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Abstract 

The Korteweg-de Vries equation is a nonlinear PDE that is used to describe most physical systems involving 

dispersion, such as wave propagation, fluid dynamics, and plasma physics. In the light of the influence of coriolis 

effect on waves, the study of the Geophysical Korteweg-de Vries (GKdV) equation is examined. The Lie point 

symmetries and conservation laws of the equation are constructed and with the Lie point symmetries, a symmetry 

analysis is performed to reduce the equation to an integrable form. Numerical solutions of the reduced equation were 

considered for the travelling wave (periodic wave) of the GKdV equation for the parameters 𝛿 (for the coriolis 

effect) and 𝜆 (for the velocity of the wave). To examine the coriolis effect on free flow in oceans, the dynamical 

system analysis is applied on the GKdV equation. From the study, it is revealed that travelling wave velocity and 

coriolis factor have significant effects on the transmission of the periodic wave solution of the GKdV equation. The 

results obtained stands as a motivation to extend the method to some other nonlinear evolution equations.   

 

Keywords: Korteweg-de Vries Equation, Lie Symmetry Analysis, Conservation Laws, Exact solution, Dynamical 

Systems. 

 

 

Introduction 

“Nonlinear evolution equations (NLEEs), that is, dynamical partial differential equations, that deal with both time 

and space as independent variables, have contributed immensely within the disciplines of Mathematics and Physics, 

where this is greatly reflected in nonlinear physical systems (Olver, 2014;Rizvi et al., 2020).” The nonlinear physical 

systems include fluid dynamics, plasma physics, wave propagation and many more. There is a notable NLEE that is 

recognized for the majority of scientific, biological, and chemical issues, such as quantum field theory and solid 

mechanics (Rizvi et al., 2021), among others which is known as Nonlinear Partial Differential Equation (NLPDE) 

(Ablowitz &Clarkson, 1991).  

 

As one of the partial differential equations that are nonlinear, the Korteweg-deVries  equation  

𝜌𝑡 + 𝛼𝜌𝜌𝑥 + 𝛽𝜌𝑥𝑥𝑥 = 0         1.1 

generally is regarded as the equation that describes how waves with tiny amplitudes propagate unidirectionally in a 

nonlinear dispersive medium (Miura, 1976), and is well known as a typical example to describe long waves that are 

weakly nonlinear in numerous engineering and scientific fields (Xiang, 2015). 

 

The KdV equation was first developed as a comprehensive analysis of canal waves in shallow water (Xiang, 2015). 

“However, the discovery of shallow waves is credited to John Scott Russell, who in 1834 made the first observation 

of the isolated wave, a long water wave with no change in shape that he named the enormous translation wave that 

crossed the Canal of Edinburgh–Glasgow (Debnath, 2012; Shingareva & Lizarraga-Celaya, 2011).” However, it was 

Korteweg and de Vries who in 1895 “looked into the deformation of a system of waves of arbitrary shape but 

moving in one direction only, wherein they obtained the differential equation for stationary waves (Korteweg & de 

Vries, 1895).”     
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As advancements were made in the field of nonlinear sciences, (Rizvi et al., 2020),  several methods were introduced 

in other to determine “the exact solution of Partial Differential Equations (PDEs) that are nonlinear such as the tanh-

function method, the extended tanh-function method, the sine-cosine method, the (G’/G)-expansion method and the 

lie symmetry analysis (Jafari et al., 2013).” “Lie symmetry and conservation laws are important instruments for 

deciphering how a physical system behaves and for solving diverse problems pertaining to mathematical physics 

(Okeke et al., 2019).” 

 

According to (Baleanu et al., 2017), Lie symmetry analysis, introduced by Sophus Lie a Norwegian Mathematician 

(1842 – 1899) (Krishnakunar et al., 2020) as one of the efficient techniques used in investigating solutions of 

nonlinear partial differential equations that are exact, “applies continuous transformation groups to determine 

invariant and exact solutions of differential equations, that enables one to obtain differential equation solutions that 

are entirely algorithmic (Bluman et al., 2010; Olivieri, 2010).” “The Lie groups of point transformations, which are 

defined by infinitesimal generators, are fundamental to the study of Lie symmetry analysis (Bluman et al., 2010).” 

