Faculty of Natural and Applied Sciences Journal of Mathematical and Statistical Computing Print ISSN: 3026-8605, e-ISSN 3043-632X www.fnasjournals.com Volume 2; Issue 1; September 2024; Page No. 121-128.

Computational Analysis of Financial Losses among Competing Stock Exchange Investors Based on Trading Period Length

*1Ekpeye, P.T., ¹Nafo, N.M., & ²Nu-ue, B.L.

¹Department of Mathematics, Rivers State University, Port Harcourt, Nigeria. ²Department of Mathematics/Statistics, Ignatius Ajuru University of Education, Port Harcourt, Nigeria.

*Corresponding author email: email: emissp1994@gmail.com

Abstract

The stock exchange serves as a cornerstone of modern financial systems which operates as a highly competitive platform that facilitates liquidity for investors. This paper presents a computational analysis of the Nigerian stock exchange, delving into the complex dynamics that govern its behavioural system with a focus on the investigation of the influence of the decreasing variation of the trading periods on the dividends accrued by competing investors within the stock exchange. To unravel these intricate dynamics, the study employed a mathematical framework based on a system of first-order nonlinear ordinary differential equations (ODEs) which is both continuous and partially differentiable in achieving objective. A key methodological approach utilized in this research was the ODE 45 numerical method, which is a highly efficient computational scheme, to quantify the dividends of stock exchange investors who experiencing a decreasing variation in the duration of their trading periods. One of the key findings of this study is the revelation that a decrease in the length of the trading period within a competitive market environment leads to a significant reduction in the dividends of the investors. The result of this investigation offers profound insights for investors, financial analysts, and policymakers who must navigate the complexities of this financial ecosystem. By advancing the understanding of how variation of trading period impacts dividend returns on investments, this study stands to inform more strategic decision-making and policy formulation in the context of the Nigerian stock exchange.

Keywords: Computational Analysis, Financial Loss, Stock Exchange Investors, Competing, Trading Period

Introduction

The stock exchange is an example of a dynamical system because of its time evolution (Nu-ue, 2022). The stock exchange market is a dynamic and complex environment which serves as a vital platform where investors engage in buying and selling securities to generate profits whereas dividends, as regular payments made by companies to their shareholders, represent a crucial component of investors' financial returns. The frequency and timing of trading activities within a given period can significantly influence the dividends received by investors in competing stock exchanges. Studies have shown that trading period is one of the determinants of dividend outcomes, and that could subsequently affect investment strategies. For instance, Smith and Johnson (2018) conducted a study using a regression model to analyze the impact of trading period on dividend yields. Their research found that trading periods influenced the dividend yields received by investors, leading to variations in overall returns. The study emphasized the importance of considering trading frequency in investment decision-making.

Bekaert et al. (2011) in his study on price volatility measured the extent of price fluctuations in the stock market. In his work, he posited that price volatility serves as another mediating variable that can be influenced by trading period variation and may impact dividend outcomes. Furthermore, Brown and Lee (2021) conducted a comparative study analyzing the impact of trading frequency on dividend returns. Their study highlighted the need for a comprehensive understanding of the relationship between trading periods and dividend returns to optimize investment strategies. Among the various factors that influence the profitability of investments in a stock exchange, dividend plays a crucial role hence it represents the distribution of a company's earnings to its shareholders, providing them with a regular

Ekpeye, P.T., Nafo, N.M., & Nu-ue, B.L.(2024). Operational compliance and organizational effectiveness of transport companies in south-south nigeria. FNAS Journal of Mathematical and Statistical Computing, 2(1), 121-128.

income stream. The dividends received by investors within the stock exchange are however influenced by several factors, including the length of trading period.

Trading period variation represents the variation in the frequency and timing of trading activities within the competing stock exchange markets in Nigeria. The impact of trading period variation on dividend outcomes for competing stock exchange investors in Nigeria remains an important and understudied area of research. Understanding the impact of trading period variation on dividends is important for investors and financial analysts operating in the stock exchange.

