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Abstract 

Lung cancer is one of the leading causes of cancer-related deaths worldwide, with tobacco smoking being the primary 

risk factor. This study develops an SEIR (Susceptible-Exposed-Infected-Removed) model to investigate the impact 

of smoking recruitment rates on lung cancer incidence and prevalence. The systems of non-linear ordinary differential 

equations were used the define the dynamics of Lung cancer, which involves the recruitment rate. The analysis of a 

total population size in a region N(t) at any time t which is subdivided into five compartments such as, S(t) (susceptible 

population that is the vulnerable subpopulation who are not infected with lung cancer, but at a high risk of infection 

as a result of smoking), population who are active smoker 𝐸𝑎( t), population who are victim of smoking Ep ( t),  number 

of individual infected with lung cancer I( t) and number of population recovered from lung cancer R(t) was involved 

in the study. The positivity, uniqueness and boundedness of solutions were verified, whereas the sensitivity and basic 

reproductive number were determined analytically. Numerical simulations are performed to explore the effects of 

varying smoking recruitment rates on lung cancer burden. The results show that reducing smoking recruitment rates 

can significantly decrease lung cancer incidence and prevalence. Results show that the number of lung cancer cases 

originating from the active smoker population and higher values of recruitment rate led to increased lung cancer cases 

among smokers. Increased active smoker recruitment rate (a) leads to higher smoking prevalence, increased lung 

cancer incidence, and higher mortality rates. Also increased rate of population becoming victim of smoking (b) leads 

to higher smoking prevalence, increased lung cancer incidence and higher mortality rates. The study recommends 

implementing advocacy on the Reduction of smoking recruitment rates through education campaigns and promotion 

of an increase in lung cancer screening and early detection with sound policies to reduce lung cancer incidence rates. 

The study suggests that enhancing antagonistic relationships between tumour-promoting and suppressive factors could 

improve the robustness of anti-cancer strategies, making tumours more controllable.  

 

Keywords: SEIR Model, Intervention Strategy, Disease Mitigation, Cigarette Smoking, Lung Cancer  

 

 

Introduction 

Lung cancer is one of the leading causes of cancer-related deaths worldwide, accounting for approximately 2.1 million 

new cases and 1.8 million deaths annually. Tobacco smoking is the primary risk factor for lung cancer, responsible 

for about 80-90% of all lung cancer deaths (Ekeanyanwu et al., 2025). Smoking recruitment rates, which refer to the 

rate at which new individuals initiate smoking, play a crucial role in determining the incidence and prevalence of lung 

cancer.  

 

Mathematical modelling has emerged as a valuable tool in understanding the dynamics of lung cancer and the impact 

of various factors, including smoking recruitment rates, on its incidence and prevalence. The SEIR (Susceptible-
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Exposed-Infected-Removed) model, a compartmental model that divides the population into distinct groups based on 

their disease status, has been widely used to study the transmission dynamics of infectious diseases (Nwagor & Ekaka-

a, 2017). However, its application to the study of lung cancer, a non-communicable disease, is relatively novel. 

 

This study aims to develop an SEIR model that incorporates the impact of smoking recruitment rates on lung cancer 

incidence and prevalence. By exploring the dynamics of lung cancer in the context of smoking behavior, this model 

seeks to provide insights into the potential effects of smoking prevention and cessation strategies on lung cancer 

burden. The findings of this study can inform public health policy and interventions aimed at reducing the incidence 

and prevalence of lung cancer. 

 

A lot of infectious diseases have been studied by experts in mathematical modelling and simulations. Biomathematics 

and epidemiology of chronic diseases (Nwagor, 2020).  Lung cancer is the leading cause of cancer deaths worldwide, 

with approximately 2.09 million new diagnoses each year and around 1.76 million deaths. Lung cancer can start 

anywhere in the lungs and affect any part of the respiratory system. Unlike normal cells, cancer cells grow without 

control and destroy the healthy lung tissue around them. This growth can spread, or metastasise, beyond the lung to 

the lymph nodes by the process of metastasis into nearby tissue or other parts of the body. 

 

Modelling of Lung Cancer Dynamics  

Modelling the dynamics of the impact of smoking on the lungs can be done through various mathematical and 

computational approaches, including Ordinary Differential Equations (ODEs), Partial Differential Equations (PDEs), 

and Agent-Based Models (ABMs), which involve simulating the interactions between lung cells, inflammatory agents, 

and smoke particles. Network Models, which also involve the interactions between different lung regions and the 

spread of damage. Machine Learning (ML) and Artificial Intelligence (AI). These models can be informed by 

experimental data from in vitro and in vivo studies, as well as clinical data from smoking-related lung disease patients. 

SIRS Susceptible (S), Infected (I) recovery (R) and susceptible (S) model is an extension of the SIR (susceptible, 

Infected, recovered) model, where it is believed that individuals can become Coronavirus infections have been studied 

by many researchers and epidemiologists to curtail the disease and its further spread in the community. The researchers 

tried to develop the vaccine and vaccinated most of the individuals in order to better reduce the number of infected 

people and their future spread. Although with the passage of time and the emergence of the new variants of 

coronavirus, the world is still facing infections in many countries. Some mathematical models in integer and non-

integer orders to study the viral infections are discussed in this paper. The optimal control analysis for the elimination 

or control of the disease in Pakistan, by considering the real coronavirus cases, has been studied in Trisilowati. (2019), 

infectious diseases is transferrable to other healthy humans very fast, so the best and most effective way is to reduce 

the infection, is the isolation and quarantine, which is discussed through a mathematical modelling approach by the 

authors in Ayinde (2020) and Nabi et al. (2020), Lockdown and its impact on disease control was also considered 

using an SEIR modelling approach while adopting real data from Italy and France and presented the disease control 

scenario for the epidemic.  Different reported cases and their modelling in Nigeria, with comparison, have been 

discussed in (Nwagor & Ekaka-a, 2017). A fractional study on COVID-19 to address the isolation, quarantine, and 

environmental vital loads has been explored ( Nwagor & Lawson-Jack, 2020). A robust study on COVID-19 in a 

fractional environment is considered in (Okeke et al., 2019;  Zhang et al., 2020). The analysis of the COVID-19 

infection modelling for the real cases in sub-Saharan Africa has been discussed in Okeke et al.(2017). 

