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Abstract  

Healthcare cost, particularly positively skewed cost data, modelling is an important area in health policy 

formulation as it provides policymakers with valuable information on the appropriate distribution, as well as the 

important covariates to use in cost minimization programmes. Previous studies have attempted to undertake this 

but with simulated data, inadequate sample size, or different distributions. This study aimed to determine the 

robustness of some statistical models based on large healthcare cost data. Using real-life healthcare cost data, the 

study sought to determine how the various statistical models performed with different sample sizes (n=1100 and 

n=2444). Data for the study was obtained from the Ghana Health Service’s (GHS) facilities in the Volta Region 

of Ghana. We extracted the data from the District Health Information Management System 2 (DHIMS 2) database 

from 1st January to 31st December 2021 with covariates such as gender of the patients, age, length of stay in the 

hospital, and cost incurred. We explored both descriptive and inferential statistical techniques to analyze the data. 

Statistical models such as the ordinary least square (OLS), the OLS log (y), the log-normal (log(y)), the Poisson, 

the Cox proportional hazard, the Weibull, and the Gamma distributions were employed and the best model(s) 

were selected based on standard statistical metrics including the Akaike Information Criteria (AIC), the mean 

average percentage error (MAPE) and the mean squared error (MSE). The OLS log (y) was found to have 

outperformed all other models across different sample sizes. Policymakers could adopt the OLS log (y) model to 

predict healthcare costs in order to make a stronger case for adequate budgetary and logistic support.  

 

Keywords: Healthcare Cost, Robustness, Statistical Models, and Estimators. 

 

Introduction 

Globally, statistical models have been adopted by policymakers and decision-makers in the health sector have 

adopted statistical models. This is the result of the validity and reliability provided by these statistical models to 

predict healthcare costs and expenditures in both developed and developing countries (Khosravi et al., 2024). 

Statistical models vary widely in terms of the data available for analysis. While one statistical model might prove 

a model fitting for a specific prediction other show lower signs of achieving model fits.  Establishing a strong 

robust model fitting statistical model has proven to be very important for public health planning and sustainable 

healthcare delivery. Health care cost is the amount paid by clients or third-party payers for health care services or 

products. Over the years, healthcare costs and expenditures have been rising in developed and developing 

countries thereby receiving researchers’ attention (Stanmore et al., 2019). The need to ascertain the variability of 

healthcare costs has been pondered by many health economists and policymakers. Tracking Universal Health 

Coverage (2023) stated that the recent COVID-19 pandemic has invigorated the argument for an efficient 

statistical model to predict healthcare costs and expenditures in the case of unforeseen and well-established 

activities. Countries and economies have to prepare to provide efficient well-measured healthcare delivery 

systems for their citizens since health is life and has an unmeasurable impact on Gross Domestic Product (GDP) 

and productivity.  

 

Healthcare data comprises the cost and expenditures incurred in the sector within a specific timeframe (Almanie, 

2024; Gold et al., 2022). It is a major hurdle for governments, and taxpayers and in various ways is instituted to 
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ensure that the cost is held stable or reduced. In many situations, the desirability of a reduced healthcare cost has 

not been achieved by many health economists (Ravangard et al., 2014). This is due to the variance of increase in 

healthcare delivery, infrastructure to support healthcare, personnel remuneration, infrastructure costs, and 

healthcare facilities incurring high medical cost bills, financial malfeasance, expenditure into non-productive 

related issues, and non-related healthcare delivery expenditure. Healthcare cost and expenditures forms a large 

majority of healthcare data, thus, taking into consideration health-related issues and diseases that are not taken 

care of by the National Health Insurance Scheme (NHIS), but not limited to per episode or lifetime costs of 

diseases, specific disease incident cases (Russel, 2004).  

 

Healthcare costs may also come from unaccounted healthcare services and deliveries. Some researchers opined 

that healthcare cost response may change by level of consumption (e.g., outpatient versus inpatient, or low versus 

high levels) (Sturmberg & Bircher, 2019). Hence, some different parameters and factors affect the estimation of 

the mean population of healthcare costs. Thus, an efficient statistical model needs to be implemented to correct 

variations in costs and estimates in the short- or long-term for a sustainable healthcare delivery system. Given that 

cost and expenditure form a huge chunk of the healthcare data, there is a need to evaluate the efficiencies of the 

statistical models applicable for model-fitting predictions. 

 

Skewed data are those data that create asymmetrical, or skewed curves on a graph. These data from healthcare 

costs and expenditures are noticeable from various factors and a few of them are patient's inability to continue 

with healthcare after defaulting payments which might be a result of death (Malehi et al., 2015). Another is due 

to few patients having peculiar ailments which shore up the cost of health delivery as against a large majority of 

patients who reported ailments with much smaller or negligible costs This inherently results in heavy right tails 

of the healthcare cost curve showing that there is disproportionality in the distribution curve. These factors have 

rendered the need to envisage and establish the most efficient strategies to calculate and predict healthcare costs 

and expenditures. Using standard statistical analysis to estimate the mean healthcare cost has been derailed by 

these characteristics. Hence, the conventionally acceptable strategy or analytics to solve highly positive skewed 

data is to adopt the use of the logarithmic transformation approach. This approach takes the log value of the 

dependent variables or covariates to match against the healthcare cost outcome variable (Khosravi et al., 2024). 

