get  

 lim
𝑛→∞

∥ ∇ℎ(𝑢𝑛) − ∇ℎ(𝑦𝑛) ∥= 0. (53) 

 In view of these, we get  

 lim
𝑛→∞

𝑑ℎ(𝑢𝑛, 𝑦𝑛) == − lim
𝑛→∞

𝑑ℎ(𝑦𝑛 , 𝑢𝑛) + lim
𝑛→∞

〈𝑢𝑛 − 𝑦𝑛, ∇ℎ(𝑢𝑛) − ∇ℎ(𝑦𝑛)〉 

 ≤ lim
𝑛→∞

∥ 𝑢𝑛 − 𝑣𝑛 ∥. lim
𝑛→∞

∥ ∇ℎ(𝑢𝑛) − ∇ℎ(𝑦𝑛) ∥= 0., 
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 Thus  

 lim
𝑛→∞

𝑑ℎ(𝑢𝑛, 𝑦𝑛) = 0 (54) 

 Besides, we have from (44) and (49) that  

lim
𝑛→∞

∥ ∇ℎ(𝑢𝑛) − ∇ℎ(𝑧𝑛) ∥≤ lim
𝑛→∞

∥ ∇ℎ(𝑢𝑛) − ∇ℎ(𝑣𝑛) ∥ + lim
𝑛→∞

∥ ∇ℎ(𝑣𝑛) − ∇ℎ(𝑧𝑛) ∥= 0 

 Thus  

 lim
𝑛→∞

∥ ∇ℎ(𝑢𝑛) − ∇ℎ(𝑧𝑛) ∥= 0. (55) 

 Consequently, we have from (53) and (55) that  

lim
𝑛→∞

∥ ∇ℎ(𝑦𝑛) − ∇ℎ(𝑧𝑛) ∥≤ lim
𝑛→∞

∥ ∇ℎ(𝑦𝑛) − ∇ℎ(𝑢𝑛) ∥ + lim
𝑛→∞

∥ ∇ℎ(𝑢𝑛) − ∇ℎ(𝑧𝑛) ∥= 0 

 Thus  

 lim
𝑛→∞

∥ ∇ℎ(𝑦𝑛) − ∇ℎ(𝑧𝑛) ∥= 0. (56) 

 This demonstrates that {𝑣𝑛}, {𝑢𝑛} and {𝑦𝑛} are bounded. Now since ∇(ℎ) is norm-to-norm uniformly continuous 

on bounded subsets of 𝑋 we also get that {∇ℎ(𝑢𝑛)}, {∇ℎ(𝑣𝑛)} and {∇ℎ(𝑦𝑛)} are bounded. Hence, with (56), we get 

from 𝑦𝑛 = ∇ℎ∗(𝑏𝑛∇ℎ(𝑧𝑛) + (1 − 𝑏𝑛)∇ℎ(𝑇𝑡𝑧𝑛)), that  

 ∥ ∇ℎ(𝑦𝑛) − ∇ℎ(𝑧𝑛) ∥= (1 − 𝑏𝑛) ∥ ∇ℎ(𝑇𝑡𝑧𝑛) − ∇ℎ(𝑧𝑛) ∥ 

 ∥ ∇ℎ(𝑇𝑡𝑧𝑛) − ∇ℎ(𝑧𝑛) ∥=
1

(1−𝑏𝑛)
∥ ∇ℎ(𝑦𝑛) − ∇ℎ(𝑧𝑛) ∥ 

  

 lim
𝑛→∞

∥ ∇ℎ(𝑇𝑡𝑧𝑛) − ∇ℎ(𝑧𝑛) ∥= 0. (57) 

But ∇ℎ∗ is norm-to-norm uniformly continuous on bounded subsets of 𝑋∗, so we get  

 lim
𝑛→∞

∥ 𝑇𝑡𝑧𝑛 − 𝑧𝑛 ∥= 0 (58) 

Step 5: Show that 𝑞 ∈ Ω:= [∩𝑖=1
∞ 𝐹𝑖𝑥(𝑇𝑡)] ∩ [(∩𝑖=1

𝑀 𝐺𝑀𝐸𝑃(Θ𝑖 , 𝐴𝑖, 𝜃𝑖))] ∩ [(∩𝑗=1
𝑁 𝐹𝑖𝑥ℎ(𝑆𝑗))] 