 

Cigarette Smoking and Lung Cancer Prevalence   

Considering all the fatalities of lung cancer, a model-based study on lung cancer was discussed by many 

mathematicians. Several mathematical models have been proposed on smoking behaviour and lung cancer. Acevedo-

Estefania et al. (2000) constructed the model to describe the dynamics of lung cancer at the population level caused 

by smoking and secondhand smoke. The model determined that the best way to lower the number of smokers and 

individuals developing lung cancer is by increasing the number of well-educated individuals about the effects of 

smoking.  

 

Andest (2013) also formulated a mathematical model that describes nicotine accumulation in the lungs of a smoker, 

which is the main cause of lung cancer. Wardah et al. (2017) presented a mathematical model that discusses of lung 

cancer as the effect of smoking behaviour on both active and passive smokers. Trisilowati (2019) analyses the stability 
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as well as uses an optimal control strategy on Wardah et al. (2017) model and illustrates that the optimal control is 

effective in controlling the growth of passive, active smokers and lung cancer patients. There is an extensive body of 

work which develops models associated with the treatment of cancer using chemotherapy, radiotherapy, targeted agent 

treatment, etc. Beljanski and Hiscott (2012) mentioned that multidrug resistance to this treatment is the major cause 

of failure in clinical treatment.  

 

Genetically modified oncolytic viruses (OVs) kill tumour cells via unique mechanisms compared to other treatments. 

Thus, Beljanski Hiscott. (2012) claims that treatments with oncolytic viruses (OVs), which are under development, 

will open the possibility to overcome drug resistance and modulate the immune response to fight against cancer.  

 

Taking the above discussions into account, we propose a model to study the dynamics of lung cancer and its relation 

with cigarette smoking. Many theoretical as well as mathematical models of lung cancer have been proposed by 

researchers. But this is a newly proposed mathematical model of lung cancer on the basis of some basic assumptions. 

It is observed from real phenomena that patients recovered from lung cancer are not out of danger at all; they can be 

affected with lung cancer again. It indicates that people recovered from lung cancer are becoming susceptible again 

and can develop this fatal disease multiple times. It is in the interest of this study to examine the dynamics of lung 

cancer and the relation to cigarette smoking using a computational approach.  

 

Fractional calculus is gaining attention from researchers around the world due to its many properties and its 

applications to physical and engineering problems. The heredity properties, the memory, and the crossover behaviour 

can only be observed in a model with a fractional-order system. The fractional calculus with different fractional 

operators and their applications have been found, in integro-differential equations (Wang, 2022), Karthikeyan et al 

(2021), the development in the operators (Umoh & Nwagor, 2024), application to epidemiology (Umoh & Nwagor, 

2024b), application to wave dynamics equations..  

 

Aim and Objectives of the Study  

The goal is to define a suitable mathematical model for assessing lung cancer incidence and prevalence, focusing on 

specific objectives: 

1. Study the biological dynamics of lung cancer transmission. 

2. Calculate the basic reproduction number and determine smoke-free and endemic equilibrium points. 

3. Evaluate the effect of smoking recruitment rate on lung cancer incidence and prevalence. 

 

Mathematical Formulation  

A mathematical model of a system of nonlinear ordinary differential equations (ODEs) will be studied in this study. 

The basic reproduction number will be determined by next generation matrix. The condition for the existence of 

equilibrium points (smoke-free and endemic equilibrium points) and their stability analysis will be investigated. 

Considering a total population size in a region is N(t) at any time t which is subdivided into five compartments such 

as, S( t) (susceptible population that is the vulnerable subpopulation who are not infected with lung cancer, but at a 

high risk of infection as a result of smoking), population who are active smoker 𝐸𝑎( t), population who are victim of 

smoking Ep (t),  number of individual infected with lung cancer I( t) and number of population recovered from lung 

cancer R(t) . Considering the above compartments, the mathematical model of the dynamics of Lung cancer can be 

represented by the following system of non-linear ordinary differential equations    

 
𝑑𝑆

𝑑𝑡
= 𝑟 − (𝑎 + 𝑏)𝐸𝑎𝑆 − 𝑚𝑆 + ℎ𝑅         

𝑑𝐸𝑎

𝑑𝑡
= 𝑎𝐸𝑎𝑆 + 𝑒𝐸𝑝 − 𝑔𝐸𝑎 − 𝑚𝐸𝑎        

𝑑𝐸𝑝

𝑑𝑡
= 𝑏𝐸𝑎𝑆 − 𝑒𝐸𝑝 − 𝑑𝐸𝑝 − 𝑚𝐸𝑝                 (1)  

𝑑𝐼

𝑑𝑡
= 𝑔𝐸𝑎 + 𝑑𝐸𝑝 − 𝑆𝐼 − (𝑚 + 𝑓)𝐼       

𝑑𝑅

𝑑𝑡
= 𝑆𝐼 − (𝑚 + ℎ)𝑅          
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In the above model, r is the natural growth rate of population, m is the natural mortality rate, a and b is the rate at 

which susceptible population become active and passive smoker respectively. We are not involving the interaction 

between the passive and active smoker population, and e is the rate of passive smokers transforming into active 

smokers. The constant g and d represent the rate at which active and passive smokers become infected with lung 

cancer.  

 

The constant s represents the recovery rate from lung cancer by getting proper treatment and f represents the disease-

induced death rate. In real life, despite getting treatment and recovering from lung cancer, people may become 

susceptible to lung cancer again, and the rate is denoted by h.  

 

Model Analysis  

The model (1) has to be analysed in order to describe the dynamics of lung cancer. This analysis desires to show the 

effect of smoking on lung cancer, and the objective of this analysis is to control the adverse situation in the locality.  

