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Abstract  

In this paper, a Mathematical model of Prey and Predator involving Lomax distribution function is proposed and 

analyzed. The Lomax distribution function which is composed of exponential and gamma functions was applied on 

the prey growth in the absence of predator while the predator growth is logistically. The existence and the stability 

analysis of all possible equilibrium points are studied using the Jacobean matrix. Then, the optimal exertion is 

obtained by the minimization of both the prey species and predator species dynamics with respect to the exertions 

during the poaching process 
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Introduction 

In Biological phenomenon, Mathematics have created tremendous impacts in major themes in ecological studies in 

the branch of Biomathematics.  The hub of this area is the study of population dynamics which has been made more 

real through Mathematical models that are designed using nonlinear systems through the applications of ordinary 

and partial differential equations (Ejakpovi & Siloko, 2023; Yousef et al., 2018).  The models range from single 

species, called the continuum to a varieties of species that live and interact in the same ecosystem or environment.  

This habitat of living organism populations is modelled with Mathematical models adopting differential equations to 

study their competitive relationship such as mutualism, symbiosis, parasitism and host of others in a prey-predator 

relationship.   The interaction between species in predator-prey modeling is greatly affected by environmental 

factors such as the availability of nourishment, water, refuge, air (oxygen), sunlight amongst others (Shlyufman et 

al., 2018). The prey-predator Mathematical models in which predator and prey depend on the same source of 

nourishment, the predators are being affected by the climatic changes in the habitat (Charles et al., 2022; Aman & 

Dinku, 2021). 

 

Thus, in population ecology, how prey and predator species are dispersed within the carrying capacity (environment) 

determines whether a particular species will flourish or go nonexistent.   This is where the time delay has a 

considerable impact on the dynamics of prey-predator systems for in time delay Mathematical models, the time lags 

occurs as a result of a variety of Biological and environmental conditions, such as the time it takes the predator to 

seek and captures a prey after encountering it (Bezabih et al., 2021).  The delays influenced the dynamics by 

considering the necessary reaction time, gestation period and feeding time of the prey-predator systems (Adama, 

2018; Hoff & Fay, 2016; Arif et al., 2023).   

 

The dynamics of the relationship between two species came into existence when Lotka model paired first order 

nonlinear differential equations showing the effects of a parasite on its prey and VioVolterra equated the relationship 
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between the two species independent to Lotka that led to the formulation of the Lotka-Volterra predator-prey model 

(Joshi et al., 2021).  In the prey-predator dynamics, the effects of the predator’s consumption rate are directly 

proportional to the prey density up to the point of the satiety and if the prey density rises, the predator consumption 

rate stays constant.  

 

The population of the two kinds of animals is characterized by the declining and increasing trends of the prey-

predator system (Abbas et al., 2024).  The functional response that designates how the predator’s feeding rate 

changes with regard to the prey density is a crucial component in the population dynamics of all nonlinear 

Mathematical models.  This created the most critically considered in a realistic and plausible Mathematical model to 

include: carrying capacity which is the maximum number of prey that the ecosystem can sustain in absence of 

predator, interaction among prey and functional responses of the species.   

 

Aim and Objectives of the Study  

This study explores the prey-predator model with a stochastic distribution function on species interactions which 

integrates environmental components and efforts of both species into the prey-predator framework.  The main aim of 

this research is the application of the Lomax function which is a mixture of exponential and gamma function for 

prey species in the modelling of prey-predator dynamics.  The specific objectives are to determine the growth rate of 

the prey population in the absence of predators, investigate the safety period of the prey species and determine the 

effort sustainability of the prey species during the poaching period.  

Materials and Methods 

An Overview of Holling Type Functional Response Model. 