First, we show that 𝑞 ∈∩𝑡=1
∞ 𝐹𝑖𝑥(𝑇𝑡) for each 𝑡 ≥ 1. Using the fact that 𝑋  is reflexive, there exists a 

subsequence {𝑧𝑛𝑘} of {𝑧𝑛} such that 𝑧𝑛𝑘 ↪ 𝑞 as 𝑘 → ∞. From (58),and the fact that (𝐼 − 𝑇𝑡) for each 𝑡 ≥ 1 is 

demi-closed, we have that 𝑞 = 𝑇𝑡𝑞 for any 𝑡 ≥ 1. Thus, this shows that 𝑞 ∈ 𝐹𝑖𝑥(𝑇𝑡) and hence 𝑞 ∈∩𝑡=1
∞ 𝐹𝑖𝑥(𝑇𝑡). 

In view of the fact that from (33), {𝑧𝑛} is a Cauchy sequence, we have that 𝑧𝑛𝑘 → 𝑞.  

Next we show that 𝑞 ∈∩𝑖=1
𝑀 𝐺𝑀𝐸𝑃(Θ𝑖 , 𝐴𝑖 , 𝜃𝑖) . Set 𝛾𝑖(𝑦𝑛𝑘) = 𝐺𝐻𝑖

ℎ,𝑟𝑛𝑘𝛾𝑖−1(𝑦𝑛𝑘)  and 𝐻𝑖(𝛾𝑖(𝑦𝑛𝑘), 𝑦) =

Θ𝑖(𝛾𝑖(𝑦𝑛𝑘), 𝑦) + 〈𝑦 − 𝛾𝑖(𝑦𝑛𝑘), 𝐴𝑖𝑧〉 + 𝜃𝑖(𝑦) − 𝜃𝑖(𝛾𝑖(𝑦𝑛𝑘)), then  

 𝐻𝑖(𝛾𝑖(𝑦𝑛𝑘), 𝑦) +
1

𝑟𝑛𝑘
〈𝑦 − 𝛾𝑖(𝑦𝑛𝑘), ∇ℎ(𝛾𝑖(𝑦𝑛𝑘)) − ∇ℎ(𝛾𝑖−1(𝑦𝑛𝑘))〉 ≥ 0, ∀𝑦 ∈ 𝐾. 

 Applying Condition A (A2) we have  

 𝐻𝑖(𝑦, 𝛾𝑖(𝑦𝑛𝑘)) ≤ −𝐻𝑖(𝛾𝑖(𝑦𝑛𝑘), 𝑦) ≤
1

𝑟𝑛𝑘
〈𝑦 − 𝛾𝑖(𝑦𝑛𝑘), ∇ℎ(𝛾𝑖(𝑦𝑛𝑘)) − ∇ℎ(𝛾𝑖−1(𝑦𝑛𝑘))〉 

 ≤∥ 𝑦 − 𝛾𝑖(𝑦𝑛𝑘) ∥
∥∇ℎ(𝛾𝑖(𝑦𝑛𝑘))−∇ℎ(𝛾𝑖−1(𝑦𝑛𝑘))∥

𝑟𝑛𝑘
 

 ≤ max
1≤𝑖≤𝑀

sup
𝑘≥0

{∥ 𝑦 − 𝛾𝑖(𝑦𝑛𝑘) ∥}
∥∇ℎ(𝛾𝑖(𝑦𝑛𝑘))−∇ℎ(𝛾𝑖−1(𝑦𝑛𝑘))∥

𝑟𝑛𝑘
. (59) 

 Using the fact 𝛾𝑖(𝑦𝑛𝑘) → 𝑞, the fact that 𝐻(𝑦, . ) is convex and lower semi-continuous (Condition A (A4)), 𝑟𝑛𝑘 ≥ 𝑐 

and taking limits of both sides of (59), we get that  

 𝐻𝑖(𝑦, 𝑞) ≤ 0, ∀𝑦 ∈ 𝐾. (60) 

