
 

Modelling the Impact of Control Measures on Tuberculosis Transmission 

57 Cite this article as:   
Ogunyale, A.O., Ijaola, A.L., & Loyinmi, A. C. (2025). Modelling the impact of control measures on tuberculosis transmission. 

FNAS Journal of Mathematical Modeling and Numerical Simulation, 2(3), 57-82. https://doi.org/10.63561/jmns.v2i3.866 

 

FNAS Journal of Mathematical Modeling and Numerical Simulation 

Print ISSN: 3027-1282 

www.fnasjournals.com 

Volume 2; Issue 3; May 2025; Page No. 57-82.  

 DOI: https://doi.org/10.63561/jmns.v2i3.866 

 

Modelling the Impact of Control Measures on Tuberculosis Transmission 

 
*1Ogunyale, A.O., 2Ijaola, A.L., & 1Loyinmi, A.C. 

1Department of Mathematics, Tai Solarin University of Education, Ijagun, Ogun State. Nigeria.  
2Department of Mathematics, Federal University of Agriculture, Abeokuta, Ogun State. Nigeria. 

 

*Corresponding author: loyinmiac@tasued.edu.ng  

 

 

Abstract 

Tuberculosis (TB) is a global health pandemic which spreads through the air and is caused by Mycobacterium 

tuberculosis (MTB) which is a major contributor of illness and death worldwide. The ease of Tuberculosis 

transmission in closed environments makes it exposure becomes difficult to prevent, which do result in cases of 

Infection with and without symptoms. Moreso, Inadequate treatment of Tuberculosis cases often leads to antibiotic 

resistance, resulting in relapses even after apparent recovery. This study introduces a modified (𝑆, 𝐸, 𝐼1, 𝐼2, 𝑇, 𝑅) 
model which analyze Tuberculosis transmission and optimal control strategies. Four key intervention strategies were 

examined: awareness-based interventions, tuberculosis examinations, provision of essential treatments and 

tuberculosis diagnosis with treatment. Qualitative analysis and optimal control analysis were conducted to validate 

the model. The model's system of differential equations was solved numerically using finite difference methods and 

simulated in MATLAB. Optimal control analysis using Pontryagin’s Maximum Principle demonstrated how gradual 

control strategies reduce infections and flatten the transmission curve. Results from the study showed that 

combination of the strategies are most effective for controlling Tuberculosis. These findings can guide policymakers 

in developing comprehensive and evidence-based decision to combat Tuberculosis spread. 

 

Keywords: Mathematical Model, Tuberculosis cases, Awareness Based Intervention, Tuberculosis examination, 

Essential Treatment. 

 

 

 

Introduction 

Tuberculosis is an infectious disease which is caused by the organism mycobacterium tuberculosis (MTB) that 

affects both humans and animals. The tuberculosis bacillus bacteria currently infect one-third of the world's 

population, according to the World Health Organization (WHO, 2019). It is one of the most prevalent infectious 

illnesses that can be contracted through close contact with infected people. In 2019, 87% of tuberculosis deaths took 

place in low and middle income nations with Asia accounting for 44% of projected cases and Africa for 24%. The 

Western Pacific area accounted for a substantial amount of (18%) cases, followed by the Eastern Mediterranean 

region (8%), Europe (3%) and the Americas (3%) each of which made a little contribution (Kuddus et al., 2021). 

According to Wu et al. (2020) the number of tuberculosis cases has been decreasing over the past 20 years with 

between 10,000 and 20,000 new cases reported per year and the case fatality rate in America ranges from 0.05 to 

0.07. However, since the year 2000, over sixty-six million lives have been saved due to global efforts to combat 

tuberculosis (Inayaturohmat et al., 2022). Mycobacterium tuberculosis (MTB) typically affects the lungs of infected 

individuals (Wu et al., 2020). The bacteria get into the air when an infected person coughs, sneezes, shouts or spits 

(Malik et al., 2018). This tiny mycobacterium tuberculosis (MTB) may remain in the atmosphere for a long period 

and continue to move (Wu et al., 2020). This infection can be transmitted by inhaling air or saliva droplets released 

by an infected patient (Adeleke et al., 2025). The most common method that tuberculosis spreads is by direct contact 

with someone susceptible by an infected person. As a result, contact with an infected person can cause an individual 

to contact the disease, either with or without presenting symptoms. In actuality, not every tuberculosis patient will 
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have symptoms at the same time and the incubation time for some individuals with tuberculosis ranges from one 

year to many years (Loyinmi, 2025; Wu et al., 2020). Once infected, a person may have the infection for many years 

and potentially for the rest of their lives. Infection with tuberculosis can cause either latent tuberculosis, in which the 

bacteria do not spread and the person is not infectious or active tuberculosis in which the bacteria are active and the 

person can infect others (Alfiniyah et al., 2024). Individuals who live close to people who have an active 

tuberculosis infection, those with weakened immune systems due to age or other health issues and those who reside 

in areas where the prevalence of tuberculosis infection is higher than usual are all at a heightened risk of contracting 

the disease. The Symptoms of tuberculosis illness varies on the part of the body the tuberculosis bacteria exist. A 

patient's medical history, current health situation and physical examination can all be used to determine if a certain 

symptom is indicative of tuberculosis. Tuberculosis may be diagnosed by several methods which include sputum 

analysis, skin tests and chest X-rays. When diagnosing active tuberculosis, further tests are performed such as 

detecting the causative organism which is mycobacterium tuberculosis in the sputum. In actuality, not every 

tuberculosis patient will have symptoms at the same time. Due to the lack of accurate tuberculosis tests many 

infections go undetected these days which has been making tuberculosis management more challenging (Wu et 

al.,2020). Early illness identification, patient follow-up and clinical care are the main obstacles to the elimination of 

tuberculosis according to (Bhadauria et al., 2023). The high cost of treating tuberculosis which places a significant 

burden on the general people is among the possible factor contributing to inadequate treatment. The course of 

treatment which often lasts for six months or more and sometimes for up to twenty-four months along with drug-

resistant strains which proliferate if treatment is not completed has significantly been making treatment more 

challenging. According to the World Health Organization (WHO, 2019) significant advancements in the treatment 

and cure of tuberculosis have led to a consistent decline in incident cases and fatalities in recent years. According to 

(Wu et al., 2020) most active and latent tuberculosis can be successfully treated based on decades of technology and 

expertise. However, the course of remedies must run at least six months for the treatment of tuberculosis to be 

successful. Thus, it is essential to provide a comprehensive model for the spread of tuberculosis and identify critical 

factors that influence the disease's which will assist in determining the best strategies to be implemented to bring 

tuberculosis under control across the globe (Loyinmi, 2025; Bhadauria et al., 2023). 

 

One way that Mathematics plays a crucial part in modeling a medical condition epidemic phenomenon is by using a 

deterministic model to understand disease's propagation (Loyinmi et al., 2023; Inayaturohmat et al., 2022). Over the 

years, mathematical models have been used to examine a variety of infectious illnesses among which are Nipah 

virus, measles, Lassa fever, influenza, chicken pox and rubella (Gbodogbe., 2025; Loyinmi et al., 2025; Adeleke et 

al., 2025; Loyinmi, 2024). So, for public health sectors to make well-informed policy choices, epidemiological 

models of disease transmission are a crucial resource for evaluating the possible effects of each innovative 

treatments. Due to ethical, logistical and practical considerations clinical trials would not be viable without the use 

of mathematical models to simulate various treatment and "what if" situations (Kuddus et al., 2021; Loyinmi et al., 

2024). Optimal control is one of the ongoing control measures which has been consider to lower the number of 

tuberculosis patients. According to (Anisa'Maulina & Imron, 2024; Loyinmi et al., 2025; Gbodogbe, 2025) optimal 

control is a model that is required to help make judgments about reaching a goal while simultaneously minimizing 

or maximizing the number of system performance variables. According to Kim, S et al., (2020) the optimal control 

theory applied to tuberculosis models is of interest to modelers because it offers public health professionals’ useful 

information for decision and policy-making. 

 

However, there are variety of models have been formulated, mathematically analyzed and applied to numerous 

infectious diseases (Loyinmi & Ijaola, 2024). The study by Bhadauria et al. (2023) presents a five-dimensional 

mathematical model to analyze tuberculosis (TB) dynamics in India. It categorizes TB cases into drug-sensitive 

(DS), multi-drug-resistant (MDR), and isolated classes. The model includes calculations of the reproduction number, 

equilibrium points, and stability analysis. Numerical simulations project TB trends from 2018 to 2035, aiming for 

possible eradication by 2035. The findings emphasize that high treatment success and effective isolation of MDR 

cases are crucial for eradication. The study's projections rely heavily on optimistic assumptions particularly 

achieving a 95% treatment success rate and isolating 50% of MDR-TB cases which may not be feasible in real-

world settings due to healthcare and operational constraints. In the research conducted by (Ogbaji et al., 2019) a 

mathematical model was proposed for vaccination and treatment strategy to eradicate tuberculosis with absent of 

emigration effect. In which an existing model was modified by incorporating the immigrants effect, efficacy of 

vaccination, treatment and new babies were considered 100% vaccinated. The existence and uniqueness of solution 
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of the modified model was carried out. Moreso, the stability analysis of the disease-free equilibrium shows that the 

disease-free equilibrium (DFE) is locally asymptotically stable. The effective reproductive number(𝑅𝑒) was 

computed under different conditions. In the case where there is treatment and vaccination effective reproductive 

number(𝑅𝑒) is 0.2527. The results show that mycobacterium tuberculosis can be eradicated if mass vaccination and 

treatment actions are properly initiated and enforced. (Alfiniyah et al., 2020) developed a mathematical model that 

captured the dynamics of Tuberculosis transmission specifically among smokers, incorporating the effects of case 

detection. Their innovative approach lied in the integration of smoking behavior as a key factor in tuberculosis 

transmission dynamics, which has been underexplored in previous models. They analyzed the existence and stability 

of the tuberculosis model equilibrium based on the basic reproduction number. Additionally, parameter sensitivity 

analysis was conducted to identify the most influential factors in the spread of the disease. Furthermore, their study 

investigated the effectiveness of various control strategies, including social distancing for smokers, tuberculosis 

screening in high-risk populations and tuberculosis treatment in low-income communities. By employing the 

pontryagin maximum principle, they solved the optimal control problems to determine the most effective 

combination of interventions. Simulation results demonstrated that a targeted combination of control measures can 

effectively reduce the number of tuberculosis infected individuals. 

