Application of the Adam-Bashforth-Moulton Method to a Fractional-Order Mathematical Model of Dengue with Vector and Non-Vector Pathways
Keywords:
Fractional-order modeling, Dengue transmission dynamics, Adam-Bashforth-Moulton method, Memory effects in epidemiology, Infectious disease modelingAbstract
This study presents a novel fractional-order dengue virus transmission model that integrates vector and non-vector pathways. The model employs the Adam-Bashforth-Moulton (ABM) method to account for memory effects and long-term dependencies, offering a more accurate depiction of disease dynamics compared to traditional methods like the 4th-order Runge-Kutta method (RKM4). The fractional-order framework captures nonlinear interactions among human and mosquito populations, reflecting key epidemiological transitions, including susceptibility, exposure, infection, vaccination, and recovery. Simulation results demonstrate the superiority of ABM in predicting population dynamics, particularly in exposed and infectious compartments, while highlighting deviations in classical methods over time. Phase plots and absolute error analysis further underscore the accuracy and reliability of ABM in solving fractional-order systems. By comparing the results with recent literature, this study emphasizes the critical role of fractional-order methods in infectious disease modeling, addressing limitations in classical approaches and providing insights for public health interventions. These findings contribute to the growing body of knowledge advocating the use of fractional-order techniques for understanding complex epidemiological systems and informing effective disease control strategies.
References
Adel, W., Elsonbaty, A., & Mahdy, A. M. S. (2024). On some recent advances in fractional-order modeling in engineering and science. Computation and Modeling for Fractional Order Systems, 169-197.
Ahmad, Z., Kamal, A., & Bashir, S. (2018). A computational method for fractional-order differential equations using predictor-corrector algorithms. Fractional Calculus and Applied Analysis, 21(1), 22-35.
Alshehry, A. S., Yasmin, H., Khammash, A. A., & Shah, R. (2024). Numerical analysis of dengue transmission model using Caputo–Fabrizio fractional derivative. Open Physics, 22(1), 20230169.
Atokolo, W., Aja, R. O., Omale, D., Ahman, Q. O., Acheneje, G. O., & Amos, J. (2024). Fractional mathematical model for the transmission dynamics and control of Lassa fever. Franklin Open, 7(15), 2773-1863.
Baleanu, D., Diethelm, K., Scalas, E., & Trujillo, J. J. (2012). Fractional calculus: Models and numerical methods. World Scientific Publishing Company.
Chen, C. M., & Holm, S. (2003). Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. The Journal of the Acoustical Society of America, 115(4), 1424-1430.
Chitnis, N., Smith, T., & Schapira, A. (2021). The role of vertical transmission in the spread of mosquito-borne diseases: Insights from a dengue model. Journal of Theoretical Biology, 523, 110713. https://doi.org/10.1016/j.jtbi.2021.110713
Diethelm, K. (2010). The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. Springer.
Diethelm, K., & Freed, A. D. (1999). The Facepiece subroutine for the numerical solution of differential equations of fractional order. Forschung und wissenschaftliches Rechnen, 1999(99), 57-71.
Diethelm, K., Ford, N. J., Freed, A. D., & Luchko, Y. (2004). Algorithms for the fractional calculus: A selection of numerical methods. Computers & Mathematics with Applications, 48(10-11), 1247-1260.
El-shenawy, A., El-Gamel, M., & Teba, A. (2024). Simulation of the SIR dengue fever nonlinear model: A numerical approach. Partial Differential Equations in Applied Mathematics, 11, 100891.
Ezz-Eldien, S. S., & Moaddy, K. (2015). Numerical approximation of Caputo fractional derivatives using Adams-Bashforth-Moulton predictor-corrector method. Journal of Computational and Applied Mathematics, 282, 94-102.
Ford, N. J., & Simpson, A. C. (2001). The numerical solution of fractional differential equations: Speed versus accuracy. Numerical Algorithms, 26(4), 333-346.
Garrappa, R. (2010). On the fractional Adams method. Computers & Mathematics with Applications, 59(5), 1745-1758.