 Set 𝑦𝛼 = 𝛼𝑦 + (1 − 𝛼)𝑞 and this suggest that 𝑦𝛼 ∈ 𝐾. This implies from (60) that 𝐻𝑖(𝑦𝛼 , 𝑞) ≤ 0. It follows from 

this and Condition A (A1) and (A4) that  

 0 = 𝐻𝑖(𝑦𝛼 , 𝑦𝛼) = 𝐻𝑖(𝑦𝛼 , 𝛼𝑦 + (1 − 𝛼)𝑞) 
 ≤ 𝛼𝐻𝑖(𝑦𝛼 , 𝑦) + (1 − 𝛼)𝐻𝑖(𝑦𝛼 , 𝑞) 
 ≤ 𝛼𝐻𝑖(𝑦𝛼 , 𝑦) 
 ≤ 𝐻𝑖(𝑦𝛼 , 𝑦). 

 Thus  

 0 ≤ 𝐻𝑖(𝑦𝛼 , 𝑦). (61) 

 Using (61) and Condition A (A3), we have that  

 𝐻𝑖(𝑞, 𝑦) ≥ 0. (62) 

 Thus 𝑞 ∈∩𝑖=1
𝑀 𝐺𝑀𝐸𝑃(Θ𝑖 , 𝐴𝑖 , 𝜃𝑖)  
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Furthermore, we show that 𝑞 ∈∩𝑗=1
𝑁 𝐹𝑖𝑥ℎ(𝑆𝑗) . Let 𝛿𝑗(𝑢𝑛𝑘) = 𝑅𝑆𝑗

ℎ,𝑟𝑛𝑘𝛿𝑗−1(𝑢𝑛𝑘) . Invoking a Lemma in 

Yongfu & Yongchun, 2015, we obtain  

 〈𝑦 − 𝛿𝑗(𝑢𝑛𝑘), 𝑆𝑗𝛿𝑗(𝑢𝑛𝑘)〉 −
1

𝑟𝑛𝑘
〈𝑦 − 𝛿𝑗(𝑢𝑛𝑘), (1 + 𝑟𝑛𝑘)∇ℎ(𝛿𝑗(𝑢𝑛𝑘)) − ∇ℎ(𝛿𝑗−1(𝑢𝑛𝑘))〉 ≤ 0. 

 By the convexity of 𝐾, we set 𝑦𝛼 = 𝛼𝑦 + (1 − 𝛼)𝑞 ∈ 𝐾, for 𝑦 ∈ 𝐾, 𝛼 ∈ [0,1]. Thus,  

