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Abstract

The Korteweg-de Vries equation is a nonlinear PDE that is used to describe most physical systems involving
dispersion, such as wave propagation, fluid dynamics, and plasma physics. In the light of the influence of coriolis
effect on waves, the study of the Geophysical Korteweg-de Vries (GKdV) equation is examined. The Lie point
symmetries and conservation laws of the equation are constructed and with the Lie point symmetries, a symmetry
analysis is performed to reduce the equation to an integrable form. Numerical solutions of the reduced equation were
considered for the travelling wave (periodic wave) of the GKdV equation for the parameters § (for the coriolis
effect) and A (for the velocity of the wave). To examine the coriolis effect on free flow in oceans, the dynamical
system analysis is applied on the GKdV equation. From the study, it is revealed that travelling wave velocity and
coriolis factor have significant effects on the transmission of the periodic wave solution of the GKdV equation. The
results obtained stands as a motivation to extend the method to some other nonlinear evolution equations.

Keywords: Korteweg-de Vries Equation, Lie Symmetry Analysis, Conservation Laws, Exact solution, Dynamical
Systems.

Introduction

“Nonlinear evolution equations (NLEES), that is, dynamical partial differential equations, that deal with both time
and space as independent variables, have contributed immensely within the disciplines of Mathematics and Physics,
where this is greatly reflected in nonlinear physical systems (Olver, 2014;Rizvi et al., 2020).” The nonlinear physical
systems include fluid dynamics, plasma physics, wave propagation and many more. There is a notable NLEE that is
recognized for the majority of scientific, biological, and chemical issues, such as quantum field theory and solid
mechanics (Rizvi et al., 2021), among others which is known as Nonlinear Partial Differential Equation (NLPDE)
(Ablowitz &Clarkson, 1991).

As one of the partial differential equations that are nonlinear, the Korteweg-deVries equation

P+ PPy + oo =0 | I O
generally is regarded as the equation that describes how waves with tiny amplitudes propagate unidirectionally in a
nonlinear dispersive medium (Miura, 1976), and is well known as a typical example to describe long waves that are
weakly nonlinear in numerous engineering and scientific fields (Xiang, 2015).

The KdV equation was first developed as a comprehensive analysis of canal waves in shallow water (Xiang, 2015).
“However, the discovery of shallow waves is credited to John Scott Russell, who in 1834 made the first observation
of the isolated wave, a long water wave with no change in shape that he named the enormous translation wave that
crossed the Canal of Edinburgh—Glasgow (Debnath, 2012; Shingareva & Lizarraga-Celaya, 2011).” However, it was
Korteweg and de Vries who in 1895 “looked into the deformation of a system of waves of arbitrary shape but
moving in one direction only, wherein they obtained the differential equation for stationary waves (Korteweg & de
Vries, 1895).”
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As advancements were made in the field of nonlinear sciences, (Rizvi et al., 2020), several methods were introduced
in other to determine “the exact solution of Partial Differential Equations (PDEs) that are nonlinear such as the tanh-
function method, the extended tanh-function method, the sine-cosine method, the (G’/G)-expansion method and the
lie symmetry analysis (Jafari et al., 2013).” “Lie symmetry and conservation laws are important instruments for
deciphering how a physical system behaves and for solving diverse problems pertaining to mathematical physics
(Okeke et al., 2019).”

According to (Baleanu et al., 2017), Lie symmetry analysis, introduced by Sophus Lie a Norwegian Mathematician
(1842 — 1899) (Krishnakunar et al., 2020) as one of the efficient techniques used in investigating solutions of
nonlinear partial differential equations that are exact, “applies continuous transformation groups to determine
invariant and exact solutions of differential equations, that enables one to obtain differential equation solutions that
are entirely algorithmic (Bluman et al., 2010; Olivieri, 2010).” “The Lie groups of point transformations, which are
defined by infinitesimal generators, are fundamental to the study of Lie symmetry analysis (Bluman et al., 2010).”
According to (Bluman et al., 2010), the process of solving associated linear systems of equations to be determined
for the infinitesimal generators reduces the challenge of identifying the Lie group of point transformations that leaves
invariant a differential equation (partial or ordinary). Furthermore, they posited that “Sophus Lie demonstrated that,
point symmetry of an Ordinary Differential Equation (ODE) causes the ODE's order to reduce or a reduction in the
number of independent variables for a Partial Differential Equation (PDE) (Bluman et al., 2010).”