 

This study will consider using a compartmental modeling approach to study the transmission dynamics of a 

modified  (𝑆, 𝐸, 𝐼1, 𝐼2, 𝑇, 𝑅) tuberculosis model at two levels of infection. This study will also discuss how 

mathematical modeling can be used in determining the impacts of optimal control strategies such as awareness-

based interventions (ABI), conducting tuberculosis examinations, provision of essential treatments and tuberculosis 

diagnosis with treatment on the spread of the disease. This vaccine's efficacy in the treatment of the disease varies 

and it still does not offer complete protection against the illness, particularly for people with pulmonary tuberculosis. 

Therefore, it becomes essential to create more effective strategies which will be a more effective solution is also 

crucial to limiting the spread of tuberculosis. Therefore, the controls strategies use in this study are variables whose 

value are determined by using Pontryagin's Minimum Principle in optimal control theory. Stability and sensitivity 

analyses of the mathematical model of tuberculosis transmission were also examined in this study. The model is 

numerically simulated using the fourth-order Runge-kutta in MATLAB, and its numerical solution is determined 

using the finite difference method. 

 

Materials and Methods 

To understand the transmission dynamics tuberculosis this study utilizes a proposed (𝑆, 𝐸, 𝐼1, 𝐼2, 𝑇, 𝑅 )  model. This 

model aims to implore multiple compartments defined with Six (6) compartmental state variables and parameters for 

the population of humans with an outbreak of tuberculosis. First, it starts with the recruitment rate (Λ) of people into 

the susceptible class once a contact is made between an infected person with symptoms (𝐼1) or an infected person 

without symptoms (𝐼2). The patients go into an exposed class (𝐸) where a fraction of humans exposed become 

infected with symptoms (𝐼1) while the second fraction of humans exposed becomes infected without symptoms 

(𝐼2) as the third fraction of humans exposed recover due to their immune systems. Thereafter, humans who are 

infected with symptoms (𝐼1)  and those who are infected without symptoms (𝐼2)  proceed to the treatment class (𝑇). 
Once humans have been considered for treatment, they then proceed to recovered class (𝑅). At this stage, due to the 

loss of immunity and the possibility of reinfection, an individual may be susceptible to contacting tuberculosis. 

However, the transmission dynamics of the model are primarily been determined by the human recruitment rate 

which is a key parameter that affects population growth over time: The disease progression is determined by the 

human-to-human contact rate (𝛽) between humans in the susceptible class and infected humans with or without 

symptoms. An exposed individual can become infected with symptoms at a rate (𝑎𝛾) and also become infected 

without symptoms at a rate (𝑏𝛾) as well becomes recover at a rate 𝛾(1 − 𝑎 − 𝑏). An infected individual with 

symptoms can be treated at a rate (𝑟) while an infected individual without symptoms will become treated at a rate 

(𝑞). Once treatment has been completed a patient will proceed to recovery class at a rate(𝜂). Due to some mitigating 

factors, a patient who has recovered may become susceptible at a rate (𝜌). To further represent the effect of 

tuberculosis on human population dynamics, the model includes the mortality rate (𝜇) of human and disease-induce 

death rate (𝛿) of human who die of tuberculosis. However, through the integration of each state’s variables and 

parameters. The mathematical model presents a thorough framework for the analysis and simulation of tuberculosis 

transmission dynamics, which yields important information for strategies related to optimal controls. 
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Figure1: Tuberculosis Schematic Diagram 

         

Table 1: Description of each compartment  

Compartments Descriptions 

𝑆 Susceptible Human Class 

𝐸 Exposed Human Class 

𝐼1 Infected Human with symptoms Class 

𝐼2 Infected Human without symptoms Class 

𝑇 Treated Human Class 

𝑅 Recovered Class 

 

Table 2: Descriptions of the parameters  

Parameters Descriptions 

Λ Humans recruitment rate 

𝜇 Humans natural death rate 

𝛽 Humans to humans contact rate 

𝑎𝛾 Exposed human class to infected human class with 

symptoms rate 

𝑏𝛾 Exposed human class to infected human class without 

symptoms rate 

𝛾(1 − 𝑎 − 𝑏) Exposed human class to recovered human class rate 

𝛿 Disease induced death rate 

𝑟 Rate of Infected human class with symptoms to Treated 

Humans class rate 

𝑞 Rate of Infected human class without symptoms to 

Treated human class  

𝜂 Human recovery rate after treatments 

𝜌 Relapse rate from Recovered humans class to 

susceptible humans class 
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The Model Systems of Equation 

 

𝑑𝑆

𝑑𝑡
= Λ + 𝜌𝑅 − (𝛽(𝐼1 + 𝐼2) + 𝜇)𝑆

 
𝑑𝐸

𝑑𝑡
= 𝛽𝑆(𝐼1 + 𝐼2) − (𝛾 + 𝜇)𝐸         

 
𝑑𝐼1
𝑑𝑡

= 𝑎𝛾𝐸 − (𝑟 + 𝛿 + 𝜇)𝐼1              
 

𝑑𝐼2
𝑑𝑡

= 𝑏𝛾𝐸 − (𝑞 + 𝛿 + 𝜇)𝐼2              
 

𝑑𝑇

𝑑𝑡
= 𝑟𝐼1 + 𝑞𝐼2 − (𝜂 + 𝛿 + 𝜇)𝑇       

 

           
 𝑑𝑅

𝑑𝑡
= 𝛾(1 − 𝑎 − 𝑏)𝐸 + 𝜂𝑇 − (𝜌 + 𝜇)𝑅     

 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

                                                                                                       (1)    

 

with the initial conditions: 

 𝑆(0) = 𝑆0, 𝐸(0) = 𝐸0, 𝐼1(0) = 𝐼10, 𝐼2(0) = 𝐼20, 𝑇(0) = 𝑇0, 𝑅(0) = 𝑅0.  

The total population of individuals can be expressed as follows: 𝑆(𝑡) + 𝐸(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡) + 𝑇(𝑡) + 𝑅(𝑡) = 𝑁(𝑡)  
 

Qualitative Analysis of the Model 

Existence and Uniqueness of Solution 

By using the Lipschitz condition from the systems of eqn. (1) 
𝑩𝟏 = Λ + 𝜌𝑅 − (𝛽(𝐼1 + 𝐼2) + 𝜇)𝑆

 
𝑩𝟐 = 𝛽𝑆(𝐼1 + 𝐼2) − (𝛾 + 𝜇)𝐸         

 
𝑩𝟑 = 𝑎𝛾𝐸 − (𝑟 + 𝛿 + 𝜇)𝐼1              

 
𝑩𝟒 = 𝑏𝛾𝐸 − (𝑞 + 𝛿 + 𝜇)𝐼2              

 
 𝑩𝟓 = 𝑟𝐼1 + 𝑞𝐼2 − (𝜂 + 𝛿 + 𝜇)𝑇    

 
           𝑩𝟔 = 𝛾(1 − 𝑎 − 𝑏)𝐸 + 𝜂𝑇 − (𝜌 + 𝜇)𝑅 

 }
 
 
 
 
 

 
 
 
 
 

                                                                                                               (𝟐)                 

 

 

Theorem 1: If A is a region in 0 ≤ 𝑥 ≤ 𝑀, then the systems if eqn (2) is said to possess a unique solution if and 

only if   
𝜕𝐵𝒊

𝜕ℎ𝒋
  are continuous and bounded in 𝐵 for ≠ 𝑗 . 

Proof 

We need to establish the partial derivative (2) with respect to the state variables which yields: 

| 
𝜕𝐵𝟏

𝜕𝑆
 | = |𝛽𝑆(𝐼1 + 𝐼2) + 𝜇| < ∞ ;                         | 

𝜕𝐵𝟏

𝝏𝐸
 | = | 0 | < ∞ ;                               | 

𝜕𝐵𝟏

𝝏𝐼𝟏
 | = | −𝛽𝑆 | < ∞ ;      

| 
𝜕𝐵𝟏

𝝏𝐼𝟐
 | = | −𝛽𝑆  | < ∞ ;           | 

𝜕𝐵𝟏

𝜕𝑇
 | = | 0 | < ∞ ;                               | 

𝜕𝐵𝟏

𝜕𝑅
 | = | 𝜌 | < ∞ ;  
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| 
𝜕𝐵𝟐

𝜕𝑆
 | = | 𝛽(𝐼1 + 𝐼2) | < ∞ ;        | 

𝜕𝐵𝟐

𝜕𝐸
 | = |−(𝛾 + 𝜇) | < ∞                   | 

𝜕𝐵𝟐

𝝏𝐼𝟏
 | = | 𝛽𝑆 | < ∞ ; 

| 
𝜕𝐵𝟐

𝝏𝐼𝟐
 | = | 𝛽𝑆 | < ∞ ;          | 

𝜕𝐵𝟐

𝝏𝑇
 | = | 0 | < ∞ ;         | 

𝜕𝐵𝟐

𝝏𝑅
 | = | 0 | < ∞ ; 

| 
𝜕𝐵𝟑

𝜕𝑆
 | = |0| < ∞ ;                                                    | 

𝜕𝐵𝟑

𝝏𝐸
 | = | 𝑎𝛾 | < ∞ ;                             | 

𝜕𝐵𝟑

𝝏𝐼𝟏
 | = |−(𝑟 + 𝛿 + 𝜇) | < ∞ 

;      

| 
𝜕𝐵𝟑

𝝏𝐼𝟐
 | = | 0 | < ∞ ;                 | 

𝜕𝐵𝟑

𝜕𝑇
 | = | 0 | < ∞ ;                                | 

𝜕𝐵𝟑

𝜕𝑅
 | = | 0 | < ∞ ;  

| 
𝜕𝐵4

𝜕𝑆
 | = | 0 | < ∞ ;                       | 

𝜕𝐵𝟒

𝜕𝐸
 | = | 𝑏𝛾 | < ∞  ;                             | 

𝜕𝐵𝟒

𝝏𝐼𝟏
 | = | 0 | < ∞ ; 

| 
𝜕𝐵4

𝝏𝐼𝟐
 | = |  −(𝑞 + 𝛿 + 𝜇) | < ∞ ;                       | 

𝜕𝐵4

𝝏𝑇
 | = | 0 | < ∞ ;          | 

𝜕𝐵4

𝝏𝑅
 | = | 0 | < ∞ ; 

| 
𝜕𝐵5

𝜕𝑆
 | = | 0 | < ∞ ;                       | 

𝜕𝐵5

𝜕𝐸
 | = | 0 | < ∞  ;                                | 

𝜕𝐵5

𝝏𝐼𝟏
 | = | 𝑟 | < ∞ ; 

| 
𝜕𝐵5

𝝏𝐼𝟐
 | = | 𝑞 | < ∞ ;                                            | 

𝜕𝐵5

𝝏𝑇
 | = |−(𝛿 + 𝜇 + 𝜂)| < ∞ ;           | 

𝜕𝐵5

𝝏𝑅
 | = | 0 | < ∞ ; 

| 
𝜕𝐵6

𝜕𝑆
 | = | 0 | < ∞ ;                       | 

𝜕𝐵6

𝜕𝐸
 | = | 𝛾(1 − 𝑎 − 𝑏) | < ∞  ;          | 

𝜕𝐵6

𝝏𝐼𝟏
 | = | 0 | < ∞ ; 

| 
𝜕𝐵6

𝝏𝐼𝟐
 | = | 0 | < ∞ ;                                             | 

𝜕𝐵6

𝝏𝑇
 | = |𝜂| < ∞ ;                               | 

𝜕𝐵6

𝝏𝑅
 | = | −(𝜌 + 𝜇) | < ∞ ;  