This is done primarily to achieve normal distribution of the data set and most importantly to reduce drastically the 

level of skewness in the data for achieving the reduction in positive skewness in healthcare data. There is a need 

to implement efficient statistical models to achieve predictability of healthcare data and expenditures through 

linear regression. Linear regression has the capacity for easy modelling. Moreover, they are easy to interpret the 

relationship between the dependent and independent variables, thus the healthcare cost and the covariates. 

 

Regression modelling has been the most efficient statistical model used in predicting healthcare costs and 

expenditures, in addition, linear regression has been adopted as one of the critical tools used in prediction models 

of healthcare cost. With this analytical tool, there have been major challenges that have resulted not from the 

statistical models per se, but from attributes of healthcare data (Dash et al., 2019). Delving into the composition 

of healthcare data discloses the inefficiencies of using basic linear regression for prediction models. This is 

because healthcare data are characterized by high positive skewness and in some cases large number of resources 

with zero costs (Malehi et al., 2015). The Ordinary Least Squares (OLS) regression with logarithmic 

transformation has been adopted as the appropriate approach to solve the skewness in healthcare data. However, 

a few caveats have to be taken into consideration. The transformed scale data are not robust enough to give a 

strong model-fitting prediction of healthcare cost. The lack of robustness comes from the fact that it becomes 

imperatively difficult to determine heteroscedasticity within the variables. Hence, using just the logarithmic 

transformed OLS regression means having the propensity to lead to biased and imprecise estimates of the mean. 

Scholarly works in finding befitting statistical models for predicting healthcare costs have encountered challenges 

in estimating the population mean of healthcare costs. Also, the need to find a near-exact relationship between 

cost and covariates through regression modelling is another challenge in finding befitting statistical models for 

healthcare cost prediction.  

 

One of the critical solutions to the problem not being solved by the logarithmic transformation approach is the 

adoption of General Linear Models (GLMs) which result from the Exponential Conditional Mean (ECM). This is 

an important framework because the analytical model in ECM considers non-normal distributions of the variables. 

Healthcare systems have adopted the use of log-link modelling of GLMs since the function truncates the 

weaknesses and problems of the OLS regression. Alternatively, other models from non-parametric and fully 

parametric modelling analytics have proved to have robust results that can solve the issues when dealing with 

healthcare data with all its accompanied attributes of positive skewed data and leptokurtosis. Robust model output 

and forecasts are consistently accurate.  
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Scholarly work underpinned the need for testing statistical models when dealing with healthcare data as well as 

the accompanied estimation of the population mean of the healthcare cost. (Malehi et al., 2015) opined that while 

the covariates are very important to understand the impact of estimation on healthcare delivery, there is also a 

need to look at the relationship between the covariates of predicting healthcare cost and expenditures. With the 

assertion of a biased normal distribution which has been adjusted and corrected over some time, there is the need 

for statistical models to be given enough robust tests to ascertain their unbiasedness and accurate predictability of 

the models implemented (Sendi et al., 2021). 

 

Statement of the problem  

Few studies have also established the strength of covariates within the estimators that affect healthcare costs. 

However, not enough studies have been conducted on the need to test the variables and parameters that have 

strong tendencies to impact the statistical techniques in achieving model fits in context to varied sample sizes. 

The need to test the statistical robustness in estimating the mean of healthcare cost as well as the relationships 

between the covariates which determines the impact of the factors affecting healthcare cost and expenditure 

therefore becomes crucial. The study adopts a systematic approach study to compare the various statistical models 

to achieve the goals of reducing skewness in data, limiting bias in estimators, and improving on precision of the 

statistical models best fit for specific sample sizes. One of the problems of the study has to do with the lack of 

studies concerning comparative analysis between statistical models with extensive literature such as OLS log, Cox 

proportional hazard models, and GLMs which have not been tested against various sample sizes to ascertain their 

efficiencies in biases elimination and improved precision. This study attempts to solve the problem for various 

health economists irrespective of the size of their sample size. Moreover, solving a knowledge gap problem that 

exists in adjudicating the best models for estimating means of healthcare costs based on varied sample sizes. 

 

Objectives  

This study aims to determine the robustness of some statistical models as a method of estimating the mean of 

healthcare costs with large sample data from the Volta Region of Ghana. The objectives of this study are to: 

1. Determine the most appropriate estimator of skewed data in healthcare cost across various large sample 

sizes of 1100 and 2444. 

2. Determine whether the estimated mean of the population or covariates effects is the best fit for statistical 

models. 

3. Determine the impact of covariate effects on all conditions of the statistical models. 

4. Identify the most efficient statistical models for estimating healthcare costs with varied sample sizes of 

1100 and 2444. 