For their part, (Shingareva & Lizarraga-Celaya, 2011) stated that Lie group also referred to as continuous group is an
approach that is centered on finding the symmetries of differential equations where an explicit computational
approach used to calculate the continuous group of point transformations for a given differential equation, whether it
is linear or nonlinear is known as Lie group analysis. This Lie group analysis (Lie symmetry analysis) is an algebraic
approach that is based on transformation methods which allows us to identify transformations wherefore we have
invariance of a nonlinear PDE, and introduce new independent and dependent variables that simplify the differential
equation. Sophus Lie as stated in the work of (Shingareva & Lizarraga-Celaya, 2011), outlined that the process for
determining symmetries of differential equation, that is, determining transformations that preserve the equations'
structure, is comprised of four stages: firstly, to present the set of transformations with a single parameter, secondly,
give the invariance condition which will have a polynomial representation, thirdly, obtaining the determining system
which is solved and then find the coordinates of the infinitesimal operator, and fourthly, to consider “if this
determining equations can acknowledge other solutions that will produce other infinitesimal operators (Shingareva &
Lizarraga-Celaya, 2011).”

“Conservation laws are divergence expressions that disappear at partial differential equation solutions. They are
essential in relation to the decrease and solution of partial differential equations; in particular, a strong integrability
of the partial differential equation indicates several conservation laws pertaining to partial differential equation (Naz,
2012; Bluman & Anco, 2002).” “The major step in determining the exact solution of nonlinear PDEs is the
derivation of conservation laws, which uncover underlying invariant features (Majola et al., 2021).” Conservation
laws have various significant uses, such as investigating the integrability and linearization maps, as well as proving
that solutions exist and are unique (Bluman et al., 2010). “There are various approaches available for the
computation of conservation laws of DEs. These include, the direct construction method (multiplier approach,
variational derivatives approach), symmetry/adjoint symmetry pair method, symmetry action on a known
conservation law method, Cheviakov’s recursion formular, and Ibragimov’s conservation theorem (Buhe et al.,
2018).”

The direct construction method is an algorithmic approach presented by (Bluman & Anco, 2002) to obtain,
irrespective of how many dependent and independent variables there is, partial differential equations’ conservation
laws. By using this procedure, it is not necessary to employ or have a variational principle. However, the method
demonstrates how to proceed directly with establishing partial differential equations’ conservation laws, having
variational principle by utilizing the PDE's symmetries. Given that a PDE's symmetries fulfill a set of linear
determining equations and that the PDE and its symmetries are subject to an invariance condition. Then, with an
algorithmic calculation, it is possible to verify the invariance condition and which also yields a conservation law
construction formula where it is directly derived from the PDE and symmetry.
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However, when it comes to a PDE not having a “variational principle, the approach consists of substituting
symmetries with PDE adjoint symmetries that satisfy linear determining equations, that is, the adjoint of the
determining equation for symmetries (Bluman & Anco, 2002).” There is an equivalent direct method for getting the
conservation laws with regards to the PDE’s adjoint symmetries, since the adjoint invariance condition on adjoint
symmetries replaces the invariance condition on symmetries. Consequently, a general direct computational technique
for establishing the laws for local conservation for specified PDEs is provided by the system of conservation law
determination and the conservation law construction formula.