Positivity and Boundedness of the systems 

The differential equation for the population: 

𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡) + 𝑇(𝑡) + 𝑅(𝑡) 

Is given by: 

𝑑𝑁

𝑑𝑡
=
𝑑𝑆

𝑑𝑡
+
𝑑𝐸

𝑑𝑡
+
𝑑𝐼1
𝑑𝑡

+
𝑑𝐼2
𝑑𝑡

+
𝑑𝑇

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
 

𝑑𝑁

𝑑𝑡
= Λ − μ(𝑆 + 𝐸 + 𝐼1 + 𝐼2 + 𝑇 + 𝑅) −  𝛿(𝐼1 + 𝐼2 + 𝑇) 

                                                               = Λ − μ𝑁 −  𝛿(𝐼1 + 𝐼2 + 𝑇)                                                                           (𝟑) 
               

Theorem 2: 

Let  (𝑆, 𝐸, 𝐼1, 𝐼2, 𝑇, 𝑅 ) be the solution of the tuberculosis equation with the initial condition condition in a 

biologically feasible region. Where 𝚪 is a non-negative invariant:  

If   𝚪 =  (𝑆, 𝐸, 𝐼1, 𝐼2, 𝑇, 𝑅) 𝝐 𝑅+
𝟔  ∴   𝑁 ≤

Λ

𝜇
 

By using the method of Integrating factor. 

Recall from 𝑒𝑞𝑛(3) that: 

𝑑𝑁

𝑑𝑡
=  Λ − μ𝑁 −  𝛿(𝐼1 + 𝐼2 + 𝑇) 

In a DFE (Disease Free Equilibrium),  𝛿 (disease induce death) = 0   

So,  
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𝑑𝑁

𝑑𝑡
=  Λ − μ𝑁 

𝑁′(t) + μ𝑁 = Λ 

Multiply through by the integrating factor and integrate 

∫(𝑒𝜇𝑡𝑁′(t) + μ𝑁𝑒𝜇𝑡)𝑑𝑡 = ∫(Λ𝑒𝜇𝑡)𝑑𝑡  

𝑁(𝑡)𝑒𝜇𝑡 =
Λ𝑒𝜇𝑡

𝜇
+ 𝐶 

lim
𝑡→∞

𝑁(𝑡) =
Λ

𝜇
+ 𝐶𝑒−𝜇𝑡 

                                                                                  ∴   𝑁 ≤
Λ

𝜇
                                                                                         (4) 

This shows that the equation is well posed and the solutions of different component are non-negative at time (t).  

 

Existence of tuberculosis equilibrium state 

The existence of the tuberculosis equilibrium state refers to a specific condition in the mathematical model where 

tuberculosis is not present or has been eradicated. 

𝑆° ≠ 0, 𝐸° = 0, 𝐼1
° = 0, 𝐼2

° = 0, 𝑇° = 0, 𝑅° = 0 

Then;           

                   
𝑑𝑁

𝑑𝑡
=  Λ − μ𝑁 −  𝛿(𝐼1 + 𝐼2 + 𝑇)                                                                                                               (3) 

Λ − μ 𝑆° = 0 

These give 

𝑆° =
Λ

𝜇
  

We have the DFE point to be  

             (𝑆0, 𝐸0, 𝐼1
0 , 𝐼2

0, 𝑇0, 𝑅0) = (
Λ

𝜇
, 0,0 , 0,0, 0)                                                                                            (5) 

 

Basic Reproduction Number 

The basic reproduction number for the tuberculosis system of equation is obtained via the method of next generation 

matrix formulated in 1990, by Diekman and Heesterbeek. 

Using 𝑅𝑛 =  𝜌(𝐹𝑉
−1 ) the new infection term 𝑭 and the transition terms 𝑽 of the system of  𝒆𝒒𝒏 (𝟏) are 

respectively given as:  

 

𝐹 = [
𝛽𝑆(𝐼1 + 𝐼2)

0
0

]                                                                                     𝑉 = [

−(𝛾 + 𝜇)𝐸

𝑎𝛾𝐸 − (𝑟 + 𝛿 + 𝜇)𝐼1
𝑏𝛾𝐸 − (𝑟 + 𝛿 + 𝜇)𝐼2 

] 
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𝐹 =

[
 
 
 
 
 
 
𝜕𝑓1
𝜕𝐸

𝜕𝑓1
𝜕𝐼1

𝜕𝑓1
𝜕𝐼2

𝜕𝑓2
𝜕𝐸

𝜕𝑓2
𝜕𝐼1

𝜕𝑓2
𝜕𝐼2

𝜕𝑓3
𝜕𝐸

𝜕𝑓3
𝜕𝐼1

𝜕𝑓3
𝜕𝐼2]

 
 
 
 
 
 

= [
0 𝛽𝑆 𝛽𝑆
0 0 0
0 0 0

]    

 

        

𝑉 =

[
 
 
 
 
 
 
𝜕𝑣1
𝜕𝐸

𝜕𝑣1
𝜕𝐼1

𝜕𝑣1
𝜕𝐼2

𝜕𝑣2
𝜕𝐸

𝜕𝑣2
𝜕𝐼1

𝜕𝑣2
𝜕𝐼2

𝜕𝑣3
𝜕𝐸

𝜕𝑣3
𝜕𝐼1

𝜕𝑣3
𝜕𝐼2 ]

 
 
 
 
 
 

= [

−(𝛾 + 𝜇) 0 0

𝑎𝛾 −(𝑟 + 𝛿 + 𝜇) 0

𝑏𝛾 0 −(𝑞 + 𝛿 + 𝜇)
]    

             
|𝑉| = −(𝛾 + 𝜇)(𝑟 + 𝛿 + 𝜇)(𝑞 + 𝛿 + 𝜇) 

𝐹𝑉−1 = [

−[𝑎𝛾𝛽𝑆(𝑞 + 𝛿 + 𝜇) + 𝑏𝛾𝛽𝑆(𝑟 + 𝛿 + 𝜇)]

(𝛾 + 𝜇)(𝑟 + 𝛿 + 𝜇)(𝑞 + 𝛿 + 𝜇)

−𝛽𝑆

(𝑟 + 𝛿 + 𝜇)

−𝛽𝑆

(𝑞 + 𝛿 + 𝜇)
0 0 0
0 0 0

] 

 

𝑅0 = |
−[𝑎𝛾𝛽𝑆(𝑞 + 𝛿 + 𝜇) + 𝑏𝛾𝛽𝑆(𝑟 + 𝛿 + 𝜇)]

(𝛾 + 𝜇)(𝑟 + 𝛿 + 𝜇)(𝑞 + 𝛿 + 𝜇)
| 

                                               𝑅0 =
[𝑎𝛾𝛽𝑆(𝑞 + 𝛿 + 𝜇) + 𝑏𝛾𝛽𝑆(𝑟 + 𝛿 + 𝜇)]

(𝛾 + 𝜇)(𝑟 + 𝛿 + 𝜇)(𝑞 + 𝛿 + 𝜇)
                                               (6) 

 

Local Stability Analysis at Disease Free Equilibrium 

Proof: 

We establish the above theorem by calculating the Jacobian matrix of the system in eqn (1) at DFE point. In which 

eqn (5) ;  

𝐸0 = (𝑆
0, 𝐸0, 𝐼1

0, 𝐼2
0, 𝑇0, 𝑅0) = (

Λ

𝜇
, 0, 0, 0, 0, 0) 

It is necessary for the computation of local stability analysis 𝐽(𝑆, 𝐸, 𝐼1, 𝐼2, 𝑇, 𝑅) of the system which is given as: 
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                                  𝐽 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝐵1
𝜕𝑆

𝜕𝐵1
𝜕𝐸

𝜕𝐵1
𝜕𝐼1

𝜕𝐵1
𝜕𝐼2

𝜕𝐵1
𝜕𝑇

𝜕𝐵1
𝜕𝑅

𝜕𝐵2
𝜕𝑆

𝜕𝐵2
𝜕𝐸

𝜕𝐵2
𝜕𝐼1

𝜕𝐵2
𝜕𝐼2

𝜕𝐵2
𝜕𝑇

𝜕𝐵2
𝜕𝑅

𝜕𝐵3
𝜕𝑆

𝜕𝐵3
𝜕𝐸

𝜕𝐵3
𝜕𝐼1

𝜕𝐵3
𝜕𝐼2

𝜕𝐵3
𝜕𝑇

𝜕𝐵3
𝜕𝑅

𝜕𝐵4
𝜕𝑆

𝜕𝐵4
𝜕𝐸

𝜕𝐵4
𝜕𝐼1

𝜕𝐵4
𝜕𝐼2

𝜕𝐵4
𝜕𝑇

𝜕𝐵4
𝜕𝑅

𝜕𝐵5
𝜕𝑆

𝜕𝐵5
𝜕𝐸

𝜕𝐵5
𝜕𝐼1

𝜕𝐵5
𝜕𝐼2

𝜕𝐵5
𝜕𝑇

𝜕𝐵5
𝜕𝑅

𝜕𝐵6
𝜕𝑆

𝜕𝐵6
𝜕𝐸

𝜕𝐵6
𝜕𝐼1

𝜕𝐵6
𝜕𝐼2

𝜕𝐵6
𝜕𝑇

𝜕𝐵6
𝜕𝑅 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                            (7) 