 

Since it is impossible to find the exact solution of the nonlinear autonomous system (1), we have to analyse the 

qualitative behaviour of the solutions in the neighbourhood of the equilibrium points. First, we find the boundedness 

and positivity of the solutions, then find out the equilibrium points, followed by analysing the stability of the 

equilibrium points and basic reproduction number R0 . The basic reproduction ratio is important because it tells us if a 

disease will persist or extinct. For the analysis of model (1), a closed set has been considered as  

𝛺 = {(𝑆(𝑡), 𝐸𝑎(𝑡), 𝐸𝑝(𝑡), 𝐼(𝑡), 𝑅(𝑡)) ∈ 𝑖+
𝑠 |0 ≤ 𝑁 ≤

𝑟
𝜇

} 

𝑤𝑖𝑡ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑆(0) > 0, 𝐸𝑎(0) ≥ 0, 𝐸𝑝(0) ≥ 0, 𝐼(0) ≥ 0, 𝑅(0) ≥ 0 

 
 Boundedness of Solutions of the Model  

We have to show that the total population is bounded for all t ≥ 0.  

Lemma 1: The region 𝛺 = {(𝑆(𝑡), 𝐸𝑎(𝑡), 𝐸𝑝(𝑡), 𝐼(𝑡), 𝑅(𝑡)) ∈ 𝑖+
𝑠 |0 ≤ 𝑁 ≤

𝑟

𝜇
} is positively invariant set for the model 

(1) 

Proof: Since the population size is 𝑁(𝑡)𝑠𝑜 𝑡ℎ𝑎𝑡 𝑁(𝑡) = 𝑆(𝑡) + 𝐸𝑎(𝑡) +  𝐸𝑝(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) 

Now the rate of change of total population is 
𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐸𝑎

𝑑𝑡
+

𝑑𝐸𝑝

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
 

⟹
𝑑𝑁

𝑑𝑡
= 𝑟 − 𝜇(𝑆 + 𝐸𝑎 +  𝐸𝑝 + 𝐼 + 𝑅) − 𝜙𝐼 

⟹
𝑑𝑁

𝑑𝑡
+ 𝜙𝐼 = 𝑟 − 𝜇𝑁 

 

In the absence of the disease lung cancer (i.e. I = 0), we 

get dN ,    
𝑑𝑁

𝑑𝑡
≤ 𝑟 − 𝜇𝑁 .  

Now Substituting this, we obtain 

𝑁(t) ≤
𝑟

𝜇
+ (𝑁0 − 𝑟

𝜇
) 𝑒−𝜇𝑡   

It is clear from solving that the total population N(t) will approach the threshold 
𝑟

𝜇
𝑎𝑠 𝑡 → ∞ 

This indicates that if the initial total population  𝑁0 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 
𝑟

𝜇
 𝑖. 𝑒. 𝑖𝑓 𝑁0 ≤

𝑟

𝜇
  𝑡ℎ𝑒𝑛 𝑁(𝑡) =

𝑟

𝜇
 .  𝑠𝑜, 𝑑𝑒𝑓𝑖𝑛𝑒𝑡𝑙𝑦 

𝑟

𝜇
  𝑖𝑠 𝑡ℎ𝑒  𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝑁  

On the other hand, if 𝑁0  >  
𝑟

𝜇
, 𝑡ℎ𝑒𝑛 𝑁(𝑡) will decrease to 

𝑟

𝜇
 𝑎𝑠 𝑡 →

∞. 𝑇ℎ𝑖𝑠 𝑚𝑒𝑎𝑛𝑠 𝑡ℎ𝑎𝑡  𝑁0   
𝑟

𝜇
 , 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 (𝑆(𝑡), 𝐸𝑎(𝑡), 𝐸𝑝(𝑡), 𝐼(𝑡), 𝑅(𝑡)) 𝑒𝑡𝑒𝑟𝑠 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝛺 

or approaches it asymptotically 
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Thus, we conclude that the region Ω is positively invariant under the flow induced by the model (1). Therefore, the 

model is both mathematically and epidemiologically well-posed in the region Ω. It is therefore sufficient to study the 

dynamics of the model (1) in Ω. Hence the lemma is proved.  

Positivity of solution of the Model  

Since the model (1) describes the human population, it is necessary to prove that all the state variables  

S (t ), Ea (t) >0, EP (t) >0, I(t) >0, R(t) >0 are non-negative i.e. the solutions of the model (1) with 

positive initial conditions, S(0)>0, Ea (0)³ >0, EP (0)³ > 0, (0)I ³> 0,R(0)³ > 0 , are non-negative " 

t>0.  

 

Lemma.2: If S(0) > 0, Ea (0) ≥ 0, Ep(0) ≥ 0, I(0) ≥ 0,and R(0) ≥ 0 , then the solutions S(t), 

Ea ( t) ,Ep (t ) , ,I (t),  R( t) of the model (1) are all non-negative for all t ³ >0 .  

 

Proof:  

The initial conditions for the model (1) is, S(0)³ =0, Ea (0)³ = 0,EP (0)³= 0, I(0)³= 0, (0)³= 0  

The first equation of the model (3.1) is denoting the rate of change of susceptible 

population with time. dS  𝑖. 𝑒.
𝑑𝑆

𝑑𝑡
= 𝑟 − (𝑎 + 𝑏)𝐸𝐸𝑎𝑆 − 𝑀𝑆 + ℎ𝑅  (7) 

For Positivity, (7) can be written as, 
𝑑𝑆

𝑑𝑡
+ 𝑚𝑆3𝑟     (8) 

𝑏𝑆3 𝑟

𝑚
+ 𝑐𝑒−𝑚          (9) 

𝐴𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, (𝑎𝑡 𝑡 = 0, 𝑆(0)3 0), 𝑤𝑒 𝑔𝑒𝑡 𝑓𝑟𝑜𝑚 (3.1 − 3.5), 𝑐 = 𝑆(0) −
𝑟

𝑚
 

By putting the value of C in (9) we get, 

𝑆(𝑡)3 𝑟

𝑚
+. . −

𝑟

𝑚
𝑒−𝑚                        (10) 

So, at (𝑟(𝑅)𝛹 , 𝑆(𝑡)3 𝑟

𝑚
, 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 0 

So, the first solution S(t) of the model (1) is positive for all (𝑡)3, 

Therefore, all the solutions (𝑆(𝑡), 𝐸𝑎(𝑡), 𝐸𝑝(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of the dynamic model (1) with 

positive initial conditions 𝑆(0)3 > 0, 𝐸𝑎(0)3 >  0, 𝐸𝑝(0)3 > 0, 𝐼(0)3 > 0, 𝑅(0)3  >  0, 

are non-negative for all  𝑡3 >   0 

 

Smoke –Free Equilibrium Point 

An equilibrium points of a system with no infections or diseases is called disease equilibrium point. 