The direct method is a methodical process wherein native conservation laws are constructed whereby with respect to
a PDE system @{x; p} of order k, we look for multiplier sets (factors, characteristics) of the type:
{Ay(x,U,0U, ..., 0P UIN_,

according to a predetermined order p. Next, we ensure the multipliers' dependence on their arguments to forestall the
occurrence of singular multipliers. To locate all of these sets of multipliers, a set of determining equations is
therefore solved. Next, we determine the associated fluxes.

Yi(x, U, 0U,...,0™U)
that satisfies the identity

Ay (x, U, 0U, ..., PR (x, U, 0U, ..., 9PU) = D;w' (x, U, U, ..., 3" U).

Finally, a local conservation law is produced by respective set of fluxes and multipliers.
D;w'(x,p,0p,...,0"p) = 0.

According to (Liu et al., 2012), among the partial differential equations that are nonlinear that is studied the most, is
the KdV equation, which possess remarkable feature: travelling wave solutions, known as solitons. Through its
numerical study by (Zabusky & Kruskal, 1965), the KdV equation was found to possess multi-soliton solutions in
which the individual solitons move apart without changing their forms after interacting nonlinearly up close. There
are several practical applications of the KdV equation which includes but not limited to waves in “bubbly fluids,
internal oceanic and atmospheric waves, ion-acoustic waves in collisionless plasma, and shallow-water gravity
waves (El, 2007).”

There are several modifications of the Korteweg-de Vries equation. One such modification according to “(Ak et al.,
2020) is the geophysical Korteweg-de Vries equation”, given as

pe — Opy + %ppx + %pxxx =0 1.2 which is primarily
used in the study of coriolis effect in relation to oceanic flows, where (Rizvi et al., 2021) posited that “u indicates the
advancement of the surface that is free, and § stands for the Coriolis effect factor.” With regard to (1.2), (Karunaker
& Chakravety, 2019) employed the Homotopy Pertubation Method (HPM) in working out the nonlinear geophysical
Korteweg — de Vries equation's solution. On their part, (Rizvi et al., 2020), investigated the implementation of the
Unified Method on (1.2) with respect to extracting the equation's solutions in terms of rational and polynomial
functions which degenerates to providing wave solutions such as solitary, soliton, and elliptic wave solutions.. With
the aid of (1.2), (Ak et al., 2020), examined the impact of Coriolis effect on oceanic flows where they noted that
velocity of travelling waves and Coriolis parameter have major impact on the propagation of single-wave solution.

Statement of problem

The propagation of unidirectional waves in shallow water is described by the Korteweg-de Vries equation that
admits an exact solution known as the soliton. There is no specific method for figuring out nonlinear partial
differential equations' exact solutions. But determining the equations' exact solutions is a crucial task in nonlinear
science. To this end, an amalgamation of the lie symmetry analysis with dynamical system technique is applied in
determining the exact solution of the geophysical Korteweg-de Vries equation (1.2).
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Methods and Materials

“The Lie Symmetry analysis of differential equation is a (Okeke et al., 2018)” technique that is based on the “Lie
groups of point transformations, and which are characterized by infinitesimal generators (Bluman & Anco, 2002).”
With this technique, the Lie symmetries of (1.2) are determined, while the conservation laws for the equation are
determined by the use of the direct method technique. “The direct construction method as an algorithmic approach is
a technique to obtain, irrespective of how many dependent and independent variables there is, conservation laws of
partial differential equations (Bluman et al., 2010).”

Lie point symmetry of equation
The Lie point symmetries of the geophysical Korteweg — de Vries equation (1.2) are derived from the vector field
that takes the shape

a a a
X = T(t'x'P)a'*((tvx'P)a‘Fﬂ(tvx'.o)a- (21)

in which the functions of coefficient, 7(t, x, p), {(t, x, p), n(t, x, p), are to be established.
The operator, X, meets the criteria for Lie symmetry given as

3 1
XB[pe = 8p. +50p + ¢ Prrellazy = 0 (22)
where X3! denotes the third extension of the operator X and which is defined as