 

𝐽 =

[
 
 
 
 
 
 
 
 −𝜇 0 −𝛽

Λ

𝜇
−𝛽

Λ

𝜇
0 0

0 −(𝛾 + 𝜇) 𝛽
Λ

𝜇
𝛽
Λ

𝜇
0 0

0 𝑎𝛾 −(𝑟 + 𝛿 + 𝜇) 0 0 0

0 𝑏𝛾 0 −(𝑞 + 𝛿 + 𝜇) 0 0

0 0 𝑟 𝑞 −(𝜂 + 𝛿 + 𝜇) 0

0 𝛾(1 − 𝑎 − 𝑏) 0 0 𝜂 −(𝜌 + 𝜇)]
 
 
 
 
 
 
 
 

                         (8)   

|𝐽 − 𝜆𝐼|

=

[
 
 
 
 
 
 
 
 −𝜇 − 𝜆 0 −𝛽

Λ

𝜇
−𝛽

Λ

𝜇
0 0

0 −(𝛾 + 𝜇) − 𝜆 𝛽
Λ

𝜇
𝛽
Λ

𝜇
0 0

0 𝑎𝛾 −(𝑟 + 𝛿 + 𝜇) − 𝜆 0 0 0

0 𝑏𝛾 0 −(𝑞 + 𝛿 + 𝜇) − 𝜆 0 0

0 0 𝑟 𝑞 −(𝜂 + 𝛿 + 𝜇) − 𝜆 0

0 𝛾(1 − 𝑎 − 𝑏) 0 0 𝜂 −(𝜌 + 𝜇) − 𝜆]
 
 
 
 
 
 
 
 

    

𝜆1 = −𝜇                 (9) 

𝐽0 =

[
 
 
 
 
 −(𝛾 + 𝜇) − 𝜆 𝛽

Λ

𝜇
𝛽
Λ

𝜇
0 0

𝑎𝛾 −(𝑟 + 𝛿 + 𝜇) − 𝜆 0 0 0

𝑏𝛾 0 −(𝑞 + 𝛿 + 𝜇) − 𝜆 0 0

0 𝑟 𝑞 −(𝜂 + 𝛿 + 𝜇) − 𝜆 0

𝛾(1 − 𝑎 − 𝑏) 0 0 𝜂 −(𝜌 + 𝜇) − 𝜆]
 
 
 
 
 

             

 

                                                       𝜆2 = −(𝜌 + 𝜇)                                                                                                                 (10)  

𝐽1 =

[
 
 
 
 
 −(𝛾 + 𝜇) − 𝜆 𝛽

Λ

𝜇
𝛽
Λ

𝜇
0

𝑎𝛾 −(𝑟 + 𝛿 + 𝜇) − 𝜆 0 0

𝑏𝛾 0 −(𝑞 + 𝛿 + 𝜇) − 𝜆 0

0 𝑟 𝑞 −(𝜂 + 𝛿 + 𝜇) − 𝜆]
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                                                𝜆3 = −(𝜂 + 𝛿 + 𝜇)                                                                                                      (11)  

𝐽2 =

[
 
 
 −(𝛾 + 𝜇) − 𝜆 𝛽

Λ

𝜇
𝛽
Λ

𝜇

𝑎𝛾 −(𝑟 + 𝛿 + 𝜇) − 𝜆 0

𝑏𝛾 0 −(𝑞 + 𝛿 + 𝜇) − 𝜆]
 
 
 

 

                            𝜆4 = −(𝛾 + 𝜇)                                                                                                                                (12)  

𝐽3 =

[
 
 
 
 
𝑎𝛾𝛽𝑆 − (𝛾 + 𝜇)(𝑟 + 𝛿 + 𝜇)

(𝛾 + 𝜇)
− 𝜆

𝑎𝛾𝛽𝑆

(𝛾 + 𝜇)

𝑏𝛾𝛽𝑆

(𝛾 + 𝜇)

𝑏𝛾𝛽𝑆 − (𝛾 + 𝜇)(𝑞 + 𝛿 + 𝜇)

(𝛾 + 𝜇)
− 𝜆

]
 
 
 
 

 

                                  𝜆5 =
𝑎𝛾𝛽𝑆 − (𝛾 + 𝜇)(𝑟 + 𝛿 + 𝜇)

(𝛾 + 𝜇)
                                                                                       (13) 

                                   𝜆6 =
𝑏𝛾𝛽𝑆 − (𝛾 + 𝜇)(𝑞 + 𝛿 + 𝜇)

(𝛾 + 𝜇)
                                                                                      (14) 

From the basic reproduction number 𝑅0 in eqn (6) 

|𝑅0| =
[𝑎𝛾𝛽𝑆(𝑞 + 𝛿 + 𝜇) + 𝑏𝛾𝛽𝑆(𝑟 + 𝛿 + 𝜇)]

(𝛾 + 𝜇)(𝑟 + 𝛿 + 𝜇)(𝑞 + 𝛿 + 𝜇)
 

𝑅0 =
𝑎𝛾𝛽𝑆

(𝛾 + 𝜇)(𝑟 + 𝛿 + 𝜇)
+

𝑏𝛾𝛽𝑆

(𝛾 + 𝜇)(𝑞 + 𝛿 + 𝜇)
 

𝑅0 = 𝑅0𝐼1 + 𝑅0𝐼2                                                                        (15) 

If, 

 

𝑅0𝐼1 =
𝑎𝛾𝛽𝑆

(𝛾+𝜇)(𝑟+𝛿+𝜇)
                    (16) 

Then 

𝜆5 ≤ −(𝑟 + 𝛿 + 𝜇)[1 − 𝑅0𝐼1]                                                           (17) 

Also if,  

                                                                                 𝑅0𝐼2 =
𝑏𝛾𝛽𝑆

(𝛾+𝜇)(𝑞+𝛿+𝜇)
                         (18) 

Then 

𝜆6 ≤ −(𝑞 + 𝛿 + 𝜇)[1 − 𝑅0𝐼2]                                                          (19) 

 

Global Stability of Disease-Free Equilibrium (D F E) 

The positive equilibrium point of the model in eqn (1) is globally asymptotically stable if 𝑅0 <  1 

Proof: 

To establish the global stability of this equilibriums 𝐸0, we construct the following Lyapunov function following the 

method of Lyapunov function.  
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𝐺(𝑆, 𝐸, 𝐼1, 𝐼2,𝑇, 𝑅) = (𝑆 − 𝑆
0 − 𝑆0𝑙𝑜𝑔

𝑆0

𝑆
) + (𝐸 − 𝐸0 − 𝐸0𝑙𝑜𝑔

𝐸0

𝐸
) + (𝐼1 − 𝐼1

0 − 𝐼1
0𝑙𝑜𝑔

𝐼1
0

𝐼1
) + (𝐼2 − 𝐼2

0 −

𝐼2
0𝑙𝑜𝑔

𝐼2
0

𝐼2
) + (𝑇 − 𝑇0 − 𝑇0𝑙𝑜𝑔

𝑇0

𝑇
) + (𝑅 − 𝑅0 − 𝑅0𝑙𝑜𝑔

𝑅0

𝑅
)                                                                                    (20) 

 

By direct calculation and solving for the derivative of 𝐺 along the system path of the model (1) we obtain,  

𝑑𝐺

𝑑𝑡
= (

𝑆 − 𝑆0

𝑆
)
𝑑𝑆

𝑑𝑡
+ (

𝐸 − 𝐸0

𝐸
)
𝑑𝐸

𝑑𝑡
+ (

𝐼1 − 𝐼1
0

𝐼1
)
𝑑𝐼1
𝑑𝑡

+ (
𝐼2 − 𝐼2

0

𝐼2
)
𝑑𝐼2
𝑑𝑡

+ (
𝑇 − 𝑇0

𝑇
)
𝑑𝑇

𝑑𝑡
+ (

𝑅 − 𝑅0

𝑅
)
𝑑𝑇

𝑑𝑡
    (21)     

 

So, by expanding 𝑒𝑞𝑛 (1) which involve representing the positive and negative terms with X and Y respectively we 

have: 

𝑑𝐺

𝑑𝑡
= 𝑋 − 𝑌 

𝑋 = (1 −
𝑆0

𝑆
) (Λ + ρR) + (1 −

𝐸0

𝐸
) (βS(𝐼1 + 𝐼2)) + (1 −

𝐼1
0

𝐼1
) 𝑎𝛾𝐸 + (1 −

𝐼2
0

𝐼2
) 𝑏𝛾𝐸 + (1 −

𝑇0

𝑇
) (𝑟𝐼1 + 𝑞𝐼2) +

(1 −
𝑅0

𝑅
) (𝛾(1 − 𝑎 − 𝑏)𝐸 + 𝜂𝑇)              (22) 

Similarly, 

𝑌 =
(𝑆−𝑆0)

2

𝑆
(βS(𝐼1 + 𝐼2) + 𝜇) +

(𝐸−𝐸0)
2

𝐸
(γ + 𝜇) +

(𝐼1−𝐼1
0)
2

𝐼1
(r + δ + 𝜇) +

(𝐼2−𝐼2
0)
2

𝐼2
(q + δ + 𝜇) +

(𝑇−𝑇0)
2

𝑇
(η + δ +

𝜇) +
(𝑅−𝑅0)

2

𝑅
(ρ + 𝜇)                                                                                                                                                                (23) 

 

If 𝑋 < 𝑌, then 
𝑑𝐺

𝑑𝑡
 will be negative definite along the system (solution) path. So, it means that only at Tuberculosis 

Bacteria free system (𝐸𝑜) would 
𝑑𝐺

𝑑𝑡
≤ 0. This indicate that the system is globally stable at the tuberculosis bacteria 

disease free system. 

Existence of Endemic Equilibrium Point 

The presence of endemic equilibrium point refers to the process of stable solution in the model where the 

tuberculosis bacteria is positively present in the population. These equilibrium point represent the stable disease 

state where the number of infected individuals and other compartment reaches a steady state. These equilibrium 

point represent the stable solution of model where the disease persist over time. Moreso, it provides an important 

clue about the long-term dynamics of the tuberculosis disease in the population. 