According to (Bluman et al., 2010), the process of solving associated linear systems of equations to be determined 

for the infinitesimal generators reduces the challenge of identifying the Lie group of point transformations that leaves 

invariant a differential equation (partial or ordinary). Furthermore, they posited that “Sophus Lie demonstrated that, 

point symmetry of an Ordinary Differential Equation (ODE) causes the ODE's order to reduce or a reduction in the 

number of independent variables for a Partial Differential Equation (PDE) (Bluman et al., 2010).”  

 

For their part, (Shingareva & Lizarraga-Celaya, 2011) stated that Lie group also referred to as continuous group is an 

approach that is centered on finding the symmetries of differential equations where an explicit computational 

approach used to calculate the continuous group of point transformations for a given differential equation, whether it 

is linear or nonlinear is known as Lie group analysis. This Lie group analysis (Lie symmetry analysis) is an algebraic 

approach that is based on transformation methods which allows us to identify transformations wherefore we have 

invariance of a nonlinear PDE, and introduce new independent and dependent variables that simplify the differential 

equation. Sophus Lie as stated in the work of (Shingareva & Lizarraga-Celaya, 2011), outlined that the process for 

determining symmetries of differential equation, that is, determining transformations that preserve the equations' 

structure, is comprised of four stages: firstly, to present the set of transformations with a single parameter, secondly, 

give the invariance condition which will have a polynomial representation, thirdly, obtaining the determining system 

which is solved and then find the coordinates of the infinitesimal operator, and fourthly, to consider “if this 

determining equations can acknowledge other solutions that will produce other infinitesimal operators (Shingareva & 

Lizarraga-Celaya, 2011).” 

 

“Conservation laws are divergence expressions that disappear at partial differential equation solutions. They are 

essential in relation to the decrease and solution of partial differential equations; in particular, a strong integrability 

of the partial differential equation indicates several conservation laws pertaining to partial differential equation (Naz, 

2012; Bluman & Anco, 2002).” “The major step in determining the exact solution of nonlinear PDEs is the 

derivation of conservation laws, which uncover underlying invariant features (Majola et al., 2021).” Conservation 

laws have various significant uses, such as investigating the integrability and linearization maps, as well as proving 

that solutions exist and are unique (Bluman et al., 2010). “There are various approaches available for the 

computation of conservation laws of DEs. These include, the direct construction method (multiplier approach, 

variational derivatives approach), symmetry/adjoint symmetry pair method, symmetry action on a known 

conservation law method, Cheviakov’s recursion formular, and Ibragimov’s conservation theorem (Buhe et al., 

2018).” 

 

The direct construction method is an algorithmic approach presented by (Bluman & Anco, 2002) to obtain, 

irrespective of how many dependent and independent variables there is, partial differential equations’ conservation 

laws. By using this procedure, it is not necessary to employ or have a variational principle. However, the method 

demonstrates how to proceed directly with establishing partial differential equations’ conservation laws, having 

variational principle by utilizing the PDE's symmetries. Given that a PDE's symmetries fulfill a set of linear 

determining equations and that the PDE and its symmetries are subject to an invariance condition. Then, with an 

algorithmic calculation, it is possible to verify the invariance condition and which also yields a conservation law 

construction formula where it is directly derived from the PDE and symmetry.  
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However, when it comes to a PDE not having a “variational principle, the approach consists of substituting 

symmetries with PDE adjoint symmetries that satisfy linear determining equations, that is, the adjoint of the 

determining equation for symmetries (Bluman & Anco, 2002).” There is an equivalent direct method for getting the 

conservation laws with regards to the PDE’s adjoint symmetries, since the adjoint invariance condition on adjoint 

symmetries replaces the invariance condition on symmetries. Consequently, a general direct computational technique 

for establishing the laws for local conservation for specified PDEs is provided by the system of conservation law 

determination and the conservation law construction formula. 

 

The direct method is a methodical process wherein native conservation laws are constructed whereby with respect to 

a PDE system ∅{𝓍; 𝜌} of order 𝑘, we look for multiplier sets (factors, characteristics) of the type:  

 {Λ𝛼(𝓍, 𝒰, 𝜕𝒰, … , 𝜕𝑝𝒰}𝛼=1
𝑁  

 

according to a predetermined order 𝑝. Next, we ensure the multipliers' dependence on their arguments to forestall the 

occurrence of singular multipliers. To locate all of these sets of multipliers, a set of determining equations is 

therefore solved. Next, we determine the associated fluxes. 