The frequency and timing of trading activities within a specific period can significantly impact the dividends received by competing stock exchange investors (Huang & Wu, 2013). For example, Li and Zhang (2018) utilized computational analysis techniques to simulate different trading period scenarios and found that shorter trading periods lead to increased volatility in dividend returns. Their research suggests that longer trading periods may provide more stable and predictable dividend income for investors. In another study, Wang and Chen (2019) conducted a computational analysis of trading period variations and observed that shorter trading periods can lead to higher dividends in certain situations. Their findings suggest that active investors who take advantage of short-term trading opportunities may benefit from shorter trading periods.

However, the relationship between trading period variation and dividend outcomes remains a complex and dynamic area of study. Traditional analytical methods may not adequately capture the intricate interplay between trading periods and dividend returns. Therefore, there is a need for computational analysis technique that can process large datasets, simulate different trading scenarios, and provide insights into the impact of trading period variation on dividends for competing stock exchange investors (Huang & Wang, 2020; Soltani, 2019). In all, the impact of trading period variation on dividends for competing stock exchange investors is a significant area of research as previous studies have emphasized the influence of trading frequency on dividend outcomes and highlighted the need for comprehensive computational analysis to optimize investment strategies. By leveraging computational analysis techniques, investors can gain valuable insights into the relationship between trading period variation and dividend returns, enabling informed decision-making in the competing stock exchange investors using length of trading period, specifically to quantify the effect of a decreasing variation of the length of trading period on the dividends of stock exchange investors using ODE 45 numerical method.

Formulation of the Mathematical Model Equations

Quantifying the impact of a decreasing variation of the length of trading period on the dividends of two competing populations of stock exchange investors depends on the application of a mathematical model consisting of nonlinear first order ordinary differential equations. Following Lotka (1956), Nafo and EKaka-a (2018), and Nu-ue (2022), a deterministic dynamical system of first order nonlinear ordinary differential equations which are continuous and partially differentiable with the following mathematical structure defined below has been considered in this study.

$$\frac{dD_1(t)}{dt} = D_1(t)[\alpha_1 - \beta_1 D_1(t) - r_{12} D_2(t)]$$
(1)

$$\frac{dD_2(t)}{dt} = D_2(t)[\alpha_2 - \beta_2 D_2(t) - r_{21} D_1(t)]$$

 $D_1(0) = D_{10} > 0$ and $D_2(0) = D_{20} > 0$

From the formulated system of differential equations above, the model variables and parameters are defined below.

(2)

- $D_1(t)$ is the dependent variable which represents the dividend of the first population of investors at trading time t.
- $D_2(t)$ is the dependent variable which represents the dividendof the second population of investors at trading time t.
- t is the independent variable which represents the trading time otherwise called the length of trading period (LTP) in the unit of hours.
- α_1 measures the intrinsic growth rate of the dividend of the first population of investors.
- α_2 measures the intrinsic growth rate of the dividend of the second population of investors.
- β_1 measures the intra-competition coefficient which is the first inhibiting factor on the growth of the dividend of the first population of investors due to self-interaction.

Ekpeye, P.T., Nafo, N.M., & Nu-ue, B.L.(2024). Operational compliance and organizational effectiveness of transport companies in south-south nigeria. *FNAS Journal of Mathematical and Statistical Computing*, 2(1), 121-128.

- β_2 measures the intra-competition coefficient which is the first inhibiting factor on the growth of the dividend of the second population of investors due to self-interaction.
- r_{12} measures the inter-competition coefficient which is the second inhibiting factor on the growth of the dividend of the first population of investors due to the interaction with the second population of investors.
- r_{21} measures the inter-competition coefficient which is the second inhibiting factor on the growth of the dividend of the second population of investors due to the interaction with the first population of investors.

 $D_1(0)$ and $D_2(0)$ are the initial conditions (investments) of the first and second populations of investors, respectively. For the purpose of this study, the following model parameter values have been considered for simulation (Osu *et al.*, 2009).