Many Mathematical models incorporating diverse areas of interest such as Holling Type functional responses, ratio-

dependent functional responses, bio-economic exploitation or harvesting, delayed harvesting and age-structured 

models (Ashine & Gebru, 2017).  The Holling Type functional responses exists as Type I and II, with the Holling 

Type I functional response is prevalent and well-known type of functional response among the several functional 

response types.  It brings two preys and one predator into the conflict and the Mathematical model with Holling type 

I functional response describes the connection between a predator’s prey density and consumption rate.  When the 

predator’s consumption rate is directly proportional to the prey density up to a certain saturation point, it is one of 

the most fundamental functional response models.  After this, even if the prey density rises further, the predator’s 

consumption rate stays constant (Sharmila & Gunasundari, 2023).  This functional response model incorporates the 

logistic growth function in the model which give the relevance of incorporating logistic growth in prey-predator 

models.  In this response model, the rate of prey consumption by a predator rises as prey density increases, but 

eventually levels off at a plateau (or asymptote) at which the rate of consumption remains constant regardless of 

increases in prey density (Simon & Rabago, 2018; Kolpak et al., 2016).   

 

The Mathematical analysis of Holling Type II functional response model include in each predator increased its 

consumption rate when exposed to a higher prey density and predator density increased with increasing prey density, 

which built the fulcrum of predator population to prey density as the functional response and numerical response 

(Adama, 2018; Ejaz et al., 2022).   In this model the interaction of species affects both populations, it has two non-

linear autonomous ordinary differential equations describing how the population densities of the two species would 

vary with time.  It is assumed that a constant proportion 𝑚 𝜖[0,1) of the prey can take refuge to avoid predation, this 

leaves (1 − 𝑚)𝑋 of the prey available for predation. Thus, the variables and parameters in the model are: 𝑋(𝑡)-
population of the prey at time, 𝑡; 𝑌(𝑡)-population of the predator at time, 𝑡; 𝑟- is the growth rate for the prey, 𝑠- is 

the maximum growth rate of the predator; 𝑘- is the carrying capacity of the environment, 𝑘1-measures the level of 

security the prey derives from the environment, 𝑘2- measures the level of security the predator derives from the 

environment, 𝑐1-is the maximum value of the reduction rate of the prey and 𝑐2-is crowding effect for the predator.  

Thus, the Mathematical model for prey-predator dynamics given by (Savitri, 2019; Ashine & Gebru, 2017) is: 

 

{
 
 

 
 𝑑𝑋

𝑑𝑇
= 𝑟 (1 −

𝑋

𝐾
)𝑋 −

𝐶1(1 − 𝑚)𝑋𝑌

𝑘1 + (1 − 𝑚)𝑋
𝑑𝑌

𝑑𝑇
= 𝑠 −

𝐶2𝑌

𝑘2 + (1 − 𝑚)𝑋

                                                                                     (1) 
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where all the parameters in the model assumes positive values and with initial value 𝑋(0) ≥ 0 and 𝑌(0) ≥ 0.  Then, 

applying the non-dimensional state variables and parameters, the systems in Equation (1) takes the non-dimensional 

form as:  

 

{
 
 

 
 𝑑𝑥

𝑑𝑡
= (1 − 𝑥)𝑥 − (

𝛼(1 − 𝑚)𝑥𝑦

𝛽 + (1 − 𝑚)𝑚
) ≅ 𝐹(𝑥, 𝑦)

𝑑𝑦

𝑑𝑡
= 𝑦 (𝛾 −

𝜎𝑦

𝜔 + (1 − 𝑚)𝑥
) ≅ 𝐺(𝑥, 𝑦)

                                                                    (2)  

The model system in Equation (2) is solved in the region {(𝑥, 𝑦, 𝑧) ∈ 𝑅3, (𝑥(0) = 𝑥𝑜 ≥ 0;  𝑦(0) = 𝑦𝑜 ≥≥ 0)}. 
 

Description of the Mathematical Model 

The Mathematical framework of the model consists of the model description, formulation and analysis. Consider 

one prey and one predator system dynamics and let 𝑄(𝑡) and 𝑅(𝑡) denote the population sizes of the prey and 

predator at time, 𝑡 respectively.  The main feature of the model is that the interaction of species affects both 

populations and the terms exponential gamma growth of the prey species either in the absence of the predator or 

otherwise.  The study adopts the Holling Type II functional response to the consumption of the prey by the predator.  