 

Methods and Materials 

The study employed a retrospective research approach by extracting secondary data (admission data) from 

DHIMS2. Second, the Event Report for 2021 and the client's covariates such as sex, age, length of stay, and 

number of time visits, were also downloaded. Those clients were selected with the hospital admission number 

traced to the hospital account units which provided the amount paid by each client. The real data of patients were 

gathered from hospitals and physicians' visits within one year. The total inpatient data for the year was 116220 

observations on patients who at least visited a doctor in the respective hospitals in 12 months (January to 

December 2021) and the data obtained was 110000. The records of patients' healthcare cost data were grouped 

into different sample sizes. The study aims at having the power of 80 percent with a 95 percent confidence interval 

and considering that secondary data will be used for the research all patient morbidity and amount paid data 

entered into DHIM2 2021 was used for the study. 

 

The study was conducted in the Volta Region of Ghana. The Volta region is among the sixteen regions of Ghana 

and has a population of 1649523 based on the 2020 population census with an annual growth rate of 2.1%. The 

region had a total of 18 which include districts/municipalities, 525 health facilities comprising: 322 CHPS, 39 

Clinics, 24 hospitals, 120 health centres, 10 maternity homes, 4 polyclinics, a regional hospital, and a teaching 

hospital.  Volta Region was selected for this research through simple random sampling techniques.  
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Esthetical consideration was granted by Ghana Health Service with the number GHS:008/03/2023. The sample 

size determination for this work focuses on different variations. In this regard, the sample size calculation was 

evaluated taking into consideration varying precision levels of computations. The precision level could be 

structured into ±2, ± 3%. Thus, ensuring that the confidence level of 95% has been maintained across the sample 

size determination. The sample size was determined using Slovin’s Formula with parameters of population size 

(N) and the margin of error (e).  It is specified as follows: 

𝑛 =  
𝑁

 1 + 𝑁 (𝑒)2 
 

N-population, n = sample size,  e - precision level 
The formula is universally accepted for determining the minimum sample size for scientific and health research. 

It gives a researcher an idea of how large the sample size needs to be to ensure a reasonable accuracy of results. 

To determine the sample size for the study, several scenarios were considered (simulation) based on the level of 

accuracy (level of precision) and the performance and robustness of the various distributions that were used in 

this study. 

 

Model specification  

Generalised Linear Models 

The Generalised Linear Models (GLMs) are broad classes of statistical models that help with non-normal 

dependent variables to linear combinations of predictor variables. Taking into consideration Yi which denotes 

healthcare expenditures for the person i, and Xi  denoting the covariates which also goes a long way to include the 

intercepts. Using an invertible link function (g (𝑦𝑖 .)) included the expectation of the response variable E (Yi) to 

the linear predictor which has been ascertained in equation (1) below.  

 

𝑔(𝐸(𝑦𝑖)) = 𝑔(𝜇𝑖) = 𝑥𝑖𝛽                                                                                                                          (1) 

 

The ECM works with the log link function to produce a non–linear regression model as shown in equations (2a) 

and (2b) below:  

 

ln (𝐸(𝑦|𝑥))   =   𝑥𝛽                                                                                (2𝑎) 

 

𝐸(𝑦) = exp(𝑥𝛽) =  𝜇 (𝑥𝛽)                                                                                              (2𝑏) 

 

One of the key attributes of these stochastic functions is the existence of the respective conditional mean-

variance relationship. One of the main general structures for this function is; 

 

𝑉𝑎𝑟 (𝑦) =  𝜎2𝑣(𝑥)                                                                                                                                              (3)  
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In relation to equation (2), the 𝑣(𝑥) represents 𝑉𝑎𝑟 (𝑦(𝑥)). 

There is one function which has the attribute to the gamma structure with 𝑣(𝑥)  =  𝑘2(𝜇(𝑥))2, where 𝑘2 > 0; 
The standard deviation is proportional to the mean. Within this class of power–proportional variance functions, 

it is useful to think more generally of the variance function 𝑣 (𝑥) being.  

𝑣(𝑥) = 𝑘(𝜇(𝑥𝛽))𝜆                                                                                                                                       (4) 

 

In the case of equation (4) the 𝜆 must be finite or non-negative. In situations where the 𝜆 = 0, then the position 

for the nonlinear least squares estimator is achieved. 

 

Ordinary Least Squares (OLS) Models 

Conventionally, the most adopted model is OLS-based model with logarithmic transformation of the dependent 

variable, ln(𝑦). The log transformation was used to decrease the skewness in healthcare data. In the case of 

applying the ordinary least squares approach, the assumed regression model which was adopted to estimate the 

mean of healthcare cost data was. 

 

𝑦 = exp(𝑥𝛽) +  𝜀                                                                                                                                       (5) 

 

When the 𝜀 was taken to be homoscedastic, then there was the need to ascertain that the natural function 

𝑉𝑎𝑟[𝑦|𝑥] was proportional to the estimated mean value of 𝐸[𝑦|𝑥]2. Thus, just as the homoscedastic linear 

model in equation (6);  

𝑦 = 𝑥𝛽 +  𝜀                                                                                                                                               (6) 

 

ln(𝑦) = 𝑥𝛿 +  𝜀                                                                                                                                         (7) 

 

For this model to achieve its robustness, it was assumed that 𝐸(𝑥𝜀) = 0 and 𝐸(𝜀) = 0, in order to predict cost 

on the original scale of the data.  