     The endemic equilibrium point is defined as (𝑆∗(𝑡), 0, 0, 0, 0, 0) which satisfy 

 (𝑆′ = 𝐸′ = 𝐼1
′ = 𝐼2

′ = 𝑇 = 𝑅 = 0) 
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Λ + 𝜌𝑅 − (𝛽(𝐼1 + 𝐼2) + 𝜇)𝑆 = 0
 

𝛽𝑆(𝐼1 + 𝐼2) − (𝛾 + 𝜇)𝐸 = 0       
 

𝑎𝛾𝐸 − (𝑟 + 𝛿 + 𝜇)𝐼1 = 0             
 

𝑏𝛾𝐸 − (𝑞 + 𝛿 + 𝜇)𝐼2   = 0           
 

 𝑟𝐼1 + 𝑞𝐼2 − (𝜂 + 𝛿 + 𝜇)𝑇 = 0  
 

           𝛾(1 − 𝑎 − 𝑏)𝐸 + 𝜂𝑇 − (𝜌 + 𝜇)𝑅 = 0 
 }

 
 
 
 
 

 
 
 
 
 

                                                                                                           (24) 

By further simplification we have 

𝑆 =
Λ + ρR

𝛽𝑆(𝐼1 + 𝐼2) + 𝜇
                                                                                                                                                     (25) 

     𝐸 =
𝛽𝑆(𝐼1 + 𝐼2)

𝛾 + 𝜇
                                                                                                                                                           (26)    

𝐼1 =
𝑎𝛾𝐸

𝑟 + 𝛿 + 𝜇
                                                                                                                                                               (27) 

𝐼2 =
𝑏𝛾𝐸

𝑞 + 𝛿 + 𝜇
                                                                                                                                                             (28) 

𝑇 =
𝑟𝐼1 + 𝑞𝐼2
𝜂 + 𝛿 + 𝜇

                                                                                                                                                              (29) 

𝑅 =
 𝛾(1 − 𝑎 − 𝑏)𝐸 + 𝜂𝑇

𝜌 + 𝜇
                                                                                                                                         (30) 

Sensitivity Analysis of the Model  

We verify different parameters within their respective plausible ranges, and the model response is observed. This 

variation can be done individually or collectively for multiple parameters simultaneously. As a result, we analyze 

the reproduction number of the model where we look at the variation and the impact of each parameter’s value on 

the reproduction number.  

 

The normalized forward-sensitivity index of the variable 𝑈, which is dependent on a parameter 𝑉 is as follows:  

𝑋𝑉
𝑈 =

𝜕𝑈

𝜕𝑉
∙
𝑉

𝑈
                                                                                                                                                              (31) 

However, with regard to this model we will calculate the sensitivity indices for the fundamental reproduction 

number 𝑅0 in (𝟔),  

𝑅0 =
[𝑎𝛾𝛽𝑆(𝑞 + 𝛿 + 𝜇) + 𝑏𝛾𝛽𝑆(𝑟 + 𝛿 + 𝜇)]

(𝛾 + 𝜇)(𝑟 + 𝛿 + 𝜇)(𝑞 + 𝛿 + 𝜇)
 =

[𝑎𝛾𝛽Λ(𝑞 + 𝛿 + 𝜇) + 𝑏𝛾𝛽Λ(𝑟 + 𝛿 + 𝜇)]

𝜇(𝛾 + 𝜇)(𝑟 + 𝛿 + 𝜇)(𝑞 + 𝛿 + 𝜇)
                  (32) 

The normalized forward sensitivity index of B is given by: 

𝑋𝛽
𝑅0 =

𝜕𝑅0
𝜕𝛽

∙
𝛽

𝑅0
                                                                                                                                                          (33) 
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Parameter Value Source 

𝑎 0.0333 Assumed 

𝑏 0.015 Assumed 

𝛾 0.11 Alfiniyah et al., 2024. 

𝛽 0.369 Assumed 

Λ 0.7 Assumed 

𝑞 0.035 Assumed 

𝛿 0.0240 Ogbaji et al., 2019. 

𝜇 0.0124 Ogbaji et al., 2019. 

𝑟 0.06 Alfiniyah et al., 2024. 

 

Table 3: Basic reproduction numbers parameters and values 

𝑅0 =
[𝑎𝛾𝛽Λ(𝑞 + 𝛿 + 𝜇) + 𝑏𝛾𝛽Λ(𝑟 + 𝛿 + 𝜇)]

𝜇(𝛾 + 𝜇)(𝑟 + 𝛿 + 𝜇)(𝑞 + 𝛿 + 𝜇)
= 1.88 

The normalized forward sensitivity index approach was used to find the sensitivity index of all parameters in the 

reproduction number. 

Sensitivity index of 𝒂 

The normalized forward sensitivity index of 𝒂, is given by:  

𝑋𝑎
𝑅0 =

𝜕𝑅0
𝜕𝑎

∙
𝑎

𝑅0
 = + 2.953                                                                                                                (34) 

Sensitivity index of 𝒃 

The normalized forward sensitivity index of 𝒃, is given by:  

𝑋𝑏
𝑅0 =

𝜕𝑅0
𝜕𝑏

∙
𝑏

𝑅0
 = + 1.3889                                                                                                               (35) 

Sensitivity index of 𝜸 

The normalized forward sensitivity index of 𝜸, is given by:  

𝑋𝛾
𝑅0 =

𝜕𝑅0
𝜕𝛾

∙
𝛾

𝑅0
= + 1                                                                                                                                                (36) 

Sensitivity index of 𝜷 

The normalized forward sensitivity index of 𝜷, is given by:  

𝑋𝛽
𝑅0 =

𝜕𝑅0
𝜕𝛽

∙
𝛽

𝑅0
= + 1                                                                                                                                                 (37) 

Sensitivity index of 𝚲 

The normalized forward sensitivity index of 𝚲, is given by:  

  𝑋Λ
𝑅0 =

𝜕𝑅0

𝜕Λ
∙
Λ

𝑅0
 = + 1                                                                                                                                                 (38) 

Sensitivity index of 𝒒 

The normalized forward sensitivity index of 𝒒, is given by:  
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𝑋𝑞
𝑅0 =

𝜕𝑅0
𝜕𝑞

∙
𝑞

𝑅0
 = + 8.215                                                                                                                                         (39) 

Sensitivity index of 𝜹 

The normalized forward sensitivity index of 𝜹, is given by:  

𝑋𝛿
𝑅0 =

𝜕𝑅0
𝜕𝛿

∙
𝛿

𝑅0
= − 0.2819                                                                                                                   (40) 

Sensitivity index of 𝝁 

The normalized forward sensitivity index of 𝝁, is given by:       

𝑋𝜇
𝑅0 =

𝜕𝑅0

𝜕𝜇
∙
𝜇

𝑅0
= − 0.00000000142                                                                                                                     (41)  

Sensitivity index of 𝒓 

The normalized forward sensitivity index of 𝒓, is given by:  

𝑋𝜇
𝑅0 =

𝜕𝑅0
𝜕𝜇

∙
𝜇

𝑅0
= − 0.38703                                                                                                                                (42) 

The sensitivity indices of all other parameters in the context of the fundamental reproduction number are given 

below: 

Table 4: Basic Reproduction number parameters and sensitivity index values 

Parameter Value Source Index Sign Sensitivity Index Value 

𝑎 0.0333 Assumed + 2.953 

𝑏 0.015 Assumed + 1.3889 

𝛾 0.11 Alfiniyah et al., 2024. + 1 

𝛽 0.369 Assumed + 1 

Λ 0.7 Assumed + 1 

𝑞 0.035 Assumed + 8.215 

𝛿 0.0240 Ogbaji et al., 2019. − 0.2819 

𝜇 0.0124 Ogbaji et al., 2019. − 0.00000000142 

𝑟 0.06 Alfiniyah et al., 2024. − 0.38703 

Table 4: Sensitivity indices with the basic reproduction number parameter value 

Tuberculosis Optimal Control Analysis 

Let 

𝐾1 =  Awareness based Intervention (ABI) 

𝐾2 =  Conducting Tuberculosis Examination 

𝐾3 =  Provision of Essential Treatment 

𝐾4 =  Tuberculosis diagnosis with Treatment 

      

𝜌 = Probability of Infection  
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From eqn (1) 

 

𝑑𝑆

𝑑𝑡
= Λ + 𝜌𝑅 − (𝛽(𝐼1 + 𝐼2) + 𝜇)𝑆                                                 

 

      
𝑑𝐸

𝑑𝑡
= 𝛽𝑆(𝐼1 + 𝐼2) − 𝜇𝐸 −  𝑎𝛾𝐸 − 𝑏𝛾𝐸 − 𝛾(1 − 𝑎 − 𝑏)𝐸              

 
𝑑𝐼1
𝑑𝑡

= 𝑎𝛾𝐸 − (𝑟 + 𝛿 + 𝜇)𝐼1                                                               
 

 
𝑑𝐼2
𝑑𝑡

= 𝑏𝛾𝐸 − (𝑟 + 𝛿 + 𝜇)𝐼2                                                               
 

 
𝑑𝑇

𝑑𝑡
= 𝑟𝐼1 + 𝑞𝐼2 − (𝜂 + 𝛿 + 𝜇)𝑇                                                      

 

           
 𝑑𝑅

𝑑𝑡
= 𝛾(1 − 𝑎 − 𝑏)𝐸 + 𝜂𝑇 − (𝜌 + 𝜇)𝑅                                                   

 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

                                                          (1) 

By introducing the control strategies 

𝑑𝑆

𝑑𝑡
= Λ + 𝜌(1 − 𝐾1)𝑅 − 𝜇𝑆 − 𝛽(𝐼1 + 𝐼2)𝜎 (1 − 𝐾1)𝑆                                                                                

 
𝑑𝐸

𝑑𝑡
= 𝛽(𝐼1 + 𝐼2)𝜎 (1 − 𝐾1)𝑆 − 𝜇𝐸 −  𝑎𝛾(1 − 𝐾2)𝐸 − 𝑏𝛾(1 − 𝐾2)𝐸 − 𝛾(1 − 𝑎 − 𝑏)(1 − 𝐾2)𝐸 