[7] a a a
XBl=Xx + Ct6_pt+ Cxa-l' Cxx@‘l' Cxxx EY (23)

and the coefficients ¢;, ¢y, ¢x and ¢, . are given by
6t = De(M) — peDe (1) — pxDe(§)
Sx =Dx(M) — peDx () — pxDx({)
Sxx = D (6x) = PexDx(T) — P D2 (4)
Cxxx = li (Cxx) - ptxxi)x (T) - pxxxi)x (()

Here D,, D, signify the sum of the derivative operators as specified by

9

a a a a 7]
@t:a+pt$+ pxta‘l'"‘,:Dx:a‘pr%‘i' Ptx

3pe + -, (2.4)
When (2.2) is expanded and divided according to various derivatives of powers of u, a system that is over determined
in the unknown coefficients ©(t, x, p),{(t,x,p) and n(t,x,p) is produced. However, because of its extensive
computations, the over determined system cannot be displayed here. Solving the over determined system for
T(t, x, p), {(t,x, p) and n(t, x, p), we obtain

w(t,x,p) = cit + ¢y,

{(t,x,p) = %clx + c3t + ¢y (2.5)
2 2
n(t'xvp) = ;(26 - 3p)C1 + §C3

where c;, ¢, c3, c,denote arbitrary constants. From the equations of (2.5), we were able to get a four-dimensional

Lie algebra which was spanned by the subsequent basis
a 7] 20 1

Xy=2 Xy=o Xy=t ;7*55')(4 =§x:—x+t%+§(26—3p);—p.
Conservation laws of the gkdv equation
A conserved vector that matches a conservation law of equation (1.2), is a 2 - tuple (T*, T*), so that

DT + D, T =
along the equation's solutions.
The equation (1.2) belongs to the third order partial differential equation, and its conservation laws cannot be derived
straight out of a variational principle. We utilize the multiplier approach to examine the conservation laws. A
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multiplier A of order up to three, viz., A = (4, %, Pr, Pts Paxr Pt Prtr Paxrer Pexser Peex ) 1S taKen into consideration for
(1.2). The divergence condition

3 1
:DtTt + bex =A (pt - 6px + Eppx + gpxxx) =0,
is satisfied by the conserved vector (T¢, T#), of (1.2). (Okeke et al., 2019)
We consider the multiplier, A of order zero to two in derivatives with respect to u. We present the multipliers A

together with the corresponding preserved vector (T*, T*) below. In case we look for more higher-order multipliers,
the number can be limitless.

A =1
Tt =
3 1
T* =2p? = 0p + < Prx
A, —{)
Tt ZE‘DZ
1 1 1
T* = ggp3 = 8p® = 5 Pa” + PP
A3 =—P2 +pxx

2
3 1
Tt = Epg +§prx
3 27 3 3 1 1 1 1
—2P* = P Pax + 3PP = 56P° = S PPxt + 5 Pxx” 5 PP — S0P
A, =28t —3tp+ 2x
Tt = —ztp2 + 26tp + 2xp

Tx 2

T* = —;tpg‘ —%tppm + 36tp? +%tp,c2 + zxp2 +§é‘tpm —28%tp +§xpm
—2p, — 28xp

The conserved densities, Ttand fluxes , T*for the multipliers Asand A4 below are too cumbersome to present here.
15 3 1 2 9 2
As = —=—p° = PPux + 7 Px" + Pux +56p
105 1 1 11
Ao =156p° = —=p* + ppuc + 5 PP’ = L Pa” = P Prx + 38PPrx — PePrx = 2Pet
—962p2.

Symmetry reductions and exact solutions of the equation (1.2)

In the present section, we employ the Lie point symmetries obtained in section 2.1 to transform the variables of the
equation (1.2) into new similarity variables. With the new similarity variables, the equation (1.2) is reduced to
ordinary differential equations for the purpose of determining their exact solutions where possible.

(i) Invariance under X, = %
Solving the characteristic equation
at _dx _ dp
1T 0 o @5
yields
z=2x w(Z)=p (3.2)

for similarity variables of X;.