Moreover, in case the error term was heteroscedastic in x – meaning, the 𝐸(𝑒𝑥𝑝(𝑒)) is some function 

𝑓(𝑥) –  𝑡ℎ𝑒𝑛 𝐸(𝑦)  =  𝑓(𝑥) 𝑥 𝑒𝑥𝑝(𝑥𝛿), or, equivalently,  

 

ln(𝐸(𝑦)) = 𝑥𝛿 + ln(𝑓(𝑥))                                                                                                                   (8) 

 

In the log-normal case,  

ln(𝐸(𝑦)) = 𝑥𝛿 +  0.5𝛿2(𝑥)                                                                                                                     (9) 

 

 

Where the last variance term is the error variance on the log scale. 

These biases can be eliminated by including an estimate of the variance function, 𝑣(𝑥), if the error is log-

normal, or more generally, of 𝐸(exp(𝑒)|𝑥). 

 

𝑦 = exp(𝑥𝛽 +  𝜀)                                                                                                                                   (10𝑎) 

 

𝐸(𝑦|𝑥) = 𝐸 (exp(𝜀) |𝑥) 𝑒𝑥𝑝(𝑥𝛽)                                                                                                      (10𝑏) 

 

However, if the error term was normally distributed 𝑁(0, 𝜎𝜀
2), then the log normal case is applied as shown 

below in 11. 

𝐸(𝑦|𝑥) = exp(𝑥𝛽 + 0.5𝜎𝜀
2)                                                                                                                (11) 

 

Cox Proportional Hazard Model 

In simple terms, the hazard function could be expressed as the risk of dying at time t. which is estimated below.  

ℎ(𝑡) = ℎ0(𝑡)  × exp(𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑝𝑥𝑝)                                                                            (12) 

ℎ(𝑦|𝑥) = ℎ0(𝑦) exp(𝑥𝛽)                                                                                                                      (13) 

 

Poisson Regression Model 

Taking into consideration that the expected value of 𝑦𝑖  is given by equation 14 below.  

 

𝐸{𝑦𝑖|𝑥𝑖} = exp{𝑥𝑖
𝑇𝛽}                                                                                                                              (14) 
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In count data models which focus on estimating positive skewness data, one of the fundamental assumptions is 

that for a given 𝑥𝑖, the count variable 𝑦𝑖 has a Poisson distribution with expectation 𝜆𝑖 = exp{𝑥𝑖
𝑇𝛽}. Thus, after 

ensuring log functions are applied the probability mass function of 𝑦𝑖  conditional upon 𝑥𝑖 is given by the 

equation below.  

 

𝑃{𝑦𝑖 = 𝑦|𝑥𝑖} = exp{−λ𝑖} 𝜆𝑖
𝑦

| 𝑦!, 𝑦 = 0, 1, 2, … ..                                                                          (15) 

 

Log-Normal Distribution Data 

To start with, if the log scale error 𝜀 is normally distributed with 𝑚𝑒𝑎𝑛 =  0 and 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑣, then the raw 

scale skewness (S) for this data generating mechanism is provided as.  

 

𝑆𝑟𝑎𝑤 = (𝑤 + 2)((𝑤 − 1)2)                                                                                                                   (16) 

 

In reference to the equation 3.17, w = 𝑒𝑥𝑝(𝑣). Using 𝑁(0, 𝑣) normal distribution deviate, then let the log scale 

variance range from 0.5 to 2.0 in steps of 0.5 (i.e: 0.5, 1, 1.5, 2.0…). The true model thereof;  

 

ln(𝑦) =  𝛽0 + 𝛽1𝑥 + 𝜀.                                                                                                                          (17) 

 

From 16 where x is uniform (0,1), e is N (0, v) with a variance of v = 0.5, 1.0, 1.5, or 2.0, Expected outcome 

𝐸(𝑥`𝑒) = 0. B = 1.0. The value for the intercept B is selected so that 𝐸(𝑦) = 1. However, for this data 

mechanism, the expectation of y is: 

 

E(y)  =  e(β0+β1x + 0.5v)                                                                                                                            (18)  

The slope of 𝐸(𝑦) with respect to x equals 𝛽 exp (𝛽 + 𝛽x + 0.5v). 

 

Gamma Distribution Data 

In a contest of the probability density function (pdf) of Gamma distribution, the model is ascertained or 

established as; 

𝑓(𝑦) =  
1

Γ(𝛼)𝑏𝛼
𝑦𝛼−1𝑒−𝑦/𝑏                                                                                                                    (19) 

 

In equation (19) above, the 𝛼 represents the shape parameter and b is the scale parameter.  𝑏 = exp(𝛽0 +  𝛽1𝑥) 

and 𝛼 are the scale and shape parameters, respectively. The mean = 𝛼𝑏 and the skewness is a decreasing 

function of the shape parameter as 
2

√𝛼
. 

