A Hybrid Algorithm for Solving Nonlinear Problems
DOI:
https://doi.org/10.63561/jmns.v2i3.860Keywords:
Bregman Quasi-Strict Pseudo-Contractive Mappings, System Of Generalized Mixed Equilibrium ProblemsAbstract
We construct an algorithm for the approximation of the common solution of the set of fixed points of a countable family of closed Bregman quasi-strict pseudo-contractive mappings; set of solutions of a finite system of a generalized mixed equilibrium problems and the set of h-fixed points of a finite family of h-pseudo-contractive mappings. A strong convergence theorem is proved for this algorithm in a reflexive (real) Banach space. An application is provided.
References
Rockafellar, R.T. (1970). Convex Analysis, Princeto University Press, Princeton.
Naraghirad, E. & Yao, J. C. (2013). Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory and Applications 2013, 141.
Zalinescu, C. (2002). Convex Analysis in General Vector Spaces, World Scientific, River Edge, NJ, USA.
Chidume, C. E. (2009). Geometric Properties of Banach Spaces and Nonlinear Iterations, Lectures Notes in Mathematics, Springer, London.
Reich, S. & Sabach, S. (2010). Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal., 73, 122–135.
Bregman, L. M. (1967). The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Computational Mathematics and Mathematical Physics, 7(3), 200–217.
Censor, Y. &, Lent, A. (1981). An iterative row-action method for interval convex programming, J. Optim. Theory Appl., 34, 321–353.
Reich, S. & Sabach, S. (2009). A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, Journal of Nonlinear Convex Analysis, 10(3), 471–485.
Zegeye, H. & Shahzad, N. (2014). Strong convergence theorems for a common fixed point of a finite family of Bregman weak relativity nonexpansive mappings in reflexive Banach spaces, The Scientific World Journal, 2014, Article ID 493450, 8 pages.
Ugwunnadi, G. C. Ali, B. & Minjibir, M. S. & Idris, I. (2014). Strong convergence theorem for quasi-Bregman strictly pseudocontractive mappings and equilibrium problems in reflexive Banach spaces, Fixed Point Theory Appl., 231, 1–16.
Zegeye, S. B., Zegeye, H. M., Sangagoa, G. & Boikanyo, O. A. (2022). A convergence theorem for a common solution of f-fixed point, variational inequality and generalized mixed equilibrium problems in Banach spaces, Int. J.Nonlinear Anal. Appl.,1–19 http://dx.doi.org/10.22075/ijnaa.2022.25363.2995
Picard, È. (1890). Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives. Journal de Mathématiques Pures et Appliquées, (6)145–210.
Krasnosel’skii, M. A. (1955). Two remarks on the method of successive approximations. Uspekhi matematicheskikh nauk, 10:1, 123–127.
Mann, W. R. (1953). Mean value method in iteration. Proc. Amer. Math.Soc., (4), 506-510.
Ishikawa, S. (1974). Fixed points by a new iteration method. Proceeding of the American Mathematical Society, 44(1), 147–150.
Polyak, B. T. (1964). Some method of speeding up the convergence of the iteration methods, USSR Comput. Math. Phys. (4), 1–17.
Ali, B., Ezeora, J. N. & Lawan, M. S. (2019). Inertial Algorithm for Solving Fixed Point and Generalized Mixed Equilibrium Problems in Banach Spaces, PanAmerican Mathematical Journal, 29(3),64–83.
Chidume, C. E., Ikechukwu, S. I. & Adamu, A. (2018). Inertial algorithm for approximating a common fixed point for a countable family of relatively nonexpansive maps, Fixed Point Theory and Applications, 2018:9.
Wang, Z.-M. (2015). Strong convergence theorems for Bregman quasi-strict pseudo-contractions in reflexive Banach spaces with applications, Fixed Point Theory Appl., 2015, 17 pages.
Wang, Z-M., & Wei, A. (2017). Some results on a finite family of Bregman quasi-strict pseudo-contractions, J. Nonlinear Sci. Appl., 10, 975–989.
Yongfu, S., & Yongchun, X. (2015). New hybrid shrinking projection algorithm for common fixed points of a family of countable quasi-Bregman strictly pseudocontractive mappings with equilibrium and variational inequality and optimization problems, Fixed Point Theory and Appl. 95.
Ceng, L.C., & Yao, J.C. (2008). A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., (214), 186–201.
Blum, E. & Oettli, W. (1994). From optimization and variational inequalities to equilibrium problems, Math.Stud. (63),123–145.
Mouda , A. & Thera, M. (1999). Proximal and dynamical approaches to equilibrium problems, Lecture notes in Economics and Mathematical Systems, 477, Spinger, 187–201.
Browder, F.E. (1966). Existence and approximation of solutions of nonlinear variational inequalities, Proc. Natl. Acad. Sci. USA 56, no. 4, 1080–1086.
Dong, Q. L., Yuan, H. B., Je, C. Y. & Rassias, Th. M. (2018). Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings, Optim. Lett.,12,87–102. https://doi.org/10.1007/s11590-016-1102-9.
Ekuma-Okereke, E. & Okoro, F. M. (2020). Common solution for Nonlinear Operators in Banach spaces, Gazi University Journal of Science.
Phelps, R. P. (1993). Convex Functions, Monotone Operators and Differentiability, Springer, Berlin, Volume 1364.
Bauschke, H. H. & Borwein, J. M. (1997). Legendre functions and the method of random Bregman projections, Journal of Convex Analysis, 4(1), 27–-67.
Bauschke, H. H., Borwein, J. M. Combettes, P. L. (2001). Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Communications in Contemporary Mathematics, 3(4), 615–647
Butnariu, D. & Resmerita, E. (2006). Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces, Abstract and Applied Analysis, 1–39.
Butnariu, D. & Iusem, A. N. (2000). Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic, Dordrecht, Volume 40.
Bonnas, J. F. & Shapiro, A. (2000). Perturbation Analysis of Optimization Problems, Springer, New York.
Chen, J., Wan, Z., Yuan, L., & Zheng, Y. (2011). Approximation of fixed points of weak Bregman relatively nonexpansive mappings in Banach spaces, International Journal of Mathematics and Mathematical Sciences, 2011,420192, 23 pages.
Alber, Y. I. (1996). Metric and generalized projection operators in Banach Spaces Properties and Applications, Lecture Notes in Pure and Applied Mathematics,15–50.
Matsushita, S. & Takahashi, W. A. (2005). Strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory, 134, 257–266.
Ekuma-Okereke, E. & Oladipo, A. T. (2020). A Stong convergence theorem for finite families of Bregman quasi-nonexpansive and monotone mappings in Banach spaces, Fixed Point Theory, 21(1), 167–180, DOI: 10.24193/fpt-ro.2020.1.12.
Yousuf, S. (2019). Iterative Methods for Some Classes of Equilibrium Problems and Fxed Point Problems, Ph.D thesis, Aligarh Muslim University, India, 2019, 85–106..
Payvand, M. A. & Jahedi, S. (2016). System of generalized mixed equilibrium problems, variational inequality, and fixed point problems, Fixed Point Theory and Applications, 93. DOI 10.1186/s13663-016-0583-7
Padcharoen, A. Kuman, P. Chaipunya, P. & Shehu, Y. (2020). Convergence of inertial modified Krasnoselskii-Mann iteration with application to image recovery, Thai Journal of Mathematics, 18(1), 126–142.
Kato, T. (1967). Nonlinear semigroup and evolution equations, Journal of Mathematical Society Japan, 19, 508–520.