 𝜓𝑖(𝑥, 𝒰, 𝜕𝒰, … , 𝜕𝑟𝒰) 

that satisfies the identity 

 

 Λ𝛼(𝑥, 𝒰, 𝜕𝒰, … , 𝜕𝑝𝒰)ℛ𝛼(𝑥, 𝒰, 𝜕𝒰, … , 𝜕𝑝𝒰) ≡ 𝔇𝑖𝜔
𝑖(𝑥, 𝒰, 𝜕𝒰, … , 𝜕𝑟𝒰). 

 

Finally, a local conservation law is produced by respective set of fluxes and multipliers. 

 𝔇𝑖𝜔
𝑖(𝑥, 𝜌, 𝜕𝜌, … , 𝜕𝑟𝜌) = 0. 

 

According to (Liu et al., 2012),  among the partial differential equations that are nonlinear that is studied the most, is 

the KdV equation, which possess remarkable feature: travelling wave solutions, known as solitons. Through its 

numerical study by (Zabusky & Kruskal, 1965), the KdV equation was found to possess multi-soliton solutions in 

which the individual solitons move apart without changing their forms after interacting nonlinearly up close. There 

are several practical applications of the KdV equation which includes but not limited to waves in “bubbly fluids, 

internal oceanic and atmospheric waves, ion-acoustic waves in collisionless plasma, and shallow-water gravity 

waves (El, 2007).”  

 

There are several modifications of the Korteweg-de Vries equation. One such modification according to “(Ak et al., 

2020) is the geophysical Korteweg-de Vries equation”, given as 

 

         𝜌𝑡 − 𝛿𝜌𝑥 +
3

2
𝜌𝜌𝑥 +

1

6
𝜌𝑥𝑥𝑥 = 0                           1.2  which is primarily 

used in the study of coriolis effect in relation to oceanic flows, where (Rizvi et al., 2021) posited that “𝑢 indicates the 

advancement of the surface that is free, and 𝛿 stands for the Coriolis effect factor.” With regard to (1.2), (Karunaker 

& Chakravety, 2019) employed the Homotopy Pertubation Method (HPM) in working out the nonlinear geophysical 

Korteweg – de Vries equation's solution. On their part, (Rizvi et al., 2020), investigated the implementation of the 

Unified Method on (1.2) with respect to extracting the equation's solutions in terms of rational and polynomial 

functions which degenerates to providing wave solutions such as solitary, soliton, and elliptic wave solutions.. With 

the aid of  (1.2), (Ak et al., 2020), examined the impact of Coriolis effect on oceanic flows where they noted that 

velocity of travelling waves and Coriolis parameter have major impact on the propagation of single-wave solution. 

 

Statement of problem  

The propagation of unidirectional waves in shallow water is described by the Korteweg-de Vries equation that 

admits an exact solution known as the soliton. There is no specific method for figuring out nonlinear partial 

differential equations' exact solutions. But determining the equations' exact solutions is a crucial task in nonlinear 

science. To this end, an amalgamation of the lie symmetry analysis with dynamical system technique is applied in 

determining the exact solution of the geophysical Korteweg-de Vries equation (1.2). 
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Methods and Materials 

“The Lie Symmetry analysis of differential equation is a (Okeke et al., 2018)” technique that is based on the “Lie 

groups of point transformations, and which are characterized by infinitesimal generators (Bluman & Anco, 2002).” 

With this technique, the Lie symmetries of (1.2) are determined, while the conservation laws for the equation are 

determined by the use of the direct method technique. “The direct construction method as an algorithmic approach is 

a technique to obtain, irrespective of how many dependent and independent variables there is, conservation laws of 

partial differential equations (Bluman et al., 2010).” 

 

Lie point symmetry of equation 

The Lie point symmetries of the geophysical Korteweg – de Vries equation (1.2) are derived from the vector field 

that takes the shape  

𝑋 = 𝜏(𝑡, 𝓍, 𝜌)
𝜕

𝜕𝑡
 +𝜁(𝑡, 𝓍, 𝜌)

𝜕

𝜕𝑥
+ 𝜂(𝑡, 𝓍, 𝜌)

𝜕

𝜕𝜌
.            (2.1) 

 

in which the functions of coefficient, 𝜏(𝑡, 𝓍, 𝜌), 𝜁(𝑡, 𝓍, 𝜌), 𝜂(𝑡, 𝓍, 𝜌), are to be established. 