 

Weibull Distribution Data 

The Weibull data predicted mechanism has some portion of the proportional hazard properties. One of the 

assumptions for the Weibull data predicted has been indicated below.  

 

f(y) =  
α

b
(

y

b
)

α+1

e(−y/b)α
                                                                                                                        (20) 

 

This equation means that b = exp (𝛽0 + 𝛽1𝑥) and 𝛼 represents the scale and shape parameters respectively. 

However, the mean; 𝑏Γ(1 +  
1

𝛼
). The skewness is most importantly a decreasing function of the shape 

parameter, as depicted in equation (21). 

 

𝑏3Γ (1 +  
3

𝛼
) − 3Γ (1 +

1

Γ
) Γ (1 +  

2

𝛼
) + 2 (Γ (1 + 

1

𝛼
))

3

                                                           (21) 

 

The data-generating mechanism ascertains the shape parameter to be 0.5, 1 and 5 in the above equation. 

 

Evaluating Statistical Model Performance 

Two model performances were adopted for the research; Mean Prediction Error (MPE) and Mean Absolute 

Prediction Error (MAPE). The lower the values the better the model in estimating healthcare cost using either 

population mean or the covariates effects. The functions/equations have been ascertained in the equations below.  
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𝑀𝑃𝐸 =   
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖) 𝑛

𝑖=1                                                                                                                                       (22)  

 

𝑀𝐴𝑃𝐸 =   
1

𝑛
∑|𝑦𝑖 − �̂�𝑖| 

𝑛

𝑖=1

                                                                                                                    (23) 

 

Akaike Information Criteria (AIC)  

Akaike (1974) also developed another procedure known as the Akaike Information Criteria. Below 

is the form of the statistic.  

 

AIC=(
𝐸𝑆𝑆

𝑇
) 𝑒 (

2𝑘

𝑇
)                                                                                                                                                     (24)

   

                                                                                 

 

The value of AIC decreases when some variable is dropped (Ramanathan, 1995).  

 

Results 

Descriptive Statistics of the Covariate  

Table 1: Sample size of (n) = 2444 

Variables Min. Max. Mean Std. Dev. Variance Skewness 

Hospital Visits 1 8 2.3200 1.1605 1.3471 1.9140 

Age (years) 3 71 29.4301 15.6431 244.7010 0.3064 

Length of treatment (days) 2 29 4.0700 3.5151 12.3531 4.1331 

Sex 1 2 1.5000 0.5000 0.2503 0.0071 

Source: Researchers’ Computation, 2022 

 

Data in Table 1 Shows the results of the sample size of n = 2444. The corresponding hospital visits had a mean 

(M=2.3200) day of approximately 2 days. SD =1.1605, variance = 1.340 and skewness of 1.9140.  The age 

representation of the patients had a mean (M=29.43), indicating the mean or average age of participants was 

29years, SD =15.641, and skewness of 0.306The length of treatment had a mean (M = 4.0700) thus they spent 

about 4days for treatment of their ailments, whiles the SD = 3.515, and skewness = 4.1331. The sex of patients 

had a mean (M =1.5000) with SD = 0.5000, variance = 0.2500, and skewness = 0.007 

 

Table 2: Sample size of (n) = 1100 

Variables Min. Max. Mean Std. Dev. Variance Skewness 

Hospital Visits 1.0 8.0 2.3071 1.1745 1.3800 2.0460 

Age (years) 3 71 29.3312 15.4801 239.6310 0.3061 

Length of treatment (days) 2 29 3.9412 3.3251 11.0531 4.3031 

Sex 1 2 1.5001 0.5001 0.2502 -0.0110 

Source: Researchers’ computation, 2022 

 

Data in Table 2 shows the results of the sample size of n = 1100. The hospital visits had a mean (M =2.3071) 

which indicated on average patients visited the hospital 2 days with their ailment or for treatment the standard 

deviation (SD = 1.1745), variance = 1.3806 and skewness was established to be equal to 2.046. The age of the 

patients had a mean (M=29.3312) indicating an average of 29 years from the sample, the SD=15.480, variance = 

239.631, and skewness of 0.3061) of the sample. This data is followed by the length of treatment in days, the 

mean (M =3.94) indicating that it takes an average of 4 days, the standard deviation (SD =3.325, the variance = 

11.035, and skewness of 4.303. 
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Test of Normality on Raw Healthcare Cost  

Table 3: Cost of Patient Healthcare (n = 2444) 

Parameters Values (in Ghana Cedis) 

Mean 313.02 

Std. Deviation 712.68 

Variance 507915.85 

Skewness 5.210 

Kurtosis 28.29 

Minimum 25.00 

Maximum 
5210.00 

 

Table 3 shows that the different sample sizes used for the normality tests were 2444, 1100, 400, 100, and 25. 

About the sample size of n = 2444, Figure 4.1 with the corresponding table 4.8 showed that skewness = 5.213, 

with mean of health care cost M = 313.016. The maximum value was 5210 GH and the minimum was 25 GH. 

Figure 3 with the associated data showed a positively skewed healthcare cost data.  