 〈𝛿𝑗(𝑢𝑛𝑘) − 𝑦𝛼 , 𝑆𝑗𝑦𝛼〉 ≥ 〈𝛿𝑗(𝑢𝑛𝑘) − 𝑦𝛼 , 𝑆𝑗𝑦𝛼〉 + 〈𝑦𝛼 − 𝛿𝑗(𝑢𝑛𝑘), 𝑆𝑗𝛿𝑗(𝑢𝑛𝑘)〉 

 −
1

𝑟𝑛𝑘
〈𝑦𝛼 − 𝛿𝑗(𝑢𝑛𝑘), (1 + 𝑟𝑛𝑘)∇ℎ(𝛿𝑗(𝑢𝑛𝑘)) − ∇ℎ(𝛿𝑗−1(𝑢𝑛𝑘))〉 

 = 〈𝛿𝑗(𝑢𝑛𝑘) − 𝑦𝛼 , 𝑆𝑗𝑦𝛼 − 𝑆𝑗𝛿𝑗(𝑢𝑛𝑘)〉 

 −
1

𝑟𝑛𝑘
〈𝑦𝛼 − 𝛿𝑗(𝑢𝑛𝑘), (1 + 𝑟𝑛𝑘)∇ℎ(𝛿𝑗(𝑢𝑛𝑘)) − ∇ℎ(𝛿𝑗−1(𝑢𝑛𝑘))〉 

 ≥ 〈𝛿𝑗(𝑢𝑛𝑘) − 𝑦𝛼 , ∇ℎ(𝑦𝛼) − ∇ℎ(𝛿𝑗(𝑢𝑛𝑘))〉 

 −
1

𝑟𝑛𝑘
〈𝑦𝛼 − 𝛿𝑗(𝑢𝑛𝑘), (1 + 𝑟𝑛𝑘)∇ℎ(𝛿𝑗(𝑢𝑛𝑘)) − ∇ℎ(𝛿𝑗−1(𝑢𝑛𝑘))〉 

 = 〈𝛿𝑗(𝑢𝑛𝑘) − 𝑦𝛼 , ∇ℎ(𝑦𝛼)〉 

 −
1

𝑟𝑛𝑘
〈𝑦𝛼 − 𝛿𝑗(𝑢𝑛𝑘), ∇ℎ(𝛿𝑗(𝑢𝑛𝑘)) − ∇ℎ(𝛿𝑗−1(𝑢𝑛𝑘))〉 

 ≥ 〈𝛿𝑗(𝑢𝑛𝑘) − 𝑦𝛼 , ∇ℎ(𝑦𝛼)〉 

 −∥ 𝑦𝛼 − 𝛿𝑗(𝑢𝑛𝑘) ∥∥ ∇ℎ(𝛿𝑗(𝑢𝑛𝑘)) − ∇ℎ(𝛿𝑗−1(𝑢𝑛𝑘)) ∥
1

𝑟𝑛𝑘
 

 ≥ 〈𝛿𝑗(𝑢𝑛𝑘) − 𝑦𝛼 , ∇ℎ(𝑦𝛼)〉 

 −max
1≤𝑖≤𝑀

sup
𝑘≥0

{∥ 𝑦𝛼 − 𝛿𝑗(𝑢𝑛𝑘) ∥〉 ∥ ∇ℎ(𝛿𝑗(𝑢𝑛𝑘)) − ∇ℎ(𝛿𝑗−1(𝑢𝑛𝑘)) ∥
1

𝑟𝑛𝑘
 

 Using the fact 𝛿𝑗(𝑢𝑛𝑘) → 𝑞, the fact that ∇ℎ is uniformly continuous, 𝑟𝑛𝑘 ≥ 𝑐 and taking limits of both sides of 

(??), we get that  

 〈𝑞 − 𝑦𝛼 , 𝑆𝑗𝑦𝛼〉 ≥ 〈𝑞 − 𝑦𝛼 , ∇ℎ(𝑦𝛼)〉. 

 This implies  

 〈𝑞 − 𝑦, 𝑆𝑗(𝑞 + 𝛼(𝑦 − 𝑞))〉 ≥ 〈𝑞 − 𝑦, ∇ℎ(𝑞 + 𝛼(𝑦 − 𝑞))〉. (63) 

 Since 𝑆𝑗 is continuous for each 𝑗 and the fact that ∇ℎ is uniformly continuous on bounded subset of 𝑋, and by 

letting 𝛼 ↓ 0, we get that  

 〈𝑞 − 𝑦, 𝑆𝑗(𝑞)〉 ≥ 〈𝑞 − 𝑦, ∇ℎ(𝑞)〉 (64) 

 ≡ 〈𝑞 − 𝑦, ∇ℎ(𝑞) − 𝑆𝑗(𝑞)〉 ≤ 0. (65) 

 Setting 𝑦 = ∇ℎ∗(𝑆𝑗𝑞), we have  

 〈𝑞 − ∇ℎ∗(𝑆𝑗𝑞), ∇ℎ(𝑞) − ∇ℎ
∗(∇ℎ(𝑆𝑗(𝑞)))〉 ≤ 0 (66) 

 Since ∇ℎ∗ is monotone, we have that  

 〈𝑞 − ∇ℎ∗(𝑆𝑗𝑞), ∇ℎ(𝑞) − ∇ℎ
∗(∇ℎ(𝑆𝑗(𝑞)))〉 = 0 (67) 

 This implies that  

 ∇ℎ∗(∇ℎ(𝑆𝑗(𝑞)) = ∇ℎ(𝑞). (68) 

 Hence, 𝑞 ∈ 𝐹𝑖𝑥ℎ(𝑆𝑗), for each 𝑗 = 1,2, …𝑁 and 𝑞 ∈∩𝑗=1
𝑁 𝐹𝑖𝑥ℎ(𝑆𝑗) 

Let 𝛿0 = 𝛾0 = 𝐼, 𝛿𝑗 = 𝑅𝑆𝑗
ℎ,𝑟𝑛 ∘ 𝑅𝑆𝑗−1

ℎ,𝑟𝑛 ∘ …𝑅𝑆2
ℎ,𝑟𝑛 ∘ 𝑅𝑆1

ℎ,𝑟𝑛, for 𝑗 = 1,2, …𝑁 and 

Step 6: Show that 𝑞 = 𝑃Ω
ℎ(𝑥0). 