The development of the model is based on the following assumptions: 

i. The prey species and predators live in stable ecosystem  

ii. The predator is dependent on the prey as the source of survival with a factor 𝑐 > 0.  However, the 

population density of the predator grows logistically.  

iii. The prey species have an unconstrained food supply.  

iv. There is exponential-gamma growth rate for the prey species in absence of the predator or human poaching 

of the prey.  

v. There is no threat to the prey species besides the predator. 

 

Thus, from the above assumptions, variables and parameters used in the model include: 

i. 𝑄(𝑡) denotes the population sizes of the prey species at time, 𝑡. 
ii. 𝑅(𝑡) denotes the population sizes of the predators species at time, 𝑡. 

iii. 𝑟 denotes the growth rate of the prey species. 

iv. 𝑟1 denotes the growth rate of the predator species. 

v. 𝑐 denotes the effects of interactions between the population of the prey and predator. 

vi. 𝐶 denotes the mortality rate of the prey species to the predator species. 

vii. 𝑛 denotes the mortality rate of the predator species. 

 

Formulation of the Model  

The Lomax distribution function model formulation is based on the above assumptions that modified the logistic 

growth function of the prey species with the Lomax distribution that consists of the exponential and gamma 

function.  Therefore, the assumed growth for both the prey and predator species dynamics is given as: 

{

𝑑𝑄

𝑑𝑡
= 𝑟𝑄(𝑄(𝑇 ≤ 𝑡)) − 𝐶𝑄𝑅

𝑑𝑅

𝑑𝑡
= 𝑟1𝑅(𝑄(𝑇 ≤ 𝑡)) + 𝑟1𝑄𝑅

                                                                                                (3) 

 

Then, incorporating the Lomax distribution function model into the Equation (3) with 𝑒1 and 𝑒2 representing the 

exertion the prey can take to go into refuge to avoid predation and the exertion the predator takes to poach the prey. 

{
 
 

 
 𝑑𝑄

𝑑𝑡
= 𝑟𝑄 (∫ (1 − 𝑒−𝜆𝑡)

𝑄𝑟𝜆𝑟−1𝑒−𝑄𝜆

𝛤𝑟

∞

0

𝑑𝜆) − 𝐶𝑄𝑅 −𝑚1𝑄𝑒1

𝑑𝑅

𝑑𝑡
= 𝑟1𝑅 (1 − (

𝑅

𝑅 + 𝑡
)
𝑟1

) + 𝑟1𝑄𝑅 − 𝑛𝑅 −𝑚2𝑅𝑒2

                                        (4) 
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where all the parameters in the model assumes positive values and with initial value 𝑄(0) ≥ 0 and 𝑌(0) ≥ 0.  Then, 

considering the first component of Equation (4), where 𝑄 is characterized by the exponential distribution and 𝜆 are 

distributed across the prey population according to a gamma distribution, we have: 

𝑑𝑄

𝑑𝑡
= 𝑟𝑄 (∫ (

𝑄𝑟𝜆𝑟−1𝑒−𝑄𝜆

𝛤𝑟
)𝑑𝜆 − ∫ (

𝑄𝑟𝜆𝑟−1𝑒−𝜆(𝑄+𝑡)

𝛤𝑟
)

∞

0

∞

0

𝑑𝜆) − 𝐶𝑄𝑅 −𝑚1𝑄𝑒1          (5) 

𝑑𝑄

𝑑𝑡
= 𝑟𝑄 (1 −

𝑄𝑟

𝛤𝑟

𝛤𝑟

(𝑄 + 𝑡)𝑟
∫ (

(𝑄 + 𝑡)𝑟𝜆𝑟−1𝑒−𝜆(𝑄+𝑡)

𝛤𝑟
)

∞

0

𝑑𝜆) − 𝐶𝑄𝑅 −𝑚1𝑄𝑒1                (6) 

 

where 𝛤𝑟 = ∫ 𝑒−𝜆𝜆𝑟−1𝑑𝜆 
∞

0
, 𝑅(𝑟) > 0 is called the Euler integral of the second kind and does not converge if  𝑟 ≤

0.  Then, solving the differential equation in Equation (6) gives the dynamical system of the prey species as: 

{
 
 