 

Table 4: Cost of Patient Healthcare (n = 1100) 

Parameter Value (in Ghana Cedis) 

Mean 296.58 

Std. Deviation 676.45 

Variance 457586.00 

Skewness 5.54 

Kurtosis 32.31 

Minimum 25.12 

Maximum 5210 

 

Table 4 shows the context of the sample size of 1100. The mean value of 296.58 indicates that, on average, patients 

spend GHS 296.58. Also, the skewness = 5.540 with a kurtosis of 32.317, which points to a highly positively 

skewed data test of normality on transformed data. In this study, the predicted data came from Weibull 

regression which was used to represent the Cox proportional hazard model. 

 

Table 5: General Statistics on Predicted Data (n = 2444) 

Parameters Mean Std. Dev 
Coeff. of Coeff. of 

Skewness Kurtosis 

Log normal σ2 = 0.5 0.978 0.7169 0.454 0.197 

Log normal σ2 = 1 1.0052 0.9978 0.433 -0.352 

Log normal σ2 = 1.5 0.9767 1.245 0.527 -0.514 

Log normal σ2 = 2 0.9824 1.4383 0.603 -0.582 

Weibull α = 0.5  1.07 2.73 1.1 0.07 

Weibull α = 1 1 1.01 1.85 0.37 

Weibull α = 5 1.01 0.23 -0.24 -0.2 

Gamma α = 1 1.02 1.01 2.09 7.11 

Gamma α = 2 0.99 0.71 1.44 2.85 

Gamma α = 4 1.18 0.59 1.08 1.68 

Poisson α = 0.5 0.5 0.71 1.46      2.52 

Poisson α = 1 1 0.98 0.89 0.51 

Poisson α = 5 2.53 1.59 0.69 0.6 

 

Table 5 takes into consideration, the log normal, the higher the variance, the greater the skewness value across the 

sample sizes of 2444 and 1100. About the sample size of 2444, the Gamma skewness kept decreasing while the 

variance increased from  = 1, 2, and 4. This was the same with the Weibull regression model which decreased 

in skewness while the shape kept increasing. Similarly, the Poisson regression showed that the coefficient of the 

skewness decreases while the variance increases from 0.5, 1, and 5. Thus, the variance reduced from 1.4600, 
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0.8900 and 0.6900. However, the Log normal skewness kept increasing with the variance. This meant that except 

for the log-normal, the predicted data of Weibull, Poisson, and Gamma all kept decreasing in skewness while their 

variance increased. In all, Weibull produces the highest skewness level.  

Table 6: General Statistics on Predicted Data (n = 1100) 

Parameters 

               

Mean       Std. Dev Coeff. of Coeff. of 

   Skewness Kurtosis 

Log normal σ2 = 0.5 0.978 0.7169 0.454 0.197 

Log normal σ2 = 1 1.0052 0.9978 0.433 -0.352 

Log normal σ2 = 1.5 0.9767 1.245 0.527 -0.514 

Log normal σ2 = 2 0.9824 1.4383 0.603 -0.582 

Weibull α = 0.5 1.07 2.73 1.1 0.07 

Weibull α = 1 1 1.01 1.85 0.37 

Weibull α = 5 1.01 0.23 -0.24 -0.2 

Gamma α = 1 1.02 1.01 2.09 7.11 

Gamma α = 2 0.99 0.71 1.44 2.85 

Gamma α = 4 1.18 0.59 1.08 1.68 

Poisson α = 0.5 0.5 0.71 1.46 00 2.52 

Poisson α = 1 1 0.98 0.89 0.51 

Poisson α = 5 2.53 1.59 0.69 0.6 

 

Table 6 shows the sample size n = 1100, there were some similarities in terms of the skewness in both the Weibull, 

Gamma, and Poisson distributions of predicted data. Thus, at  = 0.5, 1, 5 of the Weibull, the skewness coefficient 

decreased over time from 4.2600, 1.9800, and -0.2200 respectively, this was in line with that of the Gamma with 

 = 1, 2, 4 showing a decreasing function of the skewness from 2.4, 1.37 and 1.0600, the Poisson distribution of 

predicted data also showed the same trend of decreasing skewness as against increasing variance or shapes. Except 

for the log-normal distribution which increased in value with the coefficient of skewness concerning the variance. 

 

Table 7: Performance of estimators on a sample size of 2444 

Model  MPE MAPE MSE(β) 

 
Weibull         

Shape α = 0.5 4.0071 0.7892 16.0611  

Shape α = 1 4.0782 0.803 16.6275  

Shape α = 5 4.068 0.801 16.5461  

Gamma        

Shape  α = 1 4.0881 0.8991 16.464  

Shape  α = 2 4.0581 0.805 16.7092  

Shape  α = 4 3.8902 0.7676 15.1919  

Log OLS MPE MAPE    

Variance σ2 = 0.5 4.1001 0.8074 16.8074  

Variance σ2 = 1 4.0723 0.802 16.0168  

Variance σ2 = 1.5 4.1011 0.8076 16.815  

Variance σ2 = 2 4.095 0.8065 16.7714  

Poisson        

 =  4.8774 0.9015 15.0364  

 =  4.597 0.803 16.0943  

 =  4.5472 0.5017 16.4907  

Cox Prop.        