Let us consider the smoke free equilibrium point of the model (1) Wo. In case of smoke free 

equilibrium point for the model (1) all this state variables 𝐸𝑎, 𝐸𝑃, 𝐼, 𝑅 are zero except the 

susceptible compartment S 

So 
𝑑𝑆

𝑑𝑡
+

𝑑𝐸𝑎

𝑑𝑡
+

𝑑𝐸𝑝

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
= 0 

𝐻𝑒𝑛𝑐𝑒 𝑤𝑒 𝑔𝑒𝑡, 𝑟 − 𝑚𝑆 = 0 

𝑝𝑆 =
𝑟

𝑚
 

So, the smoke free equilibrium for the model (1) is, 𝑤0
∘  (𝑆, 𝐸𝑎, 𝐸𝑝, 𝐼, 𝑅) = (

𝑟

𝑚
, 0,0,0,0) 

 

Endemic Equilibrium Point 
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Let the endemic equilibrium point for the (1) model be 𝑤1(𝑆∗, 𝐸𝑎
∗ , 𝐸𝑝

∗, 𝐼∗, 𝑅∗) 

That can be obtained by considering  
𝑑𝑆∗

𝑑𝑡
=

𝐸𝑎
∗

𝑑𝑡
=

𝐸𝑃
∗

𝑑𝑡
=

𝐼

𝑑𝑡
=

𝑅∗

𝑑𝑡
= 0 

This implies that 
𝑑𝑆

𝑑𝑡
= 𝑟 − (𝑎 + 𝑏)𝐸𝑎

∗𝑆∗ − 𝑚𝑆∗ + ℎ𝑅∗ = 0      (11) 
𝑑𝐸𝑎

𝑑𝑡
= 𝑎𝐸𝑎

∗𝑆∗ + 𝑒𝐸𝑝
∗ ⋅ 𝑔𝐸𝑎

∗ ⋅ 𝑚𝐸𝑎
∗ = 0       (12) 

𝑑𝐸𝑝

𝑑𝑡
= 𝑏𝐸𝑎

∗𝑆∗ ⋅ 𝑒𝐸𝑝
∗ ⋅ 𝑑𝐸𝑝

∗ ⋅ 𝑚𝐸𝑝
∗ = 0       (12) 

𝑑𝐼

𝑑𝑡
= 𝑔𝐸𝑎

∗ + 𝑑𝐸𝑝
∗ ⋅ 𝑆𝐼∗ ⋅ (𝑚 + 𝑓)𝐼∗ = 0      (13) 

𝑑𝑅

𝑑𝑡
= 𝑠𝐼∗ ⋅ (𝑚 + ℎ)𝑅∗ = 0        (14) 

By solving the equation, (1) we get the endemic equilibrium point is 𝑤0
∘  (𝑆∗, 𝐸𝑎

∗ , 𝐸𝑝
∗, 𝐼∗, 𝑅∗) 

where, 

𝑆∗ =
𝐾1𝐾2

𝛼𝐾1 + 𝜀𝛽
 

𝐸𝑎
∗ = |

𝐾1𝐾2𝐾4(𝑟 − 𝑚𝑆∗)

𝐾1𝐾3𝐾4𝐾5𝑆∗ − ℎ𝑠(𝑔𝐾1 + 𝑎𝑏𝑆∗)
| 

𝐸𝑝
∗ =

𝛽𝐸𝑎
∗𝑆∗

𝐾1)
 

𝐼∗ =
𝑔𝐾1 + 𝑎𝑏𝑆∗

𝐾1𝐾3
(𝐸𝑎

∗) 

𝑅∗ = |
𝑆(𝑔𝐾1 + 𝑎𝑏𝑆∗)

𝐾1𝐾3𝐾4
| (𝐸𝑎

∗) 

Also 𝐾1 = 𝜀 + 𝛿 + 𝜇,    𝐾2 = 𝛾 + 𝜇,    𝐾3 = 𝜎 + 𝜇 + ∅,   𝐾4 = 𝜇 + 𝜏,   𝐾5 = 𝛼 + 𝛽 

 
2.7 Basic Reproduction Number 

The basic reproduction number is defined as the secondary infections produce by one primary infection in a holy 

susceptible population it is a key epidemiological quantity because it determines the size and duration of epidemics 

Here the𝐹𝑖is the gains to infections compartments 𝑉𝑖 is the losses from infections compartment 

𝐹𝑖 = [𝐹1 𝐹2 𝐹3 ] = [𝛼𝐸𝑎𝑆 𝛽𝐸𝑎𝑆 0 ] 𝑎𝑛𝑑 [𝑉1 𝑉2 𝑉3 ] = [(𝛾 + 𝜇)𝐸𝑎 − 𝜀𝐸𝑃 (𝜀 + 𝛿 + 𝜇)𝐸𝑃 (𝜎 +
𝜇 + ∅)𝐼 − (𝛾𝐸𝑎 + 𝛿𝐸𝑃) ],                          (15) 

At the disease-free equilibrium point 𝐹 = (
𝑟

𝜇
, 0, 0, 0, 0) 

We have 

𝐹 = [
𝛼𝑟

𝜇
 0 0 

𝛽𝑟

𝜇
 0 0 0 0 0 ]                                      (16) 