 
𝑑𝐼1
𝑑𝑡

= 𝑎𝛾(1 − 𝐾2)𝐸 − (𝑟 + 𝛿 + 𝜇)𝐼1 − 𝐾3𝐼1                                                                                                
 

𝑑𝐼2
𝑑𝑡

= 𝑏𝛾(1 − 𝐾2)𝐸 − (𝑞 + 𝛿 + 𝜇)𝐼2 − 𝐾3𝐼2                                                                                              
 

 
𝑑𝑇

𝑑𝑡
= 𝑟𝐼1 + 𝐾3𝐼1 + 𝑞𝐼2 + 𝐾3𝐼1 − (𝜂 + 𝛿 + 𝜇)𝑇 −𝐾4𝑇                                                                               

 
 𝑑𝑅

𝑑𝑡
= 𝛾(1 − 𝑎 − 𝑏)(1 − 𝐾2)𝐸+𝐾4𝑇 + 𝜂𝑇 − 𝜇𝑅 − 𝜌(1 − 𝐾1)𝑅                                                             

 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

           (43) 

Mathematical analysis of the model with optimal control strategies  

By using pontryagin’s maximum principle, an objective functional is formulated in presenting the existence of the 

optimal control measures. The objective function (G) establishes the most effective of the strategies which were 

presented. These measures are analytically presented to be feasible in minimizing the transmission of tuberculosis in 

a finite time interval [𝑂, 𝑇] with 𝐾 = {(𝐾1, 𝐾2, 𝐾3, 𝐾4)𝜖𝐾}Lebesgue measurable on [0,1] , 0 ≤ 𝐾𝑖(𝑡) ≤
1 𝜖 [𝑂, 𝑇], 𝑖 = 1,2,3,4. 
      

The objective functional (𝐺) is defined by:  

𝐺((𝐾1, 𝐾2, 𝐾3, 𝐾4)) = ∫ (𝑀1𝐸 +𝑀2𝐼1 +𝑀3𝐼2 +
1

2
(𝑊1𝐾1

2 +𝑊2𝐾2
2+𝑊3𝐾3

2 +𝑊4𝐾4
2))𝑑𝑡

𝑇

0
                                 (44) 

Which is subjected to the system of 𝑒𝑞𝑛(1) with: 

𝑆(0) > 0, 𝐸(0) > 0, 𝐼1(0) > 0, 𝐼2(0) > 0, 𝑇(0) = 0, 𝑅(0).  

Where 𝐾1 is Awareness based Intervention, 𝐾2 is conducting Tuberculosis examination, 𝐾3 is the provision of 

essential treatment and 𝐾4 is conducting tuberculosis examination with the provision of essential.  Moreso, 𝑊1, 𝑊2, 
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𝑊3 are weight contanst corresponding to each control, while 𝑀1, 𝑀2, 𝑀3 are weight constants corresponding to the 

minimized population 𝐸, 𝐼1 and 𝐼2. Optimal control timeout is at an interval 0 ≤ 𝑡 ≤ 𝑇. 

To achieve the objective of the control problem, we implement the function such that: 

𝐺(𝐾1
∗(𝑡), 𝐾2

∗(𝑡), 𝐾3
∗(𝑡), 𝐾4

∗(𝑡)) = 𝑚𝑖𝑛{𝐺(𝐾1, 𝐾2, 𝐾3, 𝐾4), 𝐾1, 𝐾2, 𝐾3, 𝐾4 𝜖 𝐾}        (45) 

 

Existence of an optimal control 

Theorem 2: If we consider the objective functional 𝐺(𝐾1, 𝐾2, 𝐾3, 𝐾4) in eqn (44) where the set control 𝐾 is 

measureable with the initial condition which is given at 𝑡 = 0. Then there exists an optimal control. 

 𝐾∗ = (𝐾1
∗(𝑡), 𝐾2

∗(𝑡), 𝐾3
∗(𝑡), 𝐾4

∗(𝑡)).                                                                                                                                       (46) 

Such that: 

𝐺(𝐾1
∗(𝑡), 𝐾2

∗(𝑡), 𝐾3
∗(𝑡), 𝐾4

∗(𝑡)) = 𝑚𝑖𝑛{𝐺(𝐾1, 𝐾2, 𝐾3, 𝐾4), 𝐾1, 𝐾2, 𝐾3, 𝐾4 𝜖 𝐾} 

Proof: Using the convexity of the integral of G to optimize control (𝐾1, 𝐾2, 𝐾3, 𝐾4) the positive region of the model, 

boundedness of the solution Lipchitz property of the system which contain the state variables (𝑆, 𝐸, 𝐼1, 𝐼2, 𝑇, 𝑅), thus 

the optimal control of the model exists.  

We need to establish the Hamiltonian (M) and Langrangian (L) for the control problem. 

The Langrangian can be written as: 

𝐿 = 𝑀1𝐸 +𝑀2𝐼1 +𝑀3𝐼2 +
1

2
(𝑊1𝐾1

2 +𝑊2𝐾2
2+𝑊3𝐾3

2 +𝑊4𝐾4
2)                                                                                    (47) 

And the Hamiltonian function for the system is:  

𝐻 = 𝑀1𝐸 +𝑀2𝐼1 +𝑀3𝐼2 +
1

2
(𝑊1𝐾1

2 +𝑊2𝐾2
2+𝑊3𝐾3

2 +𝑊4𝐾4
2) + 𝛼𝐿𝑆[Λ + 𝜌(1 − 𝐾1)𝑅 − 𝜇𝑆 − 𝛽(𝐼1 + 𝐼2)𝜎 (1 −

𝐾1)𝑆] + 𝛼𝐿𝐸[𝛽(𝐼1 + 𝐼2)𝜎 (1 − 𝐾1)𝑆 − 𝜇𝐸 −  𝑎𝛾(1 − 𝐾2)𝐸 − 𝑏𝛾(1 − 𝐾2)𝐸 − 𝛾(1 − 𝑎 − 𝑏)(1 − 𝐾2)𝐸] +
𝛼𝐿𝐼1[𝑎𝛾(1 − 𝐾2)𝐸 − (𝑟 + 𝛿 + 𝜇)𝐼1 − 𝐾3𝐼1 ] + 𝛼𝐿𝐼2[𝑏𝛾(1 − 𝐾2)𝐸 − (𝑞 + 𝛿 + 𝜇)𝐼2 − 𝐾3𝐼2] + 𝛼𝐿𝑇[𝑟𝐼1 + 𝐾3𝐼1 +
𝑞𝐼2 + 𝐾3𝐼2 − (𝜂 + 𝛿 + 𝜇)𝑇 −𝐾4𝑇] + 𝛼𝐿𝑅[𝛾(1 − 𝑎 − 𝑏)(1 − 𝐾2)𝐸+𝐾4𝑇 + 𝜂𝑇 − 𝜇𝑅 − 𝜌(1 − 𝐾1)𝑅]               (48) 

 

Where, 𝛼𝐿𝑖, 𝑖 ∈  (𝑆, 𝐸, 𝐼1, 𝐼2, 𝑇, 𝑅)  are the disjointed variables. We need to apply the required conditions to the 

Hamiltonian in the above theorem. 

Theorem 3: By considering an optimal control 𝐾∗ = (𝐾1
∗(𝑡), 𝐾2

∗(𝑡), 𝐾3
∗(𝑡), 𝐾4

∗(𝑡)) and a solution 𝑍∗ =
(𝑆∗, 𝐸∗, 𝐼1

∗, 𝐼2
∗, 𝑇∗, 𝑅∗). 

The state variable in 𝐾1
∗ , 𝐾2

∗, 𝐾3
∗ and 𝐾4

∗ are obtained by solving the state equation. 

𝑥̇ =
𝜕𝐺

𝜕𝑓
                                                                                         (49) 

While the Lagrange multiplier for the controls 𝐾1
∗ , 𝐾2

∗, 𝐾3
∗ and 𝐾4

∗ are obtained by solving the lagrange equation. 

𝑥̇ = −
𝜕𝐺

𝜕𝑥
                                                                                    (50) 

In which the state variable and the Lagrange multiplier will be substituted. The optimal solution to the mathematical 

model of tuberculosis will be determined by the substitution of the control in to the state equation. 

Thus, the controller forms of 𝐾1
∗ , 𝐾2

∗, 𝐾3
∗ and 𝐾4

∗ depends on the state and costate variables. 

The state equations are given as follows: 
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𝑑𝑆

𝑑𝑡
=
𝜕𝐺

𝜕𝑓1
= Λ + 𝜌(1 − 𝐾1)𝑅 − 𝜇𝑆 − 𝛽(𝐼1 + 𝐼2)𝜎 (1 − 𝐾1)𝑆                            

 
𝑑𝐸

𝑑𝑡
=
𝜕𝐺

𝜕𝑓2
= 𝛽(𝐼1 + 𝐼2)𝜎 (1 − 𝐾1)𝑆 − 𝜇𝐸 −  𝑎𝛾(1 − 𝐾2)𝐸 − 𝑏𝛾(1 − 𝐾2)𝐸

 −𝛾(1 − 𝑎 − 𝑏)(1 − 𝐾2)𝐸        
 

𝑑𝐼1
𝑑𝑡

=
𝜕𝐺

𝜕𝑓3
= 𝑎𝛾(1 − 𝐾2)𝐸 − (𝑟 + 𝛿 + 𝜇)𝐼1 − 𝐾3𝐼1                                              

 
𝑑𝐼2
𝑑𝑡

=
𝜕𝐺

𝜕𝑓4
= 𝑏𝛾(1 − 𝐾2)𝐸 − (𝑞 + 𝛿 + 𝜇)𝐼2 − 𝐾3𝐼2                                            

 

 
𝑑𝑇

𝑑𝑡
=
𝜕𝐺

𝜕𝑓5
= 𝑟𝐼1 + 𝐾3𝐼1 + 𝑞𝐼2 + 𝐾3𝐼1 − (𝜂 + 𝛿 + 𝜇)𝑇 −𝐾4𝑇                             

 

           
 𝑑𝑅

𝑑𝑡
=
𝜕𝐺

𝜕𝑓6
= 𝛾(1 − 𝑎 − 𝑏)(1 − 𝐾2)𝐸+𝐾4𝑇 + 𝜂𝑇 − 𝜇𝑅 − 𝜌(1 − 𝐾1)𝑅                       

 

                         

}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

           (51) 

However, the costate equations are given below: 