The operator, 𝑋, meets the criteria for Lie symmetry given as  

 𝑋[3][𝜌𝑡 − 𝛿𝜌𝓍 +
3

2
𝜌𝜌 +

1

6
𝜌𝓍𝓍𝓍]|(1.2) = 0      (2.2) 

where 𝑋[3] denotes the third extension of the operator 𝑋 and which is defined as 

 

   𝑋[3] = 𝑋 + 𝜍𝑡
𝜕

𝜕𝜌𝑡
+ 𝜍𝓍

𝜕

𝜕𝜌𝓍
+ 𝜍𝓍𝓍

𝜕

𝜕𝜌𝓍𝓍
+  𝜍𝓍𝓍𝓍

𝜕

𝜕𝜌𝓍𝓍𝓍
       (2.3) 

 

and the coefficients 𝜍𝑡, 𝜍𝑥, 𝜍𝑥𝑥and 𝜍𝓍𝓍𝓍are given by 

𝜍𝑡 = 𝔇𝑡(𝜂) − 𝜌𝑡𝔇𝑡(𝜏) − 𝜌𝑥𝔇𝑡(𝜁) 
𝜍𝑥 = 𝔇𝑥(𝜂) − 𝜌𝑡𝔇𝑥(𝜏) − 𝜌𝑥𝔇𝑥(𝜁) 

𝜍𝑥𝑥 = 𝔇𝑥(𝜍𝑥) − 𝜌𝑡𝑥𝔇𝑥(𝜏) − 𝜌𝑥𝑥𝔇𝑥(𝜁) 
𝜍𝑥𝑥𝑥 = 𝔇𝑥(𝜍𝑥𝑥) − 𝜌𝑡𝑥𝑥𝔇𝑥(𝜏) − 𝜌𝑥𝑥𝑥𝔇𝑥(𝜁) 

 

Here 𝔇𝑡 , 𝔇𝑥 signify the sum of the derivative operators as specified by 

 

 𝔇𝑡 =
𝜕

𝜕𝑡
+ 𝜌𝑡

𝜕

𝜕𝜌
+  𝜌𝑥𝑡

𝜕

𝜕𝜌𝑥
+ ⋯ , 𝔇𝑥 =

𝜕

𝜕𝑥
+ 𝜌𝑥

𝜕

𝜕𝜌
+  𝜌𝑡𝑥

𝜕

𝜕𝜌𝑡
+ ⋯,   (2.4) 

 
When (2.2) is expanded and divided according to various derivatives of powers of u, a system that is over determined 

in the unknown coefficients 𝜏(𝑡, 𝑥, 𝜌), 𝜁(𝑡, 𝑥, 𝜌) and 𝜂(𝑡, 𝑥, 𝜌) is produced. However, because of its extensive 

computations, the over determined system cannot be displayed here. Solving the over determined system for 

𝜏(𝑡, 𝑥, 𝜌), 𝜁(𝑡, 𝑥, 𝜌) and 𝜂(𝑡, 𝑥, 𝜌), we obtain 

𝜏(𝑡, 𝓍, 𝜌) =  𝑐1𝑡 +  𝑐2,      

𝜁(𝑡, 𝓍, 𝜌) =  
1

3
𝑐1𝓍 + 𝑐3𝑡 + 𝑐4        (2.5) 

𝜂(𝑡, 𝓍, 𝜌) =
2

9
(2𝛿 − 3𝜌)𝑐1 +

2

3
𝑐3   

 

where 𝑐1, 𝑐2, 𝑐3, 𝑐4denote arbitrary constants. From the equations of (2.5), we were able to get a four-dimensional  

Lie algebra which was spanned by the subsequent basis  

𝑋1 =
𝜕

𝜕𝑡
  , 𝑋2 =

𝜕

𝜕𝓍
  , 𝑋3 = 𝑡 

𝜕

𝜕𝓍
 +

2

3

𝜕

𝜕𝜌
, 𝑋4 =

1

3
𝓍

𝜕

𝜕𝓍
+ 𝑡

𝜕

𝜕𝑡
+

2

9
(2𝛿 − 3𝜌)

𝜕

𝜕𝜌
.     