𝑉 = [𝛾 + 𝜇 − 𝜀 0 0 𝜀 + 𝛿 + 𝜇 0 − 𝛾 − 𝛿 𝜎 + 𝜇 + ∅ ] = [𝐾2  − 𝜀 0 0 𝐾1 0 − 𝛾 − 𝛿 𝐾3 ] 
                            (17) 

Where 𝜀 + 𝛿 + 𝜇 = 𝐾1,   𝛾 + 𝜇 = 𝐾2 𝑎𝑛𝑑  𝜎 + 𝜇 + ∅ = 𝐾3 

Now the characteristics equilibrium is given by setting 𝑑𝑒𝑡 𝑑𝑒𝑡 (𝐺 − 𝜆𝐼)  = 0, 𝑤ℎ𝑒𝑟𝑒 𝐺 = 𝐹𝑉−1
 

Therefore 
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𝐺 − 𝜆𝐼 = [
𝛼𝑟

𝜇𝐾2 
− 𝜆 

𝛼𝑟𝜀

𝜇𝐾1𝐾2 
 0 

𝛽𝑟

𝜇𝐾2 
 

𝛽𝑟𝜀

𝜇𝐾1𝐾2 
− 𝜆 0 0 0 − 𝜆 ] = 0   

⟹ ((
𝛽𝑟𝜀

𝜇𝐾1𝐾2 
− 𝜆) (

𝛼𝑟

𝜇𝐾2 
− 𝜆) −

𝛼𝛽𝜀𝑟2

𝜇2𝐾1𝐾22
2) (−𝜆) = 0 

𝜆 =
𝑟(𝛼𝐾1+𝛽𝜀)

𝜇𝐾1𝐾2
, 0, 0                 (18) 

Equating (18) follows that the basic reproduction number is given by the largest eigen value for 

the model (1) is 

𝑅0 =
𝑟(𝛼𝐾1 + 𝛽𝜀)

𝜇𝐾1𝐾2
 

 

Stability at Smoke Free and endemic Equilibrium Point  

Theorem 1: The smoke free equilibrium point is locally asymptotically stable if  R
0 < 1 and 

unstable if R0 > 1  

Proof:  

In order to perform the stability analysis at smoke free equilibrium point w0 , we have the Jacobian 

matrix of the model (1) at smoke free equilibrium point 𝑤0 = (
𝑟

𝑚
, 0, 0,0, 0) 

𝐽(𝑤0) = |𝑚 0 0  0 0 −
𝑟𝑘3

𝑚
 
𝑎𝑟

𝑚
− 𝑘2  

𝑏𝑟

𝑚
  𝑔 0 0 𝑒 − 𝑘1  𝑑 0 0 0 0  − 𝑘3 𝑠 ℎ 0 0  0 − 𝑘4 |

Let I be the eigen value and I be the identity matrix, then the characteristic equation is, 

|𝐽(𝑤0) − 𝐼| = |−𝑚 − 𝐼 0 0  0 0 −
𝑟𝑘3

𝑚
 
𝑎𝑟

𝑚
− 𝑘2 − 𝐼 

𝑏𝑟

𝑚
  𝑔 0 0 𝑒 − 𝑘1 − 𝐼  𝑑 0 0 0 0  − 𝑘3 −

𝐼 𝑠 ℎ 0 0  0 − 𝑘4 − 𝐼 |        (19) 

Solving this, implies that  

(−𝑀 − 𝐼)(−𝑘3 − 𝐼)(−𝑘4 − 𝐼)(𝐼2 + 𝑎1𝐼 + 𝑎2) = 0     (20) 

Where 𝑎1 = 𝑘1 + 𝑘2 −
𝑎𝑟

𝑚
 

=𝑘1 + 𝑘2(1 − 𝑅0) +
𝑟𝛽𝜀

𝜇𝑘1
        (21) 

 and  

 𝑎2 = 𝑘1𝑘2 −
𝑎𝑟𝑘1

𝑚
-

𝑏𝑒𝑟

𝑚
      = 𝑘1𝑘2(1 − 𝑅0)     (22) 

The eigen value 𝜆1 − 𝜇,   𝜆2 = −𝑘3 = −(𝜎 + 𝜇 + 𝜙)𝑎𝑛𝑑 𝜆3 = −𝑘4 = −(𝜇 + 𝜂)  are the negative roots of the 

characteristic polynomial. The Routh-Hurwitz criterion is used to show that the reaming polynomial, l 2 + a
1l + =a

2 0 

has negative real roots. According to the Routh-Hurwitz criteria of second order polynomials, the system is 

asymptotically stable if a1 > 0 and a2 > 0. Here a
1 as well as  a

2 will be positive when R
0 <1. r. Therefore, the smoke 

free equilibrium point w0 = (
𝑟

𝑚
,0,0,0,0) is locally asymptotically stable if R

0 <1 and unstable if R
0 >1. The stability of 

the endemic equilibrium point w
1 is analysed as to have the theorem (2) to determine the stability of the endemic 

equilibrium point w
1.  

 

Numerical Results   

The numerical simulations of our model proposed in (1) was performed using the python solver. All the values of the 

parameters used in (1) are obtained from different organizations such as the CDC (Center for Disease Control), 

American Lung Cancer Society, WCRF (world cancer research foundation), WHO (world health organization) Global 

cancer observatory (GLOBOCAN) and other non-profit and government agencies. The calculated available data from 

these sources and approximate result have been taken which fits into the model more appropriately.   
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Table 1 Definitions and values of Parameters of the Model  

Descriptions  Parameters  Values  

growth rate of population  r  0.05 d-1  

natural mortality rate  m  0.01 d-1  

active smoker recruitment rate from 

susceptible population   

a  0.25  

rate of population become victim of smoking  b  0.75  

rate of population migrate from victim group 

to smokers  

e  0.35  

smoker’s lung cancer incidence rate  g  0.2  

lung cancer incidence rate from victim group  d  0.05  

lung cancer recovery rate  s  0.2  

cancer incident mortality rate  f  0.6  

migration rate from recovered to susceptible 

compartments  

h  0.5  

 

 

Presentation of Results  

The impact of smoking recruitment rates on lung cancer incidence and prevalence  
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Figure 1: The plot illustrates the impact of varying the recruitment rate (a) of active smokers on lung cancer cases 

over time. The value of active smokers increased from 0.25 to 0,50.  