 
 𝑑𝑄

𝑑𝑡
= 𝑟𝑄 (1 − (

𝑄

𝑄 + 𝑡
)
𝑟

) − 𝐶𝑄𝑅 −𝑚1𝑄𝑒1

𝑑𝑄

𝑑𝑡
= 𝑟𝑄 − 𝑟𝑄 (

𝑄

𝑄 + 𝑡
)
𝑟

− 𝐶𝑄𝑅 −𝑚1𝑄𝑒1 

                                                                             (7) 

 

Then, substitute Equation (7) into Equation (4), gives the dynamical systems of both the prey and predator species 

as: 

{
 

 
𝑑𝑄

𝑑𝑡
= 𝑟𝑄 − 𝑟𝑄 (

𝑄

𝑄 + 𝑡
)
𝑟

− 𝐶𝑄𝑅 −𝑚1𝑄𝑒1

𝑑𝑅

𝑑𝑡
= 𝑟1𝑅 − 𝑟1𝑅 (

𝑅

𝑅 + 𝑡
)
𝑟1

+ 𝑟1𝑄𝑅 − 𝑛𝑅 −𝑚2𝑅𝑒2

                                                               (8) 

 

Thus, applying the non-dimensional state variables and parameters of  𝑥1 =
𝑄

𝑄+𝑡
 and 𝑥2 =

𝑅

𝑅+𝑡
 into Equations (8) 

gives the non-dimensional form as:  

{

𝑑𝑥1
𝑑𝑡

= 𝑥1{𝑟(1 − 𝑥1
𝑟)} − 𝐶𝑅 − 𝑚1𝑒1 ≅ 𝐹(𝑥1, 𝑥2)

𝑑𝑥2
𝑑𝑡

= 𝑥2{𝑟1(1 − 𝑥2
𝑟1)} + 𝑏𝑄 − 𝑛 − 𝑚2𝑒2 ≅ 𝐺(𝑥1, 𝑥2)

                                                          (9) 

 

with initial values 𝑥1(𝑡) = 𝑥𝑜 ≥ 0; 𝑥2(𝑡) = 𝑦𝑜 ≥ 0 and from the non-dimensional state variable parameters Q=
𝑥1𝑡

(1−𝑥1)
 and R=

𝑥2𝑡

(1−𝑥2)
 respectively.  The behaviour of the linearized system in Equation (8) can now be evaluated by 

determining the eigenvalues of the Jacobin matrix given by: 

𝐽(𝑒𝑖) =

[
 
 
 
 
𝜕𝐹(𝑥1, 𝑥2)

𝜕𝑥1

𝜕𝐹(𝑥1, 𝑥2)

𝜕𝑥2
𝜕𝐺(𝑥1, 𝑥2)

𝜕𝑥1

𝜕𝐹(𝑥1, 𝑥2)

𝜕𝑥2 ]
 
 
 
 

                                                                                                 (10) 

 

The Jacobean matrix presents the linearized system of the model and the asymptotic stability of each equilibrium 

point is determined by the Jacobean matrix to investigate whether the eigenvalues have negative or positive real 

parts.  The eigenvalues computed at each of the equilibrium point through the Jacobean matrix using Equation (9) 

and substituting their values functions into the Jacobean matrix in Equation (10) and simplifying yields: 

𝐽(𝑒𝑖) =

[
 
 
 
 𝑚1𝑒1 (1 −

𝑚1𝑒1
𝑟
)

1
𝑟

0

0 𝑚2𝑒2 (1 − (
𝑛 + 𝑚2𝑒2

𝑟1
))

1
𝑟1

]
 
 
 
 

                                               (11)  
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Dynamical System Equilibrium Points 

The equilibrium points in the analysis of prey-predator model involving differential equations is very crucial to 

study the solutions that do not change with time, 𝑡. These solutions are referred to as the equilibrium points which is 

obtained through the equilibrium steady-state Equations when the non-dimensional form of the model system in 

Equation (9) is equated to zero.  This implies that by setting 
𝑑𝑥1

𝑑𝑡
=

𝑑𝑥2

𝑑𝑡
= 0, for both the prey species and predator 

species dynamics gives: 