𝑑𝛼𝐿𝑆

𝑑𝑡
= −

𝜕𝐺

𝜕𝑆
= −[𝛼𝐿𝑆[−𝛽(𝐼1 + 𝐼2)𝜎 (1 − 𝐾1)] − 𝜇] + 𝛼𝐿𝐸[𝛽(𝐼1 + 𝐼2)𝜎 (1 − 𝐾1) ]] 

 = 𝛼𝐿𝑆[𝛽(𝐼1 + 𝐼2)𝜎 (1 − 𝐾1) − 𝜇] − 𝛼𝐿𝐸[𝛽(𝐼1 + 𝐼2)𝜎 (1 − 𝐾1) ]                               (52)  

𝑑𝛼𝐿𝐸

𝑑𝑡
= −

𝜕𝐺

𝜕𝐸
= −[𝑀1 + 𝛼𝐿𝐸[−𝑎𝛾(1 − 𝐾2) − 𝑏𝛾(1 − 𝐾2)  − 𝛾(1 − 𝑎 − 𝑏)(1 − 𝐾2) − 𝜇] + 𝛼𝐿𝐼1[𝑎𝛾(1 − 𝐾2)]

+ 𝛼𝐿𝐼2[𝑏𝛾(1 − 𝐾2)] + 𝛼𝐿𝑅[𝛾(1 − 𝑎 − 𝑏)(1 − 𝐾2)]] 

= −𝑀1 + 𝛼𝐿𝐸[𝑎𝛾(1 − 𝐾2) + 𝑏𝛾(1 − 𝐾2) + 𝛾(1 − 𝑎 − 𝑏)(1 − 𝐾2) + 𝜇] − 𝛼𝐿𝐼1[𝑎𝛾(1 − 𝐾2)] −
                       𝛼𝐿𝐼2[𝑏𝛾(1 − 𝐾2)] − 𝛼𝐿𝑅[𝛾(1 − 𝑎 − 𝑏)(1 − 𝐾2)]                                                                      (53) 

𝑑𝛼𝐿𝐼1
𝑑𝑡

= −
𝜕𝐺

𝜕𝐼1
= −[𝑀2 + 𝛼𝐿𝑆[−𝛽𝜎 (1 − 𝐾1)𝑆]+𝛼𝐿𝐸[𝛽𝜎 (1 − 𝐾1)𝑆 ] + 𝛼𝐿𝐼1[−(𝑟 + 𝛿 + 𝜇)𝐼1 − 𝐾3 ]

+ 𝛼𝐿𝑇[𝑟 + 𝐾3]] 

= −𝑀2 + 𝛼𝐿𝑆[𝛽𝜎 (1 − 𝐾1)𝑆]−𝛼𝐿𝐸[𝛽𝜎 (1 − 𝐾1)𝑆 ] + 𝛼𝐿𝐼1[(𝑟 + 𝛿 + 𝜇) + 𝐾3 ] −
                          𝛼𝐿𝑇[𝑟 + 𝐾3]                                                                                                                        (54) 

𝑑𝛼𝐿𝐼2

𝑑𝑡
= −

𝜕𝐺

𝜕𝐼2
= −[𝑀3 + 𝛼𝐿𝑆[−𝛽𝜎 (1 − 𝐾1)𝑆] + 𝛼𝐿𝐸[𝛽𝜎 (1 − 𝐾1)𝑆 ] + 𝛼𝐿𝐼2[−(𝑞 + 𝛿 + 𝜇)𝐼2 − 𝐾3] +

𝛼𝐿𝑇[𝑞 + 𝐾3]]  

= −𝑀3+𝛼𝐿𝑆[𝛽𝜎 (1 − 𝐾1)𝑆] − 𝛼𝐿𝐸[𝛽𝜎 (1 − 𝐾1)𝑆 ] + 𝛼𝐿𝐼2[(𝑞 + 𝛿 + 𝜇)𝐼2 + 𝐾3] − 𝛼𝐿𝑇[𝑞 + 𝐾3]         (55) 

𝑑𝛼𝐿𝑇

𝑑𝑡
= −

𝜕𝐺

𝜕𝑇
= −[𝛼𝐿𝑇[−(𝜂 + 𝛿 + 𝜇) −𝐾4] + 𝛼𝐿𝑅[𝐾4 + 𝜂]] 

= 𝛼𝐿𝑇[(𝜂 + 𝛿 + 𝜇) −𝐾4] − 𝛼𝐿𝑅[𝐾4 + 𝜂]                                            (56) 

𝑑𝛼𝐿𝑅

𝑑𝑡
= −

𝜕𝐺

𝜕𝑅
= −[𝛼𝐿𝑆[𝜌(1 − 𝐾1)] + 𝛼𝐿𝑅[−𝜌(1 − 𝐾1) − 𝜇]]         (57) 

 

The optimal conditions are obtained when the Hamiltonian function satisfies the following stationary conditions: 
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𝜕𝐺

𝜕𝐾1
= 0,

𝜕𝐺

𝜕𝐾2
= 0,

𝜕𝐺

𝜕𝐾3
= 0,

𝜕𝐺

𝜕𝐾4
= 0,            (58) 

So, differentiating the control parameters 𝐾1, 𝐾2, 𝐾3  and 𝐾4. 

We obtain. 

𝑑𝐾1
𝑑𝑡

= 𝑊1𝐾1 + 𝛼𝐿𝑆[−𝜌𝑅 + 𝛽(𝐼1 + 𝐼2)𝜎 𝑆] − 𝛼𝐿𝐸[𝛽(𝐼1 + 𝐼2)𝜎𝑆] + 𝛼𝐿𝑅[𝜌𝑅] = 0 

𝐾1 =
𝛼𝐿𝑆[𝜌𝑅−𝛽(𝐼1+𝐼2)𝜎 𝑆]+𝛼𝐿𝐸[𝛽(𝐼1+𝐼2)𝜎𝑆]−𝛼𝐿𝑅[𝜌𝑅]

𝑊1
                                                                     (59) 

𝑑𝐾2
𝑑𝑡

= 𝑊2𝐾2 + 𝛼𝐿𝐸[𝑎𝛾𝐸 + 𝑏𝛾𝐸 + 𝛾(1 − 𝑎 − 𝑏)𝐸]−𝛼𝐿𝐼1[𝑎𝛾𝐸 ]−𝛼𝐿𝐼2[𝑏𝛾𝐸 ] − 𝛼𝐿𝑅[𝛾(1 − 𝑎 − 𝑏)𝐸] = 0 

𝐾2 =
−𝛼𝐿𝐸[𝑎𝛾𝐸+𝑏𝛾𝐸+𝛾(1−𝑎−𝑏)𝐸]+𝛼𝐿𝐼1[𝑎𝛾𝐸 ]+𝛼𝐿𝐼2[𝑏𝛾𝐸 ]+𝛼𝐿𝑅[𝛾(1−𝑎−𝑏)𝐸]

𝑊2
                                  (60) 

𝑑𝐾3
𝑑𝑡

= 𝑊3𝐾3 + 𝛼𝐿𝐼1[−𝐼1 ]+𝛼𝐿𝐼2[−𝐼2] + 𝛼𝐿𝑇[𝐼1 + 𝐼2] 

𝐾3 =
𝛼𝐿𝐼1[𝐼1 ]+𝛼𝐿𝐼2[𝐼2]−𝛼𝐿𝑇[𝐼1+𝐼2]

𝑊3
                                                                                                  (61) 

𝑑𝐾4
𝑑𝑡

= 𝑊4𝐾4 + 𝛼𝐿𝑇[−𝑇 ] + 𝛼𝐿𝑅[𝑇] = 0 

𝐾4 =
𝛼𝐿𝑇[𝑇 ]−𝛼𝐿𝑅[𝑇]

𝑊4
                                                                                                                        (62) 

 

This provides the required optimization measures and putting boundary conditions of each of this control gives: 

𝐾1
∗ = min{1,𝑚𝑎𝑥{0, 𝐶1}} 

𝐾2
∗ = min{1,𝑚𝑎𝑥{0, 𝐶2}} 

𝐾3
∗ = min{1,𝑚𝑎𝑥{0, 𝐶3}} 

𝐾4
∗ = min{1,𝑚𝑎𝑥{0, 𝐶4}} 

𝐾1 =
𝛼𝐿𝑆[𝜌𝑅 − 𝛽(𝐼1 + 𝐼2)𝜎 𝑆] + 𝛼𝐿𝐸[𝛽(𝐼1 + 𝐼2)𝜎𝑆] − 𝛼𝐿𝑅[𝜌𝑅]

𝑊1

 

𝐾2 =
−𝛼𝐿𝐸[𝑎𝛾𝐸 + 𝑏𝛾𝐸 + 𝛾(1 − 𝑎 − 𝑏)𝐸]+𝛼𝐿𝐼1[𝑎𝛾𝐸 ]+𝛼𝐿𝐼2[𝑏𝛾𝐸 ] + 𝛼𝐿𝑅[𝛾(1 − 𝑎 − 𝑏)𝐸]

𝑊2

 

𝐾3 =
𝛼𝐿𝐼1[𝐼1 ]+𝛼𝐿𝐼2[𝐼2] − 𝛼𝐿𝑇[𝐼1 + 𝐼2]

𝑊3

 

𝐾4 =
𝛼𝐿𝑇[𝑇 ] − 𝛼𝐿𝑅[𝑇]

𝑊4

 

Numerical Solution 

Finite Difference Scheme (FSD) is used to obtain the numerical solution of the set of differential equations 

presented in 𝒆𝒒𝒏 𝟏, in order to achieve numerical values.   
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𝑑𝑆

𝑑𝑡
= Λ + 𝜌𝑅 − (𝛽(𝐼1 + 𝐼2) + 𝜇)𝑆

 
𝑑𝐸

𝑑𝑡
= 𝛽𝑆(𝐼1 + 𝐼2) − (𝛾 + 𝜇)𝐸         

 
𝑑𝐼1
𝑑𝑡

= 𝑎𝛾𝐸 − (𝑟 + 𝛿 + 𝜇)𝐼1              
 

𝑑𝐼2
𝑑𝑡

= 𝑏𝛾𝐸 − (𝑟 + 𝛿 + 𝜇)𝐼2              
 

 
𝑑𝑇

𝑑𝑡
= 𝑟𝐼1 + 𝑞𝐼2 − (𝜂 + 𝛿 + 𝜇)𝑇    

 