The third order ODE

—ow' + % ww' + %w”' =0 (3.3)
is the result of reducing the GKDV equation (1.2) by these similarity variables.
Integrating (3.3) above we obtain
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_6‘[ dZ+ Wf 6dz{dz}
3
—6fdw+2wfdw+ [ { Y dz
3
=8 [dw + w [dw += fd{dzz}
—5W+Efviz/dw+gfd{dzz} 0
—(S'w+§-w—+lw”=c1
2 2 6
—éw + %WZ + %W" =c (3.4)
Where c, is a constant of integration.

(i) Invariance under X, = :—x
Solving the characteristic equation

a _dx _dp

o 1 o' (33)
yields

z=t,w(z)=p (3.6)
for similarity variables of X,.
The first order ODE

w =0 3.7)
is the result of reducing the equation (1.2) by these similarity variables.
Equation (3.7) implies that

w(z) =c, (3.8)
where ¢, is a constant. Equation (3.8) is a trivial solution and is not of interest.
(iii) Invariance under X; = £ 6_35 +§$
In solving the characteristic equation

at _dr _ 3dp

o ¢ 2 (39)
the similarity variables for X, are obtained as

z=t,w(iz)==—-p (3.10)
The first order ODE

zw'+w—§5= 0 (3.11)
is the result of reducing the equation (1.2) by these similarity variables.
The solution to the above equation (3.11) is

w(z) =26+2=0 (3.12)
where ¢ might be any constant.
In the original variables t,x solution (3.12) becomes

— 254402 _

p(t,x) = 35 tot = 0 (3.13)
i i -1,9,9,2 _3 2
(iv) Invariance under X, = Xttt (26 — 3p) 30
The characteristic equation for X, is

a _dx _dp (3.14)

1 0 0 '
Solving the above equation (3.14) gives rise to the similarity variables

z= 1 ,w(z) = —t3(3p —298) (3.15)

t3

The third order ODE

—2zw' +w(—4+9w) +w"" =0 (3.16)

is the result of reducing the equation (1.2) by these similarity variables.
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It is important to acknowledge that the reduced equations (3.4) and (3.16) provide significant challenges in their
analytical solution due to their considerable nonlinearity. Numerical solutions of the reduced equations would be
considered as the next logical step.

Figure 1
Graph of the Solution 3.13with§ =1 =1

Figure 2
Density Plot of the Solution 2.18 with§ =1 =1

Traveling wave solution of the gkdv equation and its dynamical system analysis

The equation (1.2)'s traveling wave (periodic wave) is analyzed qualitatively for the initial instance in the literature.
To investigate every potential traveling wave of the equation (1.2), we consider a linear combination of the
symmetries:X; = X; + AX, where 1 symbolizes the traveling wave's velocity.

By solving the characteristic equation
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at _dx _ dp

121 o (4.1
The similarity variables are obtained for X given by

{=x—2t U =p (4.2)
The GKDV equation (1.2) is reduced by these similarity variables to the third order ODE

A+ U +IUU +:U" =0 (4.3)
When we integrate the transformed equation (4.26), in terms of z, we get

A+ OU+IUR +-U" =k (4.4)

where k can be any constant of integration. Utilizing the boundary requirements
U—0,U —0,U"— 0as ¢ — too, we have

—(A+5)u+§u2 +§'u" =0. (4.5)
The system (4.5) is now reduced to the dynamical system

{Zf’ :ZU—B'UZ (4.6)

where @« = 6(A+ 6) and 8 = 2 . The system (4.6) is a dynamical system (Guckenheimer & Holmes, 1983); (Nieto &
Torres, 2000); (Lakshmanan & Rajaseekar, 2003); (Saha, 2012); (Saha, 2017) with parameters 6 and 1. Two
equilibrium points exist for the dynamical system (4.29) at E, (U, ¢,) = E;(0,0) and E; (U4, {y) = E; (%, 0).