Hilfer, R. (2000). Applications of fractional calculus in physics. World Scientific.
Islam, N., Borhan, J. R. M., & Prodhan, R. (2024). Application of mathematical modeling: A mathematical model for dengue disease in Bangladesh. International Journal of Mathematical Sciences and Computing, 10(1), 19-30.
Kumar, M., & Singh, S. (2019). Numerical solutions of fractional differential equations using a novel predictor-corrector scheme. Mathematics and Computers in Simulation, 156, 76-89.
Kumar, R., Saxena, B., Shrivastava, R., & Bhardwaj, R. (2024). Mathematical modeling of dengue disease transmission dynamics. Indian Journal of Science and Technology, 17(39), 4101-4110.
Lubich, C. (1986). Discretized fractional calculus. SIAM Journal on Mathematical Analysis, 17(3), 704-719.
Magin, R. L. (2006). Fractional calculus in bioengineering. Begell House Publishers.
Meena, M., & Purohit, M. (2024). Mathematical analysis using fractional operators to study the dynamics of dengue fever. Physica Scripta, 99(9), 095206.
Meetei, M. Z., Zafar, S., Zaagan, A. A., Mahnashi, A. M., & Idrees, M. (2024). Dengue transmission dynamics: A fractional-order approach with compartmental modeling. Fractal and Fractional, 8(4), 207.
Mohammed, A., Abdulfatai, A., Abimbola, N. G. A., & Ali, I. M. (2022). Mathematical modelling of dengue fever incorporating vaccination as control. Abacus (Mathematics Science Series), 49(1).
Naaly, B. Z., Marijani, T., Isdory, A., & Ndendya, J. Z. (2024). Mathematical modeling of the effects of vector control, treatment, and mass awareness on the transmission dynamics of dengue fever. Computer Methods and Programs in Biomedicine Update, 6, 100159.
Nisar, K. S., Farman, M., Abdel-Aty, M., & Ravichandran, C. (2024). A review of fractional order epidemic models for life sciences problems: Past, present, and future. Alexandria Engineering Journal, 95, 283-305.
Olayiwola, M. O., & Yunus, A. O. (2024). Mathematical analysis of a within-host dengue virus dynamics model with adaptive immunity using Caputo fractional-order derivatives. Journal of Umm Al-Qura University for Applied Sciences, 1-20.
Pandey, H. R., & Phaijoo, G. R. (2024). Dengue dynamics in Nepal: A Caputo fractional model with optimal control strategies. Heliyon, 10(13).
Podlubny, I. (1999). Fractional differential equations. Academic Press.
Rahman, A., Khan, M., & Islam, S. (2022). Modeling rare human-to-human transmission routes in dengue dynamics. Journal of Infectious Diseases and Epidemiology, 10(3), 56-65. https://doi.org/10.1016/j.jide.2022.05.003
Shanmugam, S. N., & Byeon, H. (2024). Comprehending symmetry in epidemiology: A review of analytical methods and insights from models of COVID-19, Ebola, Dengue, and Monkeypox. Medicine, 103(41), e40063.
Usman, M., Abbas, M., Khan, S. H., & Omame, A. (2024). Analysis of a fractional-order model for dengue transmission dynamics with quarantine and vaccination measures. Scientific Reports, 14(1), 11954.
Vellappandi, M., Govindaraj, V., Kumar, P., & Nisar, K. S. (2024). An optimal control problem for dengue fever model using Caputo fractional derivatives. Progress in Fractional Differentiation, 10(1), 1-15.
Vijayalakshmi, G. M., Ariyanatchi, M., Cepova, L., & Karthik, K. (2024). Advanced optimal control approaches for immune boosting and clinical treatment to enhance dengue viremia models using ABC fractional-order analysis. Frontiers in Public Health, 12, 1398325.
World Health Organization. (2024, April 23). Dengue and severe dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
Zhuang, P., & Liu, F. (2006). A predictor-corrector approach for the numerical solution of fractional differential equations. Applied Mathematics and Computation, 187(2), 879-886.