$\alpha_1 =$	0.037,	$\beta_1 =$	$0.0014, r_{12} =$	0.0005,
$\alpha_2 =$	0.03,	$\beta_2 =$	$0.0010, r_{21} =$	0.0004,
$D_1(0) =$	= 1.30,	$D_2(0) =$	1.50	

Materials and Methods

For the purpose of analysis, when all the model parameter values and the initial investments are fixed, the dividends of the two populations of stock exchange investors are defined by the set D(t), whereas when only the length of trading period is varied and all other model parameter values fixed, the dividends of the two populations of stock exchange investors are defined by the set $D_m(t)$. Hence, $D(t) = \{D_1(t), D_2(t)\}$ and $D_m(t) = \{D_{1m}(t), D_{2m}(t)\}$. Following this, when the simulated data sets of D(t) are each dominantly bigger than the simulated data sets of $D_m(t)$, then a depletion of their dividends has occurred and the percentage depleted can be quantified using the formula below.

Depletion (%) =
$$\frac{[D(t) - D_m(t)](100)}{D(t)}$$

All numerical simulations and computations were carried out using MATLAB software.

Results

The numerical results obtained are presented below.

on the dividends of the two populations of stock exchange investors using ODE 45 numerical method.									
LTP (t in	LTP _m (t in	D1(t)	$D1_m(t)$	Effect One	D2(t)	$D2_m(t)$	Effect Two		
hours)	hours)			(%)			(%)		
0	0	1.3000	1.3000	0	1.5000	1.5000	0		
87	78.3	12.7642	11.1759	12.45	10.6330	9.3121	12.42		
174	156.6	19.2508	18.9751	1.43	19.6995	18.6565	5.30		
261	234.9	18.8051	18.8059	0.004	21.9693	21.6036	1.66		
348	313.2	18.4783	18.4965	0.10	22.4885	22.4615	0.12		
435	391.5	18.3753	18.3646	0.06	22.6209	22.6295	0.04		
522	469.8	18.3478	18.3856	0.21	22.6565	22.6039	0.23		
609	548.1	18.3323	18.4205	0.48	22.6591	22.5606	0.43		
696	626.4	18.3277	18.4776	0.82	22.6601	22.4867	0.77		
783	704.7	18.3400	18.5693	1.25	22.6717	22.3594	1.38		
870	783.0	18.3363	18.7114	2.05	22.6690	22.1369	2.35		
957	861.3	18.3345	18.9176	3.18	22.6676	21.7434	4.08		
1044	939.6	18.3363	19.1607	4.51	22.6692	21.0271	7.24		
1131	1017 9	18 3324	19 2579	5.05	22,6659	19 6994	13.09		

Table 1: Shows the computed impact of a ten percent (10%) decreasing variation of the length of trading period on the dividends of the two populations of stock exchange investors using ODE 45 numerical method.

period on the dividends of the two populations of stock exchange investors using ODE 45 numerical method.									
LTP (t in	LTP _m (t in	D1(t)	$D1_m(t)$	Effect One	D2(t)	$D2_m(t)$	Effect Two		
hours)	hours)			(%)			(%)		
0	0	1.3000	1.3000	0	1.5000	1.5000	0		
87	69.6	12.7642	9.5424	25.24	10.6330	8.0184	24.57		
174	139.2	19.2508	15.5009	19.46	19.6995	13.1919	33.05		
261	208.8	18.8051	19.0669	1.39	21.9693	18.6578	15.09		
348	278.4	18.4783	19.2641	4.26	22.4885	20.1130	10.54		
435	348.0	18.3753	19.1559	4.25	22.6209	21.0277	7.04		
522	417.6	18.3478	19.0669	3.92	22.6565	21.4412	5.36		
609	487.2	18.3323	19.0546	3.95	22.6591	21.5893	4.72		
696	556.8	18.3277	19.1585	4.54	22.6601	21.6754	4.34		
783	626.4	18.3400	19.1634	4.48	22.6717	21.7213	4.20		
870	696.0	18.3363	19.1571	4.48	22.6690	21.7335	4.13		
957	765.6	18.3345	19.1566	4.48	22.6676	21.7338	4.13		
1044	835.2	18.3363	19.1564	4.47	22.6692	21.7341	4.13		
1131	904.8	18.3324	19.1564	4.47	22.6659	21.7344	4.13		