{
 

 𝑟𝑥1 − 𝑟𝑥1
𝑟+1 −

𝐶𝑡𝑥1𝑥2
1 − 𝑥2

−𝑚1𝑒1𝑥1 = 0

𝑟1𝑥2 − 𝑟1𝑥2
𝑟1+1 −

𝑏𝑥1𝑥2𝑡

1 − 𝑥1
− 𝑛𝑥2 −𝑚2𝑒2𝑥2 = 0  

                                                                         (12) 

These points give the trivial equilibria cases, which implies equilibrium in the absence of the prey and equilibrium in 

the absence of the predator.  They are obtained by solving simultaneously the Steady States equations in Equation 

(10) for  𝑥1 and 𝑥2 respectively.  The trivial equilibrium case, 𝑒0(𝑥1, 𝑥2) = 𝑒0(0,0), in the absence of the prey,  

(𝑥1 = 0) 𝑒1 ((1 −
𝑚1𝑒1

𝑟
)

1

𝑟
, 0), 𝑒1(0, 0) and the in the absence of the predator,  (𝑥2 = 0) 𝑒2 (0, (1 −

(
𝑛+𝑚2𝑒2

𝑟1
))

1

𝑟1

) , 𝑒2(0, 0).   These boundaries equilibria points indicate the extinction of both the prey and predator 

due to the hunting process by the predator nonexistence of the prey for the survival of the predator.  Also,  the 

system in Equation (12), has a positive equilibrium points, 𝑒(𝑥1
∗, 𝑥2

∗ ) which will guarantee the maximum yield due 

to the exertion of the poaching process.  

 

Dynamical Stability Analysis  

The stability analysis of the system is determined by the eigenvalues of the Jacobean matrix in Equation (11).  If the 

eigenvalues have negatively real parts, the system is said to be asymptotically stable, whereas, if the eigenvalues of 

the Jacobean have positively real parts, the system is said to be asymptotically unstable and as such requires a 

different technique will be applied in determining the eigenvalues of the Jacobean. Thus, to analyze the stability, the 

equilibrium points (0,0) are substituted into the Jacobean to investigate the eigenvalues. Therefore, the asymptotic 

trivial equilibrium case, 𝑒0(𝑥1, 𝑥2) = 𝑒0(0,0)  is unstable point and the Jacobi matrix evaluation at 𝑒0 is: 

𝐽0(𝑒0) =

[
 
 
 
 
 

𝑚1 (1 −
𝑚1𝑒1
𝑟
)

1
𝑟
−
𝑚1𝑒1
𝑟

(
𝑟𝑚1

𝑟2
) (1 − (

𝑚1𝑒1
𝑟
))

1−𝑟
𝑟

0

0 𝑚2 (1 − (
𝑛 + 𝑚2𝑒2

𝑟1
))

1
𝑟

−
𝑟1𝑚2

2𝑒2
𝑟3

(1 − (
𝑛 + 𝑚2𝑒2

𝑟1
))

1−𝑟
𝑟

]
 
 
 
 
 

                (13) 

 

Then, let the maximum yield due to the exertion of the poaching process by the predator on the prey achieved from 

the first component of Equation (11) be given as: 

{

𝑦1
∗ = 𝑚1𝑒1𝑥1

𝑦1
∗ = 𝑚1𝑒1 (1 −

𝑚1𝑒1
𝑟
)

1
𝑟                                                                                                        (14) 

𝜕𝑦1
∗

𝜕𝑒1
= 𝑚1 ((1 −

𝑚1𝑒1
𝑟
)

1
𝑟
) −

𝑚1𝑒1
𝑟

(
𝑟𝑚1

𝑟2
) (1 −

𝑚1𝑒1
𝑟
)

1−𝑟
𝑟
                                             (15) 

 

Therefore, the optimal exertion of the poaching process by the predator on the prey is achieved when 
𝜕𝑦1

∗

𝜕𝑒1
= 0 in 

Equation (15) and solving yield the optimal exertion as: 
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𝑒1 = (
𝑟2𝑟