 

Conservation laws of the gkdv equation  

A conserved vector that matches a conservation law of equation (1.2), is a 2 - tuple (𝑇𝑡 , 𝑇𝓍), so that 

    𝔇𝑡𝑇𝑡 + 𝔇𝓍𝑇𝓍 = 0        

along the equation's solutions. 

The equation (1.2) belongs to the third order partial differential equation, and its conservation laws cannot be derived 

straight out of a variational principle. We utilize the multiplier approach to examine the conservation laws. A 
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multiplier Λ of order up to three, viz., Λ = (t, 𝓍, 𝜌𝓍 , 𝜌𝑡 , 𝜌𝓍𝓍 , 𝜌𝓍𝑡 , 𝜌𝑡𝑡 , 𝜌𝓍𝓍𝓍 , 𝜌𝑡𝓍𝓍 , 𝜌𝑡𝑡𝓍), is taken into consideration for 

(1.2). The divergence condition 

 

   𝔇𝑡𝑇𝑡 + 𝔇𝓍𝑇𝓍 = Λ (𝜌𝑡 − 𝛿𝜌𝓍 +
3

2
𝜌𝜌𝓍 +

1

6
𝜌𝓍𝓍𝓍) = 0, 

is satisfied by the conserved vector (𝑇𝑡 , 𝑇𝓍), of (1.2). (Okeke et al., 2019)  

 

We consider the multiplier, Λ of order zero to two in derivatives with respect to 𝑢. We present the multipliers Λ 

together with the corresponding preserved vector (𝑇𝑡 , 𝑇𝓍)  below. In case we look for more higher-order multipliers, 

the number can be limitless. 

    Λ1 = 1         

    𝑇𝑡 = 𝜌 

    𝑇𝓍 =
3

4
𝜌2 − 𝛿𝜌 +

1

6
𝜌𝓍𝓍   

    Λ2 = 𝜌         

    𝑇𝑡 =
1

2
𝜌2 

    𝑇𝑥 =
1

2
𝜌3 − 𝛿𝜌2 −

1

12
𝜌𝓍

2 +
1

6
𝜌𝜌𝓍𝓍 

    Λ3 =
9

2
𝜌2 + 𝜌𝓍𝓍        

    𝑇𝑡 =
3

2
𝜌3 +

1

2
𝜌𝜌𝓍𝓍 

 𝑇𝓍 = −
3

2
𝜌3 −

27

32
𝜌5𝜌𝑥𝑥 +

3

4
𝜌2𝜌𝑥𝑥 −

3

2
𝛿𝜌3 −

1

2
𝜌𝜌𝑥𝑡 +

1

12
𝜌𝑥𝑥

2 +
1

2
𝜌𝑥𝜌𝑡 −

1

2
𝛿𝜌𝑥

2 

    Λ4 = 2𝛿𝑡 − 3𝑡𝜌 + 2𝓍       

    𝑇𝑡 = −
3

2
𝑡𝜌2 + 2𝛿𝑡𝜌 + 2𝓍𝜌 

 𝑇𝓍 = −
3

2
𝑡𝜌3 −

1

2
𝑡𝜌𝜌𝓍𝓍 + 3𝛿𝑡𝜌2 +

1

4
𝑡𝜌𝓍

2 +
3

2
𝓍𝜌2 +

1

3
𝛿𝑡𝜌𝓍𝓍 − 2𝛿2𝑡𝜌 +

1

3
𝑥𝜌𝓍𝓍              

   −
1

3
𝜌𝓍 − 2𝛿𝓍𝜌 

 

The conserved densities, 𝑇𝑡and fluxes , 𝑇𝓍for the multipliers Λ5and Λ6  below are too cumbersome to present here. 