Solid Lines (Smoker Lung Cancer): Show the number of lung cancer cases originating from the active smoker 

population. Higher values of recruitment rate led to increased lung cancer cases among smokers, as more 

individuals are transitioning into and staying in the active smoker category. 

Dashed Lines (Victim Lung Cancer): Show the number of lung cancer cases originating from the victim 

population. Higher values of a reduce the lung cancer burden from the victim population, as victims transition 

more rapidly into the active smoker group. 

 
 

 

Figure 2: The plot S, Ea, Ep, I, and R against a, we need the steady-state solutions for each variable. The equations 

are 

 

From S; 

 𝑆 =
𝑟+ℎ𝑅

(𝑎+𝑏)𝐸𝑎+𝑚
          

 From 𝐸𝑎; at steady state (
𝑑𝐸𝑎

𝑑𝑡
= 0)  

                              𝑎𝐸𝑎𝑆 + 𝑒𝐸𝑝 − 𝑔𝐸𝑎 − 𝑚𝐸𝑎 = 0 → 𝐸𝑎 =
𝑒𝐸𝑝

𝑔+𝑚−𝑎𝑆
   

From 𝐸𝑝;at steady state (
𝑑𝐸𝑝

𝑑𝑡
= 0)  

                              
𝑑𝐸𝑝

𝑑𝑡
= 𝑏𝐸𝑎𝑆 − 𝑒𝐸𝑝 − 𝑑𝐸𝑝 − 𝑚𝐸𝑝 = 0 → 𝐸𝑝 =

𝑒𝐸𝑝

𝑒+𝑑+𝑚
  

From  𝐼: at steady state (
𝑑𝐼

𝑑𝑡
= 0)  

                             𝑔𝐸𝑎 + 𝑑𝐸𝑝 − 𝑆𝐼 − (𝑚 + 𝑓)𝐼 = 0   

From 𝑅: at steady state (
𝑑𝑅

𝑑𝑡
= 0) 
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                               𝑆𝐼 − (𝑚 + ℎ)𝑅 = 0 → 𝑅 =
𝑆𝐼

𝑚+ℎ
  

 

Computing the values numerically for a range of a values and substituting default constants for simplicity.  

 

 

 

The graph illustrates how the different compartments (S, Ea, Ep, I, and R) of the population vary with the recruitment 

rate of active smokers (a): 

 
 

Figure 3: The graph shows the relationship between the susceptible population (S) and the active smoker recruitment 

rate (a) 

 

 

 

 

 

 

 

 

 

 



 

SEIR Model-Based Evaluation of the impact of Smoking Recruitment rates on Lung Cancer Incidence and Prevalence 

 

 

123 Cite this article as:   

Nwagor, P., & Oghenrhoro, P. S. (2025). SEIR model-based evaluation of the impact of smoking recruitment rates on lung cancer 

incidence and prevalence. FNAS Journal of Mathematical Modeling and Numerical Simulation, 2(3), 113-129 
 

 

 

 

 

 

 

 

 

Determining the relationship of the dynamics of smoking and lung cancer in a sub-population over time. 

  

 

 
 

Figure 4: a simplified pair plot displaying the relationships between the parameters using scatter plots. Each scatterplot 

highlights pairwise distributions, showing how strongly correlated each pair of parameters is. 

This visualization complements the heatmap by providing a more granular look at the relationships and distributions 

among parameters.  
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Figure 5: a plot showing correlation analysis indicating stability radius, Robustness of coefficient and sensitivity 

index.  The bar chart shows how uncertainty impacts each measure differently, with a clear indication that reducing 

parameter uncertainty is critical to maintaining stability and robustness. 
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 Figure 6: Bar Chart showing Impact of Parameter Uncertainty on Stability 

The Pie Chart Represents the proportion of mean values for Stability Radius (SR), Robustness Coefficient (RC), and 

Sensitivity Index (SI). This highlights the relative contributions of each measure to the overall output. 

The Bar Chart Compares the original and uncertain values for each stability measure. Includes annotations for 

percentage changes, with positive changes in blue and negative changes in red, providing a clear view of how 

uncertainty impacts stability. 

 

Stability Radius (SR): Original Value: 0.351, Uncertain Value: 0.329 

Change: −6.3% (red annotation), indicating a moderate reduction in stability under uncertainty. 

Robustness Coefficient (RC): Original Value: 0.853, Uncertain Value: 0.82 

Change: −3.8% (red annotation), showing a slight decrease in robustness. 

Sensitivity Index (SI): Original Value: 0.231, Uncertain Value: 0.251 

Change: +8.7% (blue annotation), meaning the system becomes slightly more sensitive to parameter changes. 

 

 

Discussion  

Analysing the impact of smoking recruitment rates on lung cancer incidence and prevalence   

From Figure 1, the study considered the analysis of the impact of smoking recruitment rates on lung cancer incidence 

and prevalence over time. The results indicate that the number of lung cancer cases originating from the active smoker 

population and higher values of recruitment rate led to increased lung cancer cases among smokers, as more 

individuals are transitioning into and staying in the active smoker category. 

 

The Trade-off shows that increasing Active Smokers shift the burden of lung cancer from victims (Ep) to smokers 

(Ea). The Time Dynamics indicates that both categories initially increase in lung cancer cases but peak and decline as 

the susceptible population decreases and mortality reduces the total population. As Active Smokers increases, more 

susceptible individuals are drawn into the active smoker population. This leads to a larger pool of individuals 

susceptible to smoking-related lung cancer, reflected in the rise of smoker-related lung cancer cases. Victims transition 

to smokers at a higher rate with increased aa. This reduces the population size of victims, decreasing lung cancer cases 

originating from this group. On Peak Timing Smoker Lung Cancer Peaks earlier for higher values of a. This is because 

the influx of individuals into the active smoker population is faster, accelerating the buildup of lung cancer cases. 