Periodic wave solution
Waves having a repeating pattern composed of cycles that repeat over a certain interval of time are known as
periodic waves. This periodic waves, of the planar dynamical system (4.6) is a family of periodic trajectories

centered around the equilibrium point E; (U4, ;) = El(%, 0). Consequently, for the system (4.6) there are a number

of periodic wave solutions that match the set of periodic trajectories around E,(U,, {,) = E,(0,0) The distinction of
the periodic waves of the GKdV equation (1.2) is presented numerically in Figure 3 for various velocities, 4 = 1.0,
1.5 and 2.0 with fixed Coriolis parameter, § = 0.4 of the traveling wave. The periodic wave's amplitude increases
and its width decreases as the velocity (1) increases, as seen in Figure 3. Therefore, smoothness of the periodic wave
in the equation (1.2) reduces as the nonlinear wave's velocity (A) grows, thus, the periodic wave becomes spiky.

To examine the effect of the Coriolis force on the waves, we calculate the periodic waves of equation (1.2)
numerically, as Figure 4 illustrates for various Coriolis parameter,§ = 0.1, 0.2 and 0.4 while velocity of the periodic
waves, A is kept at a constant, A = 1. Figure 4 illustrates how the amplitude of the periodic wave shrinks and the
width expands with an increase in the Coriolis parameter (§). Therefore, as there is an increase of the Coriolis
parameter (&), the equation(1.2)'s periodic wave gets curvy and smooth.
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Figure 3

Distinction of Periodic Waves of (1.2) for various Velocities (1)
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Figure 4

Distinction of Periodic Waves of (1.2) for various Coriolis Parameter (&)
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Discussion

From figure 3, we have disparity of periodic wave of the equation (1.2) for a range of values for the velocity (1) of
the travelling wave for a fixed value of the coriolis factor (6 = 0.4). It is deduced from figure 3 that when the
velocity (1) increases, the amplitude of the periodic wave of equation (1.2) grows and then we have a decrease in the
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wave length. Thus, when velocity (1) of the nonlinear wave grows, the smoothness of the periodic wave of the
equation (1.2) decreases.

From figure 4, for a fixed velocity (4 = 1) of the travelling wave we have distinct periodic waves of the equation
(1.2) for a range of values of coriolis factor (6 = 0.1, 0.2 and 0.4). So, it is seen as the Coriolis factor (&) increases,
there is a decrease in the amplitude of the periodic wave and then the wave length expands. Thus when Coriolis
factor (&) increases, the periodic wave of the equation becomes curvy and smooth.

Conclusion

We use Lie symmetry analysis, dynamical system analysis, and conservation laws to examine the distinctive
characteristics and attributes of the geophysical Korteweg-de Vries equation. With symmetry analysis, new exact
solution is determined for the geophysical Korteweg — de Vries equation. This exact solution depicts similar structure
of solitary wave as shown in Figure 1. Furthermore, we apply dynamical system analysis on the equation to examine
the Coriolis effect on the free flow in oceans. The dynamical system analysis is examined in light of the traveling
wave velocity and Coriolis factor. The study reveals that the velocity of the traveling wave, and Coriolis factor have
significant effects on the transmission of the periodic wave solution of the GKDV equation. To illustrate how
compelling our method is for solving nonlinear evolution equations, we use a graph to demonstrate our solutions.
Furthermore, by applying multiplier's method, we compute conservation laws of the GKDV equation. The drawing
of the wave solutions, symmetry analysis, dynamical system analysis and enumeration of the conserved quantities of
the GKDV equation by us are relatively new and recent discoveries (Figures 1-4).

Recommendation

The findings of this study could be applied to the investigation of disruptions or wave propagation issues in oceanic
flows in the equatorial region. The method used here is straightforward and conventional, so it serves as motivation
to extend the method to some other nonlinear evolution models, like the generalized Hirota-Satsuma coupled KdV
system (Lu et al., 2007) the Davey-Stewartson system, the coupled Kadomtsev-Petviashvili system, and so forth.
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