    Λ5 = −
15

4
𝜌3 − 𝜌𝜌𝓍𝓍 +

1

4
𝜌𝓍

2 + 𝜌𝓍𝑡 +
9

2
𝛿𝜌2    

 Λ6 = 15𝛿𝜌3 −
105

16
𝜌4 + 𝜌𝜌𝓍𝑡 +

1

4
𝜌𝜌𝓍

2 −
1

4
𝜌𝓍𝓍

2 −
11

4
𝜌2𝜌𝓍𝓍 + 3𝛿𝜌𝜌𝓍𝓍 − 𝜌𝑡𝜌𝓍 − 2𝜌𝑡𝑡  

−9𝛿2𝜌2.             

 

Symmetry reductions and exact solutions of the equation (1.2) 

In the present section, we employ the Lie point symmetries obtained in section 2.1 to transform the variables of the 

equation (1.2) into new similarity variables. With the new similarity variables, the equation (1.2) is reduced to 

ordinary differential equations for the purpose of determining their exact solutions where possible. 

 

(i) Invariance under 𝑋1 =
𝜕

𝜕𝑡
 

Solving the characteristic equation  

                                        
𝑑𝓉

1
=

𝑑𝓍

0
=

𝑑𝜌

0
        (3.1)  

          

yields 

                                              𝑧 = 𝓍,   𝑤(𝑧) =  𝜌              (3.2)                

 

for similarity variables of 𝑋1.                   

 

The third order ODE 

           −𝛿𝑤′ + 
3

2
 𝑤 𝑤′ +

1

6
𝑤′′′ = 0       (3.3) 

is the result of reducing the GKDV equation (1.2) by these similarity variables. 

Integrating (3.3) above we obtain 
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            −𝛿 ∫
𝑑𝑤

𝑑𝑧
𝑑𝑧 +

3

2
𝑤 ∫

𝑑𝑤

𝑑𝑧
𝑑𝑧 +

1

6

𝑑

𝑑𝑧
{

𝑑2𝑤

𝑑𝑧2 } = 0 

    −𝛿 ∫ 𝑑𝑤 +
3

2
𝑤 ∫ 𝑑𝑤 +

1

6
∫

𝑑

𝑑𝑧
{

𝑑2𝑤

𝑑𝑧2 } 𝑑𝑧 = 0 

    −𝛿 ∫ 𝑑𝑤 +
3

2
𝑤 ∫ 𝑑𝑤 +

1

6
∫ 𝑑 {

𝑑2𝑤

𝑑𝑧2 } = 0 

    −𝛿𝑤 +
3

2
∫ 𝑤 𝑑𝑤 +

1

6
∫ 𝑑 {

𝑑2𝑤

𝑑𝑧2 } = 0 

    −𝛿𝑤 +
3

2
∙

𝑤2

2
+

1

6
𝑤′′ = 𝑐1 

    −𝛿𝑤 +
3

4
𝑤2 +

1

6
𝑤′′ = 𝑐1      (3.4)            

Where 𝑐1is a constant of integration. 

 

(ii) Invariance under 𝑋2 =
𝜕

𝜕𝓍
 

 Solving the characteristic equation    

     
𝑑𝓉

0
=

𝑑𝓍

1
=

𝑑𝜌

0
,      (3.5)  

yields 

    𝑧 = 𝓉, 𝑤(𝑧) = 𝜌       (3.6)   

for similarity variables of 𝑋2. 

The first order ODE  

    𝑤′ = 0        (3.7)  

is the result of reducing the equation (1.2) by these similarity variables.  

 Equation (3.7) implies that  

    𝑤(𝑧) = 𝑐2      (3.8) 

where  𝑐2 is a constant. Equation (3.8) is a trivial solution and is not of interest. 

 

(iii) Invariance under 𝑋3 = 𝓉 
𝜕

𝜕𝔵
 +

2

3

𝜕

𝜕𝜌
 

In solving the characteristic equation 

    
𝑑𝓉

0
=

𝑑𝔵

𝑐
=

3𝑑𝜌

2
       (3.9)  

 the similarity variables for 𝑋2 are obtained as   

    𝑧 = 𝑡, 𝑤(𝑧) =
2𝑥

3𝑡
− 𝜌     (3.10) 

The first order ODE   

    𝑧𝑤′ + 𝑤 −
2

3
𝛿 = 0      (3.11) 

is the result of reducing the equation (1.2) by these similarity variables. 

The solution to the above equation (3.11) is  

    𝑤(𝑧) =
2

3
𝛿 +

𝑐

𝑡
= 0     (3.12) 

where 𝑐 might be any constant.  