Set 𝑢 = 𝑃Ω
ℎ(𝑥0). In Lemma 3.1, we demonstrated that Ω ⊂ 𝐶𝑛. Since 𝑃Ω

ℎ(𝑥0) ∈ Ω, we get that 𝑃Ω
ℎ(𝑥0) ⊂

𝐶𝑛. It then follows from our setting with 𝑥𝑛 = 𝑃𝐶𝑛
ℎ (𝑥0) that  

 𝑑ℎ(𝑥𝑛 , 𝑥0) ≤ 𝑑ℎ(𝑢, 𝑥0). (69) 

 Since 𝑥𝑛 → 𝑞 as 𝑛 → ∞, we get from (69) that  

 𝑑ℎ(𝑞, 𝑥0) ≤ 𝑑ℎ(𝑢, 𝑥0). (70) 

 But by the Property of Bregman Projection mapping in Lemma of Reich & Sabach, 2010, we have for ∀𝑤 ∈ Ω that  

 𝑑ℎ(𝑢, 𝑥0) ≤ 𝑑ℎ(𝑤, 𝑥0). (71) 

 This implies  

 𝑑ℎ(𝑢, 𝑥0) ≤ 𝑑ℎ(𝑞, 𝑥0). (72) 

 Thus by combining (70) and (72) we then arrive at 𝑢 = 𝑞. Therefore, 𝑞 = 𝑃Ω
ℎ(𝑥0). This completes the proof of our 

Theorem 3.2.  
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Application 

System of equilibrium problems, finite family of 𝒉-pseudo-contractive mappings and countable families of 

Bregman quasi strictly pseudo-contractive mappings 

 By setting 𝐴𝑖 ≡ 0 and 𝜃𝑖 ≡ 0 in our Hypothesis 2.1, then the sequence 𝑥𝑛 and 𝑧𝑛 defined and generated 

by Algorithm 2.1 (11) converges to the common solution set denoted by  

 Ω:= [∩𝑖=1
∞ 𝐹𝑖𝑥(𝑇𝑡)] ∩ [(∩𝑖=1

𝑀 𝐸𝑃(Θ𝑖))] ∩ [(∩𝑗=1
𝑁 𝐹𝑖𝑥ℎ(𝑆𝑗))] ≠ ∅; 

 where 𝐸𝑃(Θ) is the set of solution of equilibrium problem of Θ. 

 

System of Convex Minimization Problems, finite family of 𝒉-pseudo-contractive mappings and countable 

families of Bregman quasi strictly pseudo-contractive mappings 

 By setting 𝐴𝑖 ≡ 0 and Θ𝑖 ≡ 0 in our Hypothesis 2.1, then the sequence 𝑥𝑛 and 𝑧𝑛 defined and generated 

by Algorithm 2.1 (11) converges to the common solution set denoted by  

 Ω:= [∩𝑖=1
∞ 𝐹𝑖𝑥(𝑇𝑡)] ∩ [(∩𝑖=1

𝑀 𝐶𝑀𝑃(𝜃𝑖))] ∩ [(∩𝑗=1
𝑁 𝐹𝑖𝑥ℎ(𝑆𝑗))] ≠ ∅; 

 where 𝐶𝑀𝑃(𝜃) is the set of solution of convex minimization problem of 𝜃. 

 

System of Variational Inequality Problems, finite family of 𝒉-pseudo-contractive mappings and countable 

families of Bregman quasi strictly pseudo-contractive mappings 

 By setting Θ𝑖 ≡ 0 and 𝜃𝑖 ≡ 0 in our Hypothesis 2.1, then the sequence 𝑥𝑛 and 𝑧𝑛 defined and generated 

by Algorithm 2.1 (11) converges to the common solution set denoted by  

 Ω:= [∩𝑡=1
∞ 𝐹𝑖𝑥(𝑇𝑡)] ∩ [(∩𝑖=1

𝑀 𝑉𝐼𝑃(𝐴𝑖 , 𝐾))] ∩ [(∩𝑗=1
𝑁 𝐹𝑖𝑥ℎ(𝑆𝑗))] ≠ ∅; 

 where 𝑉𝐼𝑃(𝐴𝑖 , 𝐾) is the set of solution of variational inequality problem of 𝐴 over 𝐾. 