Hence Victim Lung Cancer Peaks later for lower a value, as the transition from victims to smokers slows down, 

leaving more individuals in the victim category for a longer time. 

 

On the Interaction with Other Parameters: Transition Rates (b and e): Higher rate of becoming victims (b) or lower 

rate of migration from victims to smokers (e) would shift the balance, leading to a higher burden of victim-related 

lung cancer. 

 

On the Incidence Rates (g and d): A higher g amplifies smoker-related lung cancer cases, while a higher d increases 

victim-related lung cancer cases. The combined effects would skew the results toward one group dominating the 

burden of disease. 

 

On Long-Term Dynamics: As time progresses, both lung cancer burdens decline due to: Mortality (m, f). Depletion 

of the susceptible population (S). Recovery dynamics (R). lung cancer cases. 

 

Increased active smoker recruitment rate (a) leads to higher smoking prevalence, increased lung cancer incidence, 

higher mortality rates. Also increased rate of population becomes victim of smoking (b) leads to higher smoking 

prevalence, Increased lung cancer incidence and higher mortality rates. The results further predict some Indirect 

Effects: Increased smoking prevalence due to higher ̀ a` and `b` leads to: Increased exposure to carcinogens, Increased 

risk of lung cancer, Increased burden on healthcare systems, Lung cancer incidence rates (`g` and `d`) are amplified 

by higher smoking recruitment rates. Time-Dependent Effects include Short-term (0-10 years) Increased smoking 

recruitment rates lead to increased lung cancer incidence. Medium-term (10-20 years): Lung cancer incidence rates 
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peak and begin to decline. Long-term (20+ years): Lung cancer mortality rates decline due to reduced smoking 

prevalence. 

From figure 2, the study shows the plot of 𝑆, 𝐸𝑎, 𝐸𝑝, 𝐼, 𝑎𝑛𝑑 𝑅 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑎, the steady-state solutions for each variable 

The equations are Key results shows that Susceptible (S) decreases as a increases. This reflects the recruitment of 

susceptible individuals into active smokers at higher rates of a. Active Smokers (Ea) initially increases with a, as more 

susceptible individuals are recruited. However, at higher values of a, it stabilizes due to limitations imposed by S and 

transitions to victims or infected groups. Victims (Ep) increases with a, as more individuals transition from the active 

smoker group into the victim group. Infected (I) grows steadily with aa, since a higher recruitment rate indirectly 

increases lung cancer incidence through both Ea and Ep. Recovered (R) remains low but increases slightly with a, 

driven by recovery from infections and the interaction with I. This analysis highlights the cascading effects of 

increasing recruitment rates of smokers on the health dynamics of the population.  

 

From figure 3, The analysis of the relationship between the susceptible population (S) and the active smoker 

recruitment rate (a). Results indicates that decreasing S with increasing a, more individuals from the susceptible 

population are recruited into the active smoker category. This reduces the number of susceptible individuals, as they 

are being "lost" to smoking recruitment. Rate of Decrease, the curve suggests that S decreases non-linearly with a. 

Initially, the decrease is more gradual, but as a approaches higher values, the decrease becomes steeper. This indicates 

that at higher recruitment rates, the susceptible population depletes faster. 

 

On the Influence of Parameters: The decline in S is mediated by the combined effects of a, b, and Ea, which govern 

how quickly individuals are removed from the susceptible group. The higher these rates, the stronger the impact on S. 

By public health implications, policies aimed at reducing the recruitment of individuals into smoking (lower a) could 

help sustain a larger susceptible population, potentially mitigating downstream health issues like smoking-related 

illnesses and cancers. Whereas, at threshold behaviour: At high a, the susceptible population is reduced to a critical 

level, emphasizing the importance of intervention to prevent rapid depletion. 

 

 Determination of the relationship of the dynamics of smoking and lung cancer in a subpopulation over time. 

 From figure 4, the analysis of the determination of the relationship of the dynamics of smoking and lung cancer in a 

sub-population over time. The plot for various state variables was considered. For the Recruitment Rate vs Susceptible 

Population (S), the Observation includes that the susceptible population (S) decreases over time as individuals are 

recruited into the smoker and victim groups. While as on the impact of a: The recruitment rate (a) determines how 

quickly individuals are drawn from the susceptible population into the smoker group. Although a is constant in the 

plot, its influence is seen in the rapid initial decline of S.  

 

On the Victimization Rate vs Active Smokers, the Observation is that the number of active smokers (Ea) initially 

increases as susceptible individuals are recruited, then levels off and slightly declines due to mortality and transitions 

to cancer (I). Impact of b, A higher victimization rate b would reduce the active smokers more rapidly, as it facilitates 

the transition from smokers to victims (Ep). 

 

However, on comparing Cancer Mortality Rate Victims, the results show that the population of victims (Ep) decreases 

steadily over time. This group transitions to either active smokers (Ea) or lung cancer cases (I), coupled with mortality. 

Impact of f: Although f affects cancer mortality, its role indirectly influences Ep by controlling the rate at which 

individuals leave I, which impacts the flow of individuals between other groups. 

 

 Natural Mortality Rate (m) vs Lung Cancer Cases (I) 

● Observation: The population of lung cancer cases (I) initially increases as individuals from Ea and Ep 

transition into this group. Over time, it decreases due to recovery or mortality. 

● Impact of m: The natural mortality rate mmm contributes to the decline of I. Combined with f, it accelerates 

the reduction of cancer cases. A higher mmm would make the decline steeper. 

 

Recovery Rate (h) vs Recovered Population (R), results show that the recovered population (R) increases steadily as 

individuals recover from lung cancer. However, the growth is limited by mortality (m+ h) and transitions back to the 
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susceptible population (S). On the Impact of h, A higher h would lead to a faster growth in R, but h also causes a 

quicker decline as it represents the rate at which recovered individuals return to S. 

 

Figure 5: a plot showing correlation analysis indicating stability radius, Robustness of coefficient and sensitivity 

index.   