𝑚1
𝑟 (1 − (

𝑚1

𝑟
))

1−2𝑟)

1
1−𝑟

                                                                                            (16) 

 

Then, substituting the optimal exertion in Equation (16) into Equation (14), we have: 

𝑦1
∗ = 𝑚1(

𝑟2𝑟

𝑚1
𝑟 (1 − (

𝑚1

𝑟
))

1−2𝑟)

1
1−𝑟

(1 − (
𝑚1

𝑟
))

1
𝑟

(
𝑟2𝑟

𝑚1
𝑟 (1 − (

𝑚1

𝑟
))

1−2𝑟)

1
𝑟

              (17) 

𝑦1
∗ =

(

 
 𝑟2

𝑚1
𝑟 (1 − (

𝑚1

𝑟
))

2±√2
2𝑟

)

 
 

1
1−𝑟

                                                                                            (18) 

 

Next, is the maximum yield due to the exertion of the poaching process on the prey in the absence of the predator is 

achieved from the second component of Equation (11) expressed as: 

{

𝑦2
∗ = 𝑚2𝑒2𝑥2

𝑦2
∗ = 𝑚2𝑒2 (1 − (

𝑛 + 𝑚2𝑒2
𝑟1

))

1
𝑟1                                                                                          (19) 

𝜕𝑦2
∗

𝜕𝑒2
= (𝑚2 (1 − (

𝑛 + 𝑚2𝑒2
𝑟1

))

1
𝑟1
) −

𝑟1𝑚2
2𝑒2
𝑟3

(1 − (
𝑛 +𝑚2𝑒2

𝑟1
))

1−𝑟1
𝑟1
                        (20) 

 

Therefore, the optimal effort of the poaching process on the prey in the absence of the predator is achieved when 
𝜕𝑦2

∗

𝜕𝑒2
= 0 in Equation (20) and solving yield the optimal exertion as 𝑒2 = 1.  Then, substituting the optimal effort 

from Equation (20) into Equation (19), we have: 

𝑦2
∗ = 𝑚2 (1 − (

𝑛 + 𝑚2

𝑟1
))

1
𝑟1
                                                                                                (21) 

 

Results Discussion. 

The interaction between the prey and predator in the same ecosystem interact leading to a depletion of the prey and 

in the absence of the prey the predator goes into extinction.  The study applied a probabilistic stochastic model using 

the Lomax function model which features both exponential and gamma growth on the prey species population.  The 

prey and predator species population are poaching and the rate of the predator species getting a catch is proportional 

to the effort geared towards the poaching process.  Now, when 𝑥2(𝑡) = 0, the prey population species grow 

exponential-gamma rate in the absence of the predator.  The is the best period for the prey population because it is 

free from predation and the population is left without source of food. In general, the population of all the systems 

become extinct in the absence of 𝑥1(𝑡).  The Equation (18) is the yield that sustains the population of the prey 

species in the presence of poaching process as the population of the predator approaches zero.  In Equation (21), 

ensured that the yield of the predator species population can be sustained during the poaching process while the prey 

species population goes to zero. 

 

Conclusion 

In this paper, we have reviewed the Holling Type I and II function response models that involved the prey-predator 

dynamical interactions.  The models showed dynamics that occurred in both prey and predator species populations 

when their stability analysis are considered.  In this paper, we applied the Lomax distribution function on the prey 
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species population and assumed that the predator species prey upon the prey species accordingly in a logistical 

functional response.  The results of the prey species dynamics with the Lomax function shows its exceptionality, 

novelty in obtaining the existence, uniqueness and boundedness of the solution of the systems. The standard linear 

stability analysis, was employed to analyze the sign of the real part of the eigenvalues of the Jacobian matrix, 

sometimes the Routh Hurwitz criterion could be applied.  This helped examined the trivial equilibria points of both 

Lomax function of the prey species population and logistic function of the predator species population. The stability-

state analysis of the model studied gives the dynamical behaviors of the system on analytical basis and in the future, 

a numerical simulation has to be done for the dynamical systems in Equation (3) for different sets of parameters and 

different set of initial points to confirm the obtained analytical results. 
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