 

Numerical example 

Let 𝑋 = ℝ, 𝐾 = [−1,1], ℎ(𝑥): =
1

2
𝑥2, ∀𝑥 ∈ 𝐾, then ∇ℎ = 𝐽 = 𝐼, ∇ℎ∗ = 𝐽 = 𝐼, where 𝐼 is identity mapping on 𝑋. 

Let Θ𝑖(𝑥, 𝑦) =
𝑖

𝑖+1
(𝑦2 − 𝑦𝑥 + 𝑥𝑦 − 𝑥2), ∀𝑦 ∈ 𝐾, 𝑖 = 1, . . . 𝑀. It is very obvious that Θ(𝑥, 𝑦) satisfies Condition A 

𝐴1 − 𝐴4  given in Assumption 1. Also let 〈𝑦 − 𝑥, 𝐴𝑖𝑥〉: = (𝑖 + 1)(𝑦𝑥 − 𝑥
2)  such that 𝐴𝑖(𝑥): = (𝑖 + 1)𝑥 . Let 

𝜃𝑖(𝑥) = 𝜃𝑖(𝑦) =  constant. Let 𝑇𝑡(𝑥) = −𝑥
2 − 𝑥, 𝑡 = 1, . ..  and 𝑆𝑗(𝑥) = −𝑠

𝑗∇ℎ(𝑥), 𝑗 = 1, . . . , 𝑁, 𝑠 = [0,1]  be 

Bregman quasi-strict pseudo-contractive and h-pseudo-contraction mappings respectively such that  

 Ω:= [∩𝑡=1
∞ 𝐹𝑖𝑥(𝑇𝑡)] ∩ [(∩𝑖=1

𝑀 𝐺𝑀𝐸𝑃(Θ𝑖 , 𝐴𝑖 , 𝜃𝑖))] ∩ [(∩𝑗=1
𝑁 𝐹𝑖𝑥ℎ(𝑆𝑗))] = {0} 

 Thus, for implementation of the algorithm, we set 𝜌 = 0.3; 𝑥0 = 𝑥1 = 1, 𝑆 = 0.5, 𝑎𝑛 = 0.3, 𝑏𝑛 = 0.8, 𝑟 = 1,𝑀 =
𝑁 = 1 

https://doi.org/10.63561/jmns.v2i3.860


 

A Hybrid Algorithm for Solving Nonlinear Problems. 

12 Cite this article as:   

Ekuma-Okereke E., & Okudu G. O. (2025). A hybrid algorithm for solving nonlinear problems. FNAS Journal of Mathematical 

Modeling and Numerical Simulation, 2(3), 1-14. https://doi.org/10.63561/jmns.v2i3.860  
 

 
 

Conclusion 

In this paper, we constructed a new hybrid algorithm to approximate the common solution of the set of fixed points of 

a countable family of closed Bregman quasi-strict pseudocontractive mappings; set of solutions of a finite system of a 

generalized mixed equilibrium problems and the set of 𝑓-fixed points of a finite family of 𝑓-pseudocontractive 

mappings. A strong convergence theorem was proved for it in a reflexive (real) Banach space. We provided some 

applications. Besides, a numerical computation was provided to illustrate its effectiveness and implementation. We 

observed that our results complement the results of Zegeye et.al 2022 and improves the results of Matsushita & 

Takahashi, 2005, Chen, 2011, Ceng & Yao, 2008, Yongfu & Yongchun, 2015, Wang & Wei, 2017, Wang, 2015 and 

many other references cited in the literature. 

 

References  

Rockafellar, R.T. (1970). Convex Analysis, Princeto University Press, Princeton. 

Naraghirad, E. & Yao, J. C. (2013). Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point 

Theory and Applications 2013, 141. 

Zalinescu, C. (2002). Convex Analysis in General Vector Spaces, World Scientific, River Edge, NJ, USA. 

Chidume, C. E. (2009). Geometric Properties of Banach Spaces and Nonlinear Iterations, Lectures Notes in 

Mathematics, Springer, London. 