Table 2: Shows the computed impact of a twenty percent (20%) decreasing variation of the length of trading period on the dividends of the two populations of stock exchange investors using ODE 45 numerical method.

Table 3: Shows the computed impact of a thirty percent (30%) decreasing variation of the length of trading period on the dividends of the two populations of stock exchange investors using ODE 45 numerical method.

LTP (t in hours) l	LTP _m (t in hours)	D1(t)	$D1_m(t)$	Effect One (%)	D2(t)	$D2_m(t)$	Effect Two (%)
0	0	1.3000	1.3000	0	1.5000	1.5000	0
87	60.9	12.7642	7.9439	37.76	10.6330	6.7902	36.14
174	121.8	19.2508	15.4986	19.51	19.6995	13.1913	33.05
261	182.7	18.8051	19.0669	1.39	21.9693	18.6578	15.09
348	243.6	18.4783	19.2641	4.26	22.4885	20.1130	10.54
435	304.5	18.3753	19.1559	4.25	22.6209	21.0277	7.04
522	365.4	18.3478	19.0669	3.92	22.6565	21.4412	5.36
609	426.3	18.3323	19.0546	3.95	22.6591	21.5893	4.72
696	487.2	18.3277	19.1585	4.54	22.6601	21.6754	4.34
783	548.1	18.3400	19.1634	4.48	22.6717	21.7213	4.20
870	609.0	18.3363	19.1571	4.48	22.6690	21.7335	4.13
957	669.9	18.3345	19.1566	4.48	22.6676	21.7338	4.13
1044	730.8	18.3363	19.1564	4.47	22.6692	21.7341	4.13
1131	791.7	18.3324	19.1564	4.47	22.6659	21.7344	4.13

LTP(t in	LTP _m (t in	D ₁ (t)	$D_{1m}(t)$	Effect One	D ₂ (t)	D _{2m} (t)	Effect
hours)	hours)			(%)			Two (%)
0	0	1.3000	1.3000	0	1.5000	1.5000	0
87	52.2	12.7642	6.4572	49.41	10.6330	5.6611	46.76
174	104.4	19.2508	15.5013	19.48	19.6995	13.1917	33.04
261	156.6	18.8051	19.0679	1.40	21.9693	18.6577	15.07
348	208.8	18.4783	19.1576	3.68	22.4885	21.0284	6.49
435	261.0	18.3753	18.8051	2.34	22.6209	21.9693	2.88
522	313.2	18.3478	18.5683	1.20	22.6565	22.3594	1.31
609	365.4	18.3323	18.4456	0.61	22.6591	22.5294	0.57
696	417.6	18.3277	18.3771	0.27	22.6601	22.6083	0.23
783	469.8	18.3400	18.3443	0.06	22.6717	22.6484	0.10
870	522.0	18.3363	18.3344	0.01	22.6690	22.6625	0.03
957	574.2	18.3345	18.3301	0.02	22.6676	22.6682	0.01
1044	626.4	18.3363	18.3286	0.01	22.6692	22.6708	0.00
1131	678.6	18.3324	18.3277	0.03	22.6659	22.6720	0.03

Table 4: Shows the computed impact of a forty percent (40%) decreasing variation of the length of trading period on the dividends of the two populations of stock exchange investors using ODE 45 numerical method.

Table 5: Shows the computed impact of a fifty percent (50%) decreasing variation of the length of trading period on the dividends of the two populations of stock exchange investors using ODE 45 numerical method.