           
 𝑑𝑅

𝑑𝑡
= 𝛾(1 − 𝑎 − 𝑏)𝐸 + 𝜂𝑇 − (𝜌 + 𝜇)𝑅 

 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

                                                                                                                    (63)  

𝑆(𝑡) ≥ 0, 𝐸(𝑡) ≥ 0, 𝐼1(𝑡) ≥ 0, 𝐼2(𝑡) ≥ 0, 𝑇(𝑡) ≥ 0, 𝑅(𝑡) ≥ 0 

By using the finite difference scheme as stated earlier 𝒆𝒒𝒏 𝟏 can be decomposed as; 

 

  

𝑆(𝐽+1)−𝑆𝐽
ℎ

= Λ + 𝜌𝑅𝑘 − (𝛽(𝐼1 + 𝐼2) + 𝜇)𝑆𝑘
 

𝐸(𝐽+1)−𝐸𝐽
ℎ

= 𝛽𝑆𝑘(𝐼1𝑘 + 𝐼2𝑘) − (𝛾 + 𝜇)𝐸𝑘          
 

𝐼1(𝐽+1)−𝐼1𝐽
ℎ

= 𝑎𝛾𝐸𝑘 − (𝑟 + 𝛿 + 𝜇)𝐼1𝑘              
 

𝐼2(𝐽+1)−𝐼2𝐽
ℎ

= 𝑏𝛾𝐸𝑘 − (𝑟 + 𝛿 + 𝜇)𝐼2𝑘             
 

 
𝑇(𝐽+1)−𝑇𝐽

ℎ
= 𝑟𝐼1𝑘 + 𝑞𝐼2𝑘 − (𝜂 + 𝛿 + 𝜇)𝑇𝑘     

 

           
𝑅(𝐽+1)−𝑅𝐽

ℎ
= 𝛾(1 − 𝑎 − 𝑏)𝐸𝑘 + 𝜂𝑇𝑘 − (𝜌 + 𝜇)𝑅𝑘 

 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

                                                                                             (64)  

  

Which can alternatively be written as; 
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𝑆(𝐽+1) = 𝑆𝐽 + ℎ ( Λ + 𝜌𝑅𝑘 − (𝛽(𝐼1 + 𝐼2) + 𝜇)𝑆𝑘 ) 

 
𝐸(𝐽+1) = 𝐸𝐽 + ℎ ( 𝛽𝑆𝑘(𝐼1𝑘 + 𝐼2𝑘) − (𝛾 + 𝜇)𝐸𝑘  )         

 
𝐼1(𝐽+1) = 𝐼1𝐽 + ℎ (𝑎𝛾𝐸𝑘 − (𝑟 + 𝛿 + 𝜇)𝐼1𝑘 )              

 
𝐼2(𝐽+1) = 𝐼2𝐽 + ℎ ( 𝑏𝛾𝐸𝑘 − (𝑟 + 𝛿 + 𝜇)𝐼2𝑘 )           

 
 𝑇(𝐽+1) = 𝑇𝐽 + ℎ ( 𝑟𝐼1𝑘 + 𝑞𝐼2𝑘 − (𝜂 + 𝛿 + 𝜇)𝑇𝑘  )    

 
           𝑅(𝐽+1) = 𝑇𝐽 + ℎ ( 𝛾(1 − 𝑎 − 𝑏)𝐸𝑘 + 𝜂𝑇𝑘 − (𝜌 + 𝜇)𝑅𝑘 ) 

 }
 
 
 
 
 

 
 
 
 
 

                                                                                       (65)  

In which 𝐽 = 0,1,2,3,4, … , ℎ is the step size 

Numerical Simulation 

In this section, we deploy a means to observe the propagation of the disease with respect to time and evaluating the 

effectiveness of the control strategies. The state variables’ initial conditions are as follows; 

 𝑆 = 10000, 𝐸 = 500, 𝐼1 = 2500, 𝐼2 = 2000, 𝑇 = 1500 𝑎𝑛𝑑 𝑅 = 1000 .  

 

Discussion 

 

Figure 2: Graph of Sensitivity Index values and parameters 
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In Figure 2, The parameters and the reproduction number have an inverse connection, as indicated by the negative 

sensitivity index. A positive sensitivity index, on the other hand suggests that a larger reproduction number results 

from a rise in the parameter value. This analysis aids in determining which parameter have the most impact on the 

analysis's outcome. 

Figure 3: Trajectories solution of the Tuberculosis model  

Figure 3, displays every compartment of the tuberculosis model, which are crucial for comprehending and 

examining the dynamics of the disease's transmission. Additionally, this strengthens the model's ability to explain, 

facilitates the spread of tuberculosis and assists in the decision-making process for disease prevention and control. 

Figure 4: Trajectories solution for optimizing exposed population 

Figure 4, illustrates the beneficial implications of the control measures that were put in place in the exposed 

population of the mathematical modeling of tuberculosis. These include awareness-based interventions (ABI), 

conducting tuberculosis examinations, provision of essential treatments and tuberculosis diagnosis with treatment. 

The population in the exposed compartment has significantly decreased as a result of this strategies. This decrease in 

the number of exposed humans shows how well the control measures are working to curb the bacteria's spread. 

Additionally, it shows that efforts to reduce the spread of tuberculosis bacteria have been successful. 
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Figure 5: Trajectories solution for optimizing infected with symptoms population 

Figure 5, illustrates the decline in the number of people displaying signs of a tuberculosis infection. In addition to 

demonstrating the beneficial effects of these control methods on public health, the decrease in tuberculosis infection 

within a group of individuals exhibiting symptoms also suggests the possibility of successfully preventing or 

controlling the disease outbreaks. By using control strategies such as awareness-based interventions (ABI), 

conducting tuberculosis examinations, provision of essential treatments and tuberculosis diagnosis with treatment. It 

will improve the ability to protect the populations from tuberculosis infection, which will result in symptoms and 

subsequently lower the risks of tuberculosis on human health. 

Figure 6: Trajectories solution for optimizing infected without symptoms population 

A decrease in the number of people with tuberculosis who do not exhibit symptoms is seen in Figure 6. The impact 

of these control strategies: awareness-based interventions (ABI), conducting tuberculosis examinations, provision of 

essential treatments and tuberculosis diagnosis with treatment are symbolized by the decline in tuberculosis 

infection within this group. This improve the ability to protect the populations who are infected without symptoms 

from tuberculosis infection which subsequently lowers the hazard of tuberculosis on human health. If implemented, 

the interventions will help public health authorities identify individuals who may be infectious of tuberculosis but 

for specific reasons may have not been aware. Thereby, reducing interactions with infected individuals who would 

have become informed of their present health condition may be achieved by putting control strategies like as 

awareness-based interventions (ABI), conducting tuberculosis examinations, provision of essential treatments and 
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tuberculosis diagnosis with treatment into practice. In order to minimize the number of people who are at risk to 

having tuberculosis to the minimum. 

 

Figure 7: Trajectories solution for optimizing Treated population 

The dynamic efficiency of these procedures in managing the epidemic is the positive consequence of the control 

strategies shown in Figure 7 for the dynamics of tuberculosis in treated population. When the optimal control of 

treated persons reaches a particular level, it means that a proactive treatment strategy is working. Additionally, this 

suggests that awareness-based interventions (ABI), conducting tuberculosis examinations, provision of essential 

treatments and tuberculosis diagnosis with treatment are all significantly contributing to the survival and recovery of 

the human population. The decrease in the number of people receiving treatment indicates that these control 

measures are effectively halting the bacterial spread. This is demonstrated by the fall in the human treated class after 

reaching specific thresholds. Because that illustrates awareness-based interventions (ABI), conducting tuberculosis 

examinations, provision of essential treatments and tuberculosis diagnosis with treatment all assisted to lessen the 

severity of tuberculosis infections and stop the disease from spreading. In the end, the model's dynamic nature 

emphasizes how flexible and successful these control measures are in reducing tuberculosis outbreaks. 
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Figure 8: Trajectories solution for optimizing Recovered population. 

Figure 8, shows the rise in the recovered population as a result of control measures, particularly awareness-based 

interventions (ABI), conducting tuberculosis examinations, provision of essential treatments and tuberculosis 

diagnosis with treatment. First of all, it shows how well these control measures work to stop the bacteria's spread 

and help the exposed and treated populations recover from their infections. Diagnosing tuberculosis at the right time 

using techniques such as molecular diagnostic testing, culture testing, sputum smear microscopy, chest X-rays and 

clinical examination. Alongside treatment services include anti-tuberculosis drugs, short-term, directly witnessed 

therapy, treatment monitoring and supportive health care services.  Secondly, in order to increase the odds of 

recovery and survival for both the symptomatic and asymptomatic populations, tuberculosis diagnosis with 

treatments must be prioritized. This results in a greater percentage of people moving into the recovered class, which 

is good for slowing the spread of the disease in human population. Overall, the observable rise in the recovered 

population shows how effective these control measures are in reducing the negative effects of tuberculosis on human 

health and emphasizes the significance of ongoing efforts to implement and promote the control strategies. 

 

Conclusion 

The study reveals how the four control strategies which are awareness-based interventions, conducting tuberculosis 

examinations, provision of essential treatments and tuberculosis diagnosis with treatment help to reduce the spread 

of tuberculosis. The analysis presented in the study demonstrate the beneficial effects of the control strategies in 

lowering the incidence, severity, duration and susceptibility of tuberculosis cases. Susceptibility, exposure, infection 

with or without symptoms, treatment and recovery instances of tuberculosis in humans are all decreased by the 

control strategies. Thereby, producing better results for public health practitioners and policy makers. Therefore, 

these approaches provide confidence in the ongoing efforts to reduce tuberculosis by reducing the effect of the 

outbreaks. 

 

Recommendations 

1. The study makes an insightful contribution to the field of mathematical epidemiology, particularly through 

its detailed classification of tuberculosis infections and evaluation of various control measures.  

2. It is recommended that the tuberculosis model to be adopted and further explored in both the public health 

sector and academic research. 
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3.  The findings from the study offer a solid foundation for designing targeted tuberculosis control 

interventions and developing predictive tools for outbreak management.  

4. Moreso, researchers and health authorities are encouraged to apply this model to various epidemiological 

settings to validate its effectiveness and provide a support based evidence towards tuberculosis prevention 

and control. 
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