Reich, S. & Sabach, S. (2010). Two strong convergence theorems for Bregman strongly nonexpansive operators in 

reflexive Banach spaces, Nonlinear Anal., 73, 122–135. 

Bregman, L. M. (1967). The relaxation method for finding the common point of convex sets and its application to the 

solution of problems in convex programming, USSR Computational Mathematics and Mathematical 

Physics, 7(3), 200–217. 

https://doi.org/10.63561/jmns.v2i3.860


 

A Hybrid Algorithm for Solving Nonlinear Problems. 

13 Cite this article as:   

Ekuma-Okereke E., & Okudu G. O. (2025). A hybrid algorithm for solving nonlinear problems. FNAS Journal of Mathematical 

Modeling and Numerical Simulation, 2(3), 1-14. https://doi.org/10.63561/jmns.v2i3.860  
 

Censor, Y. &, Lent, A. (1981). An iterative row-action method for interval convex programming,  J. Optim. Theory 

Appl., 34, 321–353. 

Reich, S. & Sabach, S. (2009). A strong convergence theorem for a proximal-type algorithm in reflexive Banach 

spaces, Journal of Nonlinear Convex Analysis, 10(3), 471–485. 

Zegeye, H. & Shahzad, N. (2014). Strong convergence theorems for a common fixed point of a finite family of 

Bregman weak relativity nonexpansive mappings in reflexive Banach spaces, The Scientific World Journal, 

2014, Article ID 493450, 8 pages. 

Ugwunnadi, G. C. Ali, B. & Minjibir, M. S. & Idris, I. (2014). Strong convergence theorem for quasi-Bregman strictly 

pseudocontractive mappings and equilibrium problems in reflexive Banach spaces, Fixed Point Theory 

Appl., 231, 1–16. 

Zegeye, S. B., Zegeye, H. M., Sangagoa, G. & Boikanyo, O. A. (2022). A convergence theorem for a common solution 

of f-fixed point, variational inequality and generalized mixed equilibrium problems in Banach spaces, Int. 

J.Nonlinear Anal. Appl.,1–19 http://dx.doi.org/10.22075/ijnaa.2022.25363.2995 

Picard, È. (1890). Memoire sur la theorie des equations aux derivees partielles et la methode des approximations 

successives. Journal de Mathématiques Pures et Appliquées, (6)145–210. 

Krasnosel’skii, M. A. (1955). Two remarks on the method of successive approximations.  Uspekhi matematicheskikh 

nauk,  10:1, 123–127. 

Mann, W. R. (1953). Mean value method in iteration.  Proc. Amer. Math.Soc., (4), 506-510. 

Ishikawa, S. (1974). Fixed points by a new iteration method.  Proceeding of the American Mathematical Society,  

44(1), 147–150. 

Polyak, B. T. (1964). Some method of speeding up the convergence of the iteration methods,  USSR Comput. Math. 

Phys. (4), 1–17. 

Ali, B., Ezeora, J. N. & Lawan, M. S. (2019). Inertial Algorithm for Solving Fixed Point and Generalized Mixed 

Equilibrium Problems in Banach Spaces, PanAmerican Mathematical Journal, 29(3),64–83. 

Chidume, C. E., Ikechukwu, S. I. & Adamu, A. (2018). Inertial algorithm for approximating a common fixed point for 

a countable family of relatively nonexpansive maps, Fixed Point Theory and Applications, 2018:9. 

Wang, Z.-M. (2015). Strong convergence theorems for Bregman quasi-strict pseudo-contractions in reflexive Banach 

spaces with applications, Fixed Point Theory Appl., 2015, 17 pages. 

Wang, Z-M., & Wei, A. (2017). Some results on a finite family of Bregman quasi-strict pseudo-contractions, J. 

Nonlinear Sci. Appl., 10, 975–989. 

Yongfu, S., & Yongchun, X. (2015). New hybrid shrinking projection algorithm for common fixed points of a family 

of countable quasi-Bregman strictly pseudocontractive mappings with equilibrium and variational 

inequality and optimization problems, Fixed Point Theory and Appl. 95. 

Ceng, L.C., & Yao, J.C. (2008). A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, 

J. Comput. Appl. Math., (214), 186–201. 

Blum, E. & Oettli, W. (1994). From optimization and variational inequalities to equilibrium problems, Math.Stud. 