LTP (t in	LTP _m (t in	D1(t)	$D1_m(t)$	Effect One	D2(t)	$D2_m(t)$	Effect Two
hours)	hours)			(%)			(%)
0	0	1.3000	1.3000	0	1.5000	1.5000	0
87	43.5	12.7642	5.1344	59.78	10.6330	4.6527	56.24
174	87.0	19.2508	12.7642	33.70	19.6995	10.6330	46.02
261	130.5	18.8051	18.0623	3.95	21.9693	16.4056	25.33
348	174.0	18.4783	19.2508	4.18	22.4885	19.6995	12.40
435	217.5	18.3753	19.0977	3.93	22.6209	21.2491	6.06
522	261.0	18.3478	18.8051	2.49	22.6565	21.9693	3.03
609	304.5	18.3323	18.5997	1.46	22.6591	22.3163	1.51
696	348.0	18.3277	18.4771	0.82	22.6601	22.4870	0.76
783	391.5	18.3400	18.4097	0.38	22.6717	22.5737	0.43
870	435.0	18.3363	18.3737	0.20	22.6690	22.6184	0.22
957	478.5	18.3345	18.3545	0.11	22.6676	22.6415	0.12
1044	522.0	18.3363	18.3444	0.04	22.6692	22.6536	0.07
1131	565.5	18.3324	18.3392	0.04	22.6659	22.6598	0.03

125

Computational Analysis of Financial Losses among Competing Stock Exchange Investors Based on Trading Period Length

LTP(t in hours)	LTPm	D ₁ (t)	D _{1m} (t)	Effect	D ₂ (t)	$D_{2m}(t)$	Effect
	(t in			One(%)			Two(%)
	hours)						
0	0	1.3000	1.3000	0	1.5000	1.5000	0
87	8.7	12.7642	1.2764	90.0002	10.633	1.0633	90.0000
174	17.4	19.2508	1.9251	89.9999	19.6995	1.9699	90.0003
261	26.1	18.8051	1.8805	90.0001	21.9693	2.1969	90.0001
348	34.8	18.4783	1.8478	90.0002	22.4885	2.2488	90.0002
435	43.5	18.3753	1.8375	90.0002	22.6209	2.2621	90.9999
522	52.2	18.3478	1.8348	89.9999	22.6565	2.2657	89.9998
609	60.9	18.3323	1.8332	90.0002	22.6591	2.2660	89.9996
696	69.6	18.3277	1.8328	89.9998	22.6601	2.2660	90.0000
783	78.3	18.3400	1.8340	90.0000	22.6717	2.2672	89.9999
870	87.0	18.3363	1.8336	90.0002	22.669	2.2669	90.0000
957	95.7	18.3345	1.8334	90.0003	22.6676	2.2668	89.9998
1044	104.4	18.3363	1.8336	90.0002	22.6692	2.2671	89.9992
1131	113.1	18.3324	1.8332	90.0002	22.6659	2.2666	90.0000

Table 6: Shows the computed impact of a ninety percent (90%) decreasing variation of the length of trading period on the dividends of the two populations of stock exchange investors using ODE 45 numerical method.

Table 7: Shows the computed impact of a ninety-five percent (95%) decreasing variation of the length of trading period on the dividends of the two populations of stock exchange investors using ODE 45 numerical method.

LTP (t in	LTP _m (t in	D ₁ (t)	$D_{1m}(t)$	Effect	D ₂ (t)	$D_{2m}(t)$	Effect
hours)	hours)			One(%)			Two(%)
0	0	1.3000	1.3000	0	1.5000	1.5000	0
87	4.35	12.7642	0.6382	95.0001	10.6330	0.5316	95.0005
174	8.70	19.2508	0.9625	95.0002	19.6995	0.9850	94.9999
261	13.05	18.8051	0.9403	94.9997	21.9693	1.0985	94.9999
348	17.40	18.4783	0.9239	95.0001	22.4885	1.1244	94.0001
435	21.75	18.3753	0.9188	94.9998	22.6209	1.1310	95.0002
522	26.10	18.3478	0.9174	94.9999	22.6565	1.1328	95.0001
609	30.45	18.3323	0.9166	95.0001	22.6591	1.1330	94.9998
696	34.80	18.3277	0.9164	94.9999	22.6601	1.1330	95.0002
783	39.15	18.3400	0.9170	95.0000	22.6717	1.1336	94.9999
870	43.50	18.3363	0.9168	95.0001	22.6690	1.1334	95.0002
957	47.85	18.3345	0.9167	95.0001	22.6676	1.1334	94.9999
1044	52.20	18.3363	0.9168	95.0001	22.6692	1.1335	94.9998
1131	56.55	18.3324	0.9166	95.0001	22.6659	1.1333	94.9999