In the original variables  𝑡, 𝑥  solution (3.12) becomes  

    𝜌(𝑡, 𝑥) =
2

3
𝛿 +

𝑐

𝑡
+

2𝑥

3𝑡
= 0     (3.13) 

 

(iv) Invariance under 𝑋4 =
1

3
 𝑥

𝜕

𝜕𝑥
+ 

𝜕

𝜕𝑡
+

2

9
 (2𝛿 − 3𝜌)

𝜕

𝜕𝜌
 

The characteristic equation for 𝑋4 is  

    
𝑑𝑡

1
=

𝑑𝑥

0
=

𝑑𝜌

0
                                         (3.14)  

Solving the above equation (3.14) gives rise to the similarity variables  

    𝑧 =
𝑥

𝑡
1
3

 , 𝑤(𝑧) =
1

3
𝑡

2

3(3𝜌 − 2𝛿)      (3.15)  

The third order ODE  

    −2𝑧𝑤′ + 𝑤(−4 + 9𝑤′) + 𝑤′′′ = 0      (3.16)                          

is the result of reducing the equation (1.2) by these similarity variables.  
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It is important to acknowledge that the reduced equations (3.4) and (3.16) provide significant challenges in their 

analytical solution due to their considerable nonlinearity. Numerical solutions of the reduced equations would be 

considered as the next logical step. 

  

    

Figure 1  

Graph of the Solution 3.13 with 𝛿 = 𝜆 = 1 

 
 

Figure 2  

Density Plot of the Solution 2.18 with 𝛿 = 𝜆 = 1 

 
 

 

  

 

 

 

 

 

 

    
 
 
 

 

 

 

 

 

 

 

 

Traveling wave solution of the gkdv equation and its dynamical system analysis  

The equation (1.2)'s traveling wave (periodic wave) is analyzed qualitatively for the initial instance in the literature. 

To investigate every potential traveling wave of the equation (1.2), we consider a linear combination of the 

symmetries:𝑋𝑠 =  𝑋1 + 𝜆𝑋2 where 𝜆 symbolizes the traveling wave's velocity.  

By solving the characteristic equation 
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𝑑𝑡

1
=

𝑑𝑥

𝜆
=

𝑑𝜌

0
         (4.1) 

 

The similarity variables are obtained for 𝑋𝑠 given by 

    𝜁 = 𝑥 − 𝜆𝑡, 𝒰(𝜁) = 𝜌       (4.2)  

 

The GKDV equation (1.2) is reduced by these similarity variables to the third order ODE 

    −(𝜆 + 𝛿)𝒰′ +
3

2
𝒰𝒰′ +

1

6
𝒰′′′ = 0     (4.3)  

When we integrate the transformed equation (4.26), in terms of 𝑧, we get 

    −(𝜆 + 𝛿)𝒰 +
3

4
𝒰2 +

1

6
𝒰′′ = 𝑘    (4.4)  

 

 

where k can be any constant of integration. Utilizing the boundary requirements   

𝒰 ⟶ 0, 𝒰′ ⟶ 0, 𝒰′′ ⟶  0 as   𝜁 ⟶ ±∞, we have 

    −(𝜆 + 𝛿)𝒰 +
3

4
𝒰2 +

1

6
𝒰′′ = 0.     (4.5) 

 The system (4.5) is now reduced to the dynamical system  

 

    {𝑣′=𝛼𝒰−𝛽𝒰2
𝒰′=𝑣         (4.6) 

 

where 𝛼 = 6(𝜆 + 𝛿) and 𝛽 =
9

2
 . The system (4.6) is a dynamical system (Guckenheimer & Holmes, 1983); (Nieto & 

Torres, 2000); (Lakshmanan & Rajaseekar, 2003); (Saha, 2012); (Saha, 2017) with parameters 𝛿 and 𝜆. Two 

equilibrium points exist for the dynamical system (4.29) at 𝐸0(𝑈0, 𝜁0) = 𝐸0(0,0) and 𝐸1(𝑈1, 𝜁1) = 𝐸1(
𝛼

𝛽
, 0). 