(63),123–145. 

Mouda , A. & Thera, M. (1999). Proximal and dynamical approaches to equilibrium problems, Lecture notes in 

Economics and Mathematical Systems, 477, Spinger, 187–201. 

Browder, F.E. (1966). Existence and approximation of solutions of nonlinear variational inequalities,  Proc. Natl. 

Acad. Sci. USA 56, no. 4, 1080–1086. 

Dong, Q. L., Yuan, H. B., Je, C. Y. & Rassias, Th. M. (2018). Modified inertial Mann algorithm and inertial 

CQ-algorithm for nonexpansive mappings, Optim. Lett.,12,87–102. 

https://doi.org/10.1007/s11590-016-1102-9. 

Ekuma-Okereke, E. & Okoro, F. M. (2020). Common solution for Nonlinear Operators in Banach spaces, Gazi 

University Journal of Science. 

Phelps, R. P. (1993). Convex Functions, Monotone Operators and Differentiability, Springer, Berlin, Volume 1364. 

Bauschke, H. H. & Borwein, J. M. (1997). Legendre functions and the method of random Bregman projections, 

Journal of Convex Analysis, 4(1), 27–-67. 

Bauschke, H. H., Borwein, J. M. Combettes, P. L. (2001). Essential smoothness, essential strict convexity, and 

Legendre functions in Banach spaces, Communications in Contemporary Mathematics, 3(4), 615–647 

Butnariu, D. & Resmerita, E. (2006). Bregman distances, totally convex functions and a method for solving operator 

equations in Banach spaces, Abstract and Applied Analysis, 1–39. 

Butnariu, D. & Iusem, A. N. (2000). Totally Convex Functions for Fixed Points Computation and Infinite 

https://doi.org/10.63561/jmns.v2i3.860


 

A Hybrid Algorithm for Solving Nonlinear Problems. 

14 Cite this article as:   

Ekuma-Okereke E., & Okudu G. O. (2025). A hybrid algorithm for solving nonlinear problems. FNAS Journal of Mathematical 

Modeling and Numerical Simulation, 2(3), 1-14. https://doi.org/10.63561/jmns.v2i3.860  
 

Dimensional Optimization, Kluwer Academic, Dordrecht, Volume 40. 

Bonnas, J. F. & Shapiro, A. (2000). Perturbation Analysis of Optimization Problems, Springer, New York. 

Chen, J., Wan, Z., Yuan, L., & Zheng, Y. (2011). Approximation of fixed points of weak Bregman relatively 

nonexpansive mappings in Banach spaces, International Journal of Mathematics and Mathematical 

Sciences, 2011,420192, 23 pages. 

Alber, Y. I. (1996). Metric and generalized projection operators in Banach Spaces Properties and Applications, 

Lecture Notes in Pure and Applied Mathematics,15–50. 

Matsushita, S. & Takahashi, W. A. (2005). Strong convergence theorem for relatively nonexpansive mappings in a 

Banach space, J. Approx. Theory, 134, 257–266. 

Ekuma-Okereke, E. & Oladipo, A. T. (2020). A Stong convergence theorem for finite families of Bregman 

quasi-nonexpansive and monotone mappings in Banach spaces, Fixed Point Theory, 21(1), 167–180, DOI: 

10.24193/fpt-ro.2020.1.12. 

Yousuf, S. (2019). Iterative Methods for Some Classes of Equilibrium Problems and Fxed Point Problems, Ph.D 

thesis, Aligarh Muslim University, India,  2019, 85–106.. 

Payvand, M. A.  & Jahedi, S. (2016). System of generalized mixed equilibrium problems, variational inequality, and 

fixed point problems, Fixed Point Theory and Applications,  93. DOI 10.1186/s13663-016-0583-7 

Padcharoen, A. Kuman, P. Chaipunya, P. & Shehu, Y. (2020). Convergence of inertial modified Krasnoselskii-Mann 

iteration with application to image recovery, Thai Journal of Mathematics, 18(1), 126–142. 

Kato, T. (1967). Nonlinear semigroup and evolution equations, Journal of Mathematical Society Japan, 19, 508–520. 

 

 

 

https://doi.org/10.63561/jmns.v2i3.860