Shape α = 0.5 4.107 0.7892 16.0615  

Shape α = 1 4.3251 0.803 16.6275  

Shape α = 5 4.068 0.801 16.5461  
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Taking into consideration the data in Table 7, the estimators witness lower MPE by declining skewness and 

increasing sample sizes in relation to the results. Considering the sample size n = 2444, the OLS with 4.0723 

exhibited lower MPE and levels compared to the Weibull, Gamma, Cox proportional and poison. Thus, producing 

a decreasing value of MPE while the shape kept increasing at σ2 = 1, Weibull =4.0782, Gamma=4.0581, Cox 

proportional=4.0680 and Poisson = 4.5970 at  = 1 for all respectively. However, there were lower values for 

MPE for estimators the better model Log OLS preferred to others Weibull, Gamma, Poisson, and Cox proportional 

hazard models. Under the MAPE which depicts an accuracy measure on each of the estimators, this was illustrated 

in table 7. The values of the MAPE were quite lower overall for all the estimators across the various sample sizes 

with minimal value variations. In the context of the sample size n=2444, some of the MAPE values were similar 

with little differences, thus, σ2 = 1, Log OLS=0.802, and Weibull=0. 8030 Gamma=0.8991, Poisson=0.8030, and 

Cox proportional=0.8030 values respectively. The Log OLS had the least MAPE values across the GLM models 

compared to the Cox Proportional, Weibull Poisson, and Gamma. 

 

As indicated in Table 7, with the focus of the objectives also considering the estimates of the covariates 𝛽1 

coefficients in estimating the model, the coefficients at 95% Confidence Interval (CI) were taken across sample 

sizes and estimators or models. The values showed that as classified within different sample sizes, there were 

greater similarities between the coefficient of the 𝛽1 MSE values across the estimators or models at the sample 

size of n = 2444, the Poisson regression showed a decreasing MSE 𝛽1 coefficient values at increasing shapes, thus 

𝛽1 = 15.0364 to 16.6275, to corresponding to shapes of  = 1, 0.5, and 5. However, the values across the 

estimators; Weibull, Cox prop, Gamma, and Log OLS have been ascertained to be slightly different with all being 

the high values of 15.01 – 17.90, which account for the higher values come from the results of the real world data. 

 

Table 8: Performance of Estimators with Sample Size of 1100 

Model  MPE MAPE MSE(β) 

Weibull  

Shape α =0.5 4.1254 0.8160 17.0190 

Shape α =1 3.9354 0.7785 15.4874 

Shape α =5 3.955 0.7824 15.6452 

Gamma 

Shape α =1 4.2454 0.8398 18.0235 

Shape α =2 4.0354 0.7982 16.2845 

Shape α =4 3.8654 0.7646 14.9414 

Log OLS 

Variance σ2=0.5 4.0497 0.801 16.3997 

Variance σ2=1 4.0810 0.8073 16.6555 

Variance σ2=1.5 4.0717 0.8054 16.5778 

Variance σ2=2 4.0732 0.8057 16.5909 

Poisson 

Shape α =0.5 4.055 0.8022 16.4463 

Shape α =1 4.575 0.9051 20.9343 

Shape α =5 3.005 0.5945 9.0325 

Cox Proportional  

Shape α =0.5 4.1541 0.865 16.3392 

Shape α =1 4.3105 0.8635 16.4745 

Shape α =5 4.4965 0.8824 16.6726 

 

However, considering the Log OLS model, there was a depiction of decreasing MPE values of 4.0110 taking to 

σ2 = 1 and an increase in  =1, of other models with a corresponding value. Taking a critical look at the sample 

size n = 1100, Weibull = 4.9350, Gamma = 4.2454, Poisson =4.5751 and Cox proportional = 4.9551 displayed 

decreasing MPE values at increasing shape of  = 1 The Log OLS of y had very close MPE values across the 

different variances, with only minimal variations. The Poisson and Cox Prop all had decreasing values of MPE at 

the increasing shapes. About the sample size of 1100, there was not much change in the MAPE values compared 

to the sample size of n = 2444. However, few variations were spotted for the Weibull = 0.8984 Gamma 0.8397 

with Poisson = 0.9050 and Cox proportional = 0.8174 which saw an increase in values respectively the values 
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were reducing with rising shapes. The Log OLS values showed smaller MAPE compared to the other Poisson 

models thus the Cox Proportion, Weibull, and Gamma. Taking into consideration the sample size n = 1100, the 

Cox proportion provided a decreasing value of the coefficient of MSE as the shape kept increasing from  = 0.5, 

1, and 5 corresponding to MSE = 17.02, 15.49, and 15.65. While that of the Log OLS was within the range of 

16.3997 and 16.591 in an increasing order corresponding to the variance 0.5, 1, 1.5, 2. Comparatively, the Poisson 

had the lowest values as noted in the earlier sample size, while the Gamma and Weibull regression showed similar 

decreasing values with rising shapes. 