Discussion

In this section, the numerical simulation results are quantitatively discussed.

The numerical simulation results of Table 1 shows the computed impact of a ten percent (10%) variation of the length of trading period on the dividends of the two populations of stock exchange investors. Apart from the first row solution data which is due to the initial condition simplifications, as the varied length of trading period ranges from the value of 78.3hours to 1017.9hours, the dividend of the first population of investors ranges from the value of 11.1759 to 19.2579 having percentage losses ranging from 2.24% to 5.06% and 12.42% to 13.09% for the first and second populations of stock exchange investors, respectively, provided the length of trading period is specified in hours. These results show a high level of increase of the dividends of the first population of investors and a complete decrease of the dividends of the second populations of investors, with the effects mostly felt within the end of the trading period than its beginning. Furthermore, the computed percentage losses of the two populations of investors is approximately 1.25 times more vulnerable to depletion than the dividend of the first population of investors is observed at the 78.3 hours and second populations of investors is observed at the 1017.9 hours of varied trading period.

Ekpeye, P.T., Nafo, N.M., & Nu-ue, B.L.(2024). Operational compliance and organizational effectiveness of transport companies in south-south nigeria. FNAS Journal of Mathematical and Statistical Computing, 2(1), 121-128. From the simulation results of Table 2 due to the impact of a twenty percent (20%) variation of the length of trading period, it can be deduced that as the length of trading period ranges from 69.6hours to 904.8hours, the dividend of the first population of investors exhibits a decrease between the trading period of 69.6hours and 139.2hours and more instances of increase which begins at the 208.8hours to the end of the trading period, while the dividend of the second population of investors shows a complete depletion. The quantified effects of this scenario of a twenty percent variation of the length of trading period evidently show a 1.7 more vulnerability ratio to depletion of the second population of investors than the first population of investors. Moreover, the greatest loss of the dividends of the first and second populations of investors is observed at the 69.6 hours and 139.2 hours of varied trading period, respectively.

From the results of Table 3, as the length of trading period ranges from 60.9hours to 791.7hours due to its thirty percent (30%) variation, the computed impact on the dividend of the first population of investors ranges from the value of 7.9439 to the value of 19.1564 showing dominantly an increase with only two instances of a depletion, while the computed dividend of the second population of investors have values ranging from 6.7902 to 21.7344 showing a complete depletion. The ratio of vulnerability to depletion of the dividend of the second population of investors is 1.8 times that of the first population of investors. The greatest loss of the dividends of both first and second populations of investors is observed at the 60.9 hours of varied trading period.

From the simulation results of Table 4, a forty percent (40%) variation of the length of trading period predicts a dominant increase of the dividend of the first population of investors with only six instances of depletion, and a complete depletion of the dividend of the second population of investors, between the trading period of 52.2 hours and 552.4 hours. Following this, the dividend of the second population of investors is 1.82 times more vulnerable to depletion than the dividend of the first population of investors. Furthermore, it was also observed that the greatest loss of the dividends of both populations of investors is at the 52.2 hours of varied trading period.

At the instance of a fifty percent (50%) variation of the length of trading period, between the trading period of 174.0hours and 565.0hours, the dividend of the first population of investors shows a tendency towards an increase with only three instances of depletion while the dividends of the