 

Periodic wave solution 

Waves having a repeating pattern composed of cycles that repeat over a certain interval of time are known as 

periodic waves. This periodic waves, of the planar dynamical system (4.6) is a family of periodic trajectories 

centered around the equilibrium point 𝐸1(𝒰1, 𝜁1) = 𝐸1(
𝛼

𝛽
, 0). Consequently, for the system (4.6) there are a number 

of periodic wave solutions that match the set of periodic trajectories around 𝐸0(𝒰0, 𝜁0) = 𝐸0(0,0) The distinction of 

the periodic waves of the GKdV equation (1.2) is presented numerically in Figure 3 for various velocities, 𝜆 = 1.0, 

1.5 and 2.0 with fixed Coriolis parameter, 𝛿 = 0.4 of the traveling wave.  The periodic wave's amplitude increases 

and its width decreases as the velocity (𝜆) increases, as seen in Figure 3. Therefore, smoothness of the periodic wave 

in the equation (1.2) reduces as the nonlinear wave's velocity (λ) grows, thus, the periodic wave becomes spiky. 

 

To examine the effect of the Coriolis force on the waves, we calculate the periodic waves of equation (1.2) 

numerically, as Figure 4 illustrates for various Coriolis parameter,𝛿 = 0.1, 0.2 and 0.4 while velocity of the periodic 

waves, 𝜆 is kept at a constant, 𝜆 = 1. Figure 4 illustrates how the amplitude of the periodic wave shrinks and the 

width expands with an increase in the Coriolis parameter (𝛿). Therefore, as there is an increase of the Coriolis 

parameter (𝛿), the equation(1.2)'s periodic wave gets curvy and smooth. 
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Figure 3  

Distinction of Periodic Waves of (1.2) for various Velocities (𝜆) 

 
 

 

Figure 4  

Distinction of Periodic Waves of (1.2) for various Coriolis Parameter (𝛿) 

  
Discussion 

From figure 3, we have disparity of periodic wave of the equation (1.2) for a range of values for the velocity (𝜆) of 

the travelling wave for a fixed value of the coriolis factor (𝛿 = 0.4). It is deduced from figure 3 that when the 

velocity (𝜆) increases, the amplitude of the periodic wave of equation (1.2) grows and then we have a decrease in the 
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wave length. Thus, when velocity (𝜆) of the nonlinear wave grows, the smoothness of the periodic wave of the 

equation (1.2) decreases.  

 

From figure 4, for a fixed velocity (𝜆 = 1) of the travelling wave we have distinct periodic waves of the equation 

(1.2) for a range of values of coriolis factor (𝛿 = 0.1, 0.2 and 0.4). So, it is seen as the Coriolis factor (𝛿) increases, 

there is a decrease in the amplitude of the periodic wave and then the wave length expands. Thus when Coriolis 

factor (𝛿) increases, the periodic wave of the equation becomes curvy and smooth. 

 

 

 

Conclusion 

We use Lie symmetry analysis, dynamical system analysis, and conservation laws to examine the distinctive 

characteristics and attributes of the geophysical Korteweg-de Vries equation. With symmetry analysis, new exact 

solution is determined for the geophysical Korteweg – de Vries equation. This exact solution depicts similar structure 

of solitary wave as shown in Figure 1. Furthermore, we apply dynamical system analysis on the equation to examine 

the Coriolis effect on the free flow in oceans. The dynamical system analysis is examined in light of the traveling 

wave velocity and Coriolis factor. The study reveals that the velocity of the traveling wave, and Coriolis factor have 

significant effects on the transmission of the periodic wave solution of the GKDV equation. To illustrate how 

compelling our method is for solving nonlinear evolution equations, we use a graph to demonstrate our solutions. 

Furthermore, by applying multiplier's method, we compute conservation laws of the GKDV equation. The drawing 

of the wave solutions, symmetry analysis, dynamical system analysis and enumeration of the conserved quantities of 

the GKDV equation by us are relatively new and recent discoveries (Figures 1-4).  

 

Recommendation 

The findings of this study could be applied to the investigation of disruptions or wave propagation issues in oceanic 

flows in the equatorial region. The method used here is straightforward and conventional, so it serves as motivation 

to extend the method to some other nonlinear evolution models, like the generalized Hirota-Satsuma coupled KdV 

system (Lu et al., 2007) the Davey-Stewartson system, the coupled Kadomtsev-Petviashvili system, and so forth. 
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