 

Comparing Goodness of Fit 

 

Table 9: Test of Goodness of Fit 

Data Estimator 
Akaike Information Criterion 

(AIC) 

Sample size n=2444 

OLS for Ln(Y) 6944.6 

Poisson 6945.31 

Weibull 6944.8 

Gamma 14076.94 

Cox. Prop 7440.08 

Sample size n= 1100 

OLS for Ln(Y) 2264.87 

Poisson 2285.72 

Weibull 45240.1 

Gamma 2700.91 

Cox. Prop 5113.7 

 

The results in Table 9 above show that at a sample size of n = 2444, the AIC values for all estimators were not 

widely different, however, the OLS for log(y) produced a robust goodness of fit with the minimum AIC = 

6944.5950. At sample size n = 1100, the values were slightly wider in between than the previous sample size, the 

Log OLS had the best estimator with AIC = 2264.87. Conclusively, while, there are no best models across the 

various sample sizes, the OLS for log (y), was adjudicated as providing the best model for predicting the 

robustness and goodness of fit for healthcare data. 

 

Discussion  

Statistical modelling has become paramount in the estimation of health costs, A lot of strategies were adopted to 

control health costs by using  Monte Carlo simulations was used to estimate the mean health cost of different 

models (Malehi et al., 2015). However, we used the real cost of patient data collected from health hospitals. The 

research of Malehi identified the Gamma distribution as an appropriate estimator of the mean, but we identified 

that as the sample size increases the OLS for Ln(y) improves significantly. This agrees with the statement by 

many researchers that "selecting the optimal models depends on the research objectives". We again identified that 

Cox proportional hazard models, despite their theoretical merits, may not come out with the best results most 

importantly in non-ideal data conditions. We found many researchers who stated that there are no universally best 

model across all the data conditions using both simulation and real patient cost data. Our findings suggest that 

healthcare cost estimation sometimes involves the transfer from one health system to another involves an 

assumption about production process and efficiency since the data sources vary. It is also consistent with research 

work which suggested that in modeling healthcare cost sensitivity to assumption should be consider (Gregori, 

2011). 

 

Depending on the sample size and estimator models, the effects of the covariates used produce higher precision 

in estimating healthcare costs. With different sample sizes, the use of the mean of the healthcare cost data provided 

robust results as compared to the covariates and simulation. Also, they were easy to read and interpret without 

much ambiguity. Taking into consideration the various results shown in the above tables MPE with sample size 

Gamma performed better than all the distributions this goes contrary to research by (Gregori et al., 2011). 

However, the Gamma regression model had the smallest biases across all data-generating processes. From Table 

7, poison distribution performs better than all the distributions since it provides less value. The mean population 

estimates across the various sample sizes and variance where necessary and the estimators in comparison with the 

various results with the unique variance or shape (shape α =1) or Variance=1, the OLS performed better than all 

other distributions. The MPE for the poison distribution was better than all other distributions also MAPE poison 
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again performed better than ordinary least square (OLS), log(y), Poisson, Cox proportional hazard, Weibull, and 

Gamma distributions. 

 

Comparatively from the results under the unique variance or shape (shape α=1 or variance=1) of the distributions, 

the OLS, regression model provided more accurate estimates of inpatient cost than is the mean. However, the 

OLS produces higher robustness at higher, and the Poisson differs slightly in all the shapes and the variances. This 

means that the OLS performed sufficiently better on real-world data and we disagree with a research work with 

stated that, The Weibull estimator produces much higher robust precision with lower MSE of the covariates and 

that of the population mean results. Thus, the GLM models were robust compared to the Cox proportional hazard 

model and OLS for log (y). One cannot choose an estimator over another across all the sample sizes; however, 

the OLS (Log normal) produces a much better prediction, this is confirmed in the Table as OLS produced less 

value compared to the Gamma, Poisson, and Cox proportional hazard models. However, in this study, the 

predicted data came from Weibull regression which was used to represent the Cox proportional hazard model. 

 

Conclusion  

In this study, we cannot conclude that one estimator is better across various sample sizes and variances and shapes, 

few of them estimated the mean healthcare cost more appropriately comparatively. Thus, irrespective of the shapes 

and variances, some produced better estimators using the population mean and covariates. Thus, lower values on 

MAPE, MSES, and MPE. The OLS log (y) model is robust when using real-world data.  In the context of the 

Akaike Information Criterion (AIC), the best model was adjudicated to be those with lower values, and the OLS 

for log (y) and Weibull performed well at higher sample sizes. In many situations, the OLS log (y) becomes a 

dominant estimator without much substantial when dealing with the estimation of mean population cost E(y) and 

the covariates 𝛽1 of the healthcare cost data.  

 

Recommendations 

The following recommendations were made based on the findings of the study: 

1. The choice of a statistical model to predict healthcare costs should be determined by the size of data 

involved in the study. Using the different sample sizes used in this study as a guide will be helpful.   

2. Policymakers, particularly in Ghana, could adopt the OLS log (y) to predict healthcare costs irrespective 

of the sample size involved. This is because it produced robust and accurate estimates across different 

sample sizes.  
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