Stability Radius: 

● Negative correlation yields the highest Stability Radius (0.343), suggesting improved stability in negatively 

correlated conditions. 

● Uncorrelated conditions are slightly less stable (0.329). 

● Positive correlation shows the lowest Stability Radius (0.305), indicating reduced stability. 

Robustness Coefficient: Negative correlation again demonstrates the highest value (0.831), indicating the most robust 

configuration. Uncorrelated conditions (0.821) are slightly less robust than negative correlation. And Positive 

correlation is the least robust (0.791). 

 

Sensitivity Index: Uncorrelated conditions yield the highest Sensitivity Index (0.251), indicating increased system 

sensitivity to parameter changes. Positive correlation has a slightly lower value (0.273). And Negative correlation 

shows the lowest sensitivity (0.235), suggesting it mitigates the system's responsiveness to parameter changes. 

General Insights: Negative correlation improves both stability and robustness while reducing sensitivity, indicating it 

may be the most favourable correlation structure for the system. Positive correlation appears to weaken stability and 

robustness slightly. Uncorrelated conditions fall in between, with a notable increase in sensitivity. 

 

Stability Radius (SR): 

The Stability Radius reflects how well the lung cancer system (e.g., tumour microenvironment, immune response, or 

cell signalling networks) can maintain its function under perturbations (e.g., mutations, drug treatments, or 

environmental stresses). 

Negative Correlation: A higher SR suggests that when key biological factors (e.g., cell signalling pathways) are 

negatively correlated (e.g., inhibition of oncogenic pathways while promoting apoptosis), the system is more stable 

and less prone to collapse under stress. 

Positive Correlation: A lower SR indicates that when pathways are positively correlated (e.g., simultaneous 

activation of growth-promoting and survival pathways), the system becomes less stable, potentially favouring 

tumour progression. 

Biological Insight: Strategies that decouple or negatively correlate tumor-promoting and suppressive pathways may 

improve stability, helping to slow disease progression. 

Robustness Coefficient (RC): 

Implication: The RC indicates the system's ability to maintain its overall function despite variability or uncertainty in 

factors such as genetic mutations or treatment responses. 

Negative Correlation: A higher RC suggests that negative correlations (e.g., mutual exclusivity between pro-survival 

and pro-apoptotic signals) enhance robustness, making the tumor system less adaptive to perturbations like targeted 

therapy. 

Positive Correlation: A lower RC in positively correlated conditions indicates that cooperative oncogenic signals 

reduce robustness, potentially increasing susceptibility to therapeutic interventions. 

Biological Insight: Enhancing antagonistic relationships between tumour-promoting and suppressive factors could 

improve the robustness of anti-cancer strategies, making tumours more controllable. 

Sensitivity Index (SI): 

The SI reflects how sensitive the cancer system is to changes in key parameters (e.g., genetic alterations, environmental 

exposures, or treatment dosages). 

Uncorrelated: The highest SI in uncorrelated conditions suggests that independent variations in tumour-related 

pathways make the system more sensitive, leading to unpredictable responses to treatments or environmental changes. 

 

Negative Correlation: A lower SI implies reduced sensitivity, making the system more predictable under conditions 

where key factors are negatively correlated. 
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The Biological implications indicate that reducing sensitivity (lower SI) might lead to more consistent and predictable 

treatment outcomes, potentially favouring strategies that exploit antagonistic relationships in the tumour 

microenvironment. For negative correlation. the study shows an enhancement of system stability and robustness while 

reducing sensitivity. This may represent a biological scenario where suppressive mechanisms (e.g., immune 

checkpoints, apoptosis) dominate over tumour-promoting mechanisms, leading to improved control of lung cancer 

progression. The Positive Correlation analysis shows a weaken stability and robustness, potentially mirroring 

conditions where oncogenic pathways work synergistically to promote tumour survival and progression. Whereas 

Uncorrelated Conditions shows a Lead to higher sensitivity, suggesting unpredictable behaviour in tumours with 

diverse, independent pathways. 

 

Clinical Implications suggests a Targeted Therapy which involves designing treatments that exploit negative 

correlations (e.g., inhibit one pathway while activating another suppressive pathway) could improve therapeutic 

outcomes. A Biomarker Identification which involves Identifying patients with tumours exhibiting uncorrelated or 

positively correlated pathways might help predict sensitivity to drugs and stratify patients for personalized therapy. 

And an Environmental or Lifestyle Factors which includes environmental exposures or lifestyle changes that alter 

these correlations (e.g., reducing inflammation or oxidative stress) may stabilize the system, slowing lung cancer 

progression. 

 

From figure 6, a chart showing impact of parameter uncertainty on stability is considered, the relative sizes of the 

mean values of the outputs (SR, RC, and SI) in the uncertainty analysis is illustrated. The Robustness Coefficient (RC) 

contributes the largest proportion, reflecting its dominant role in the system's stability. The Stability Radius (SR) is 

the second-largest contributor. The Sensitivity Index (SI) has the smallest proportion, indicating a relatively lesser 

role compared to the other two measures. This chart highlights the relative importance of these measures based on 

their mean values, helping identify where the system's characteristics are most concentrated. The bar chart emphasizes 

the negative impact of uncertainty on SR and RC, both crucial for stability, and the positive impact on SI, indicating 

an increase in the system's sensitivity. 

 

Conclusion  

This study involves a mathematical model of the dynamics of Lung cancer defined by system of non-linear ordinary 

differential equations was investigated.  The analysis of a total population size in a region N(t) at any time t which is 

subdivided into five compartments such as, S( t) (susceptible population that is the vulnerable subpopulation who are 

not infected with lung cancer, but at a high risk of infection as a result of smoking), population who are active smoker 

𝐸𝑎( t) , population who are victim of smoking Ep ( t),  number of individual infected with lung cancer I( t) and number 

of population recovered from lung cancer R(t) was  analytically and numerically determined. The following are 

highlights of the study; The results indicates that the number of lung cancer cases originating from the active smoker 

population and higher values of recruitment rate led to increased lung cancer cases among smokers, as more 

individuals are transitioning into and staying in the active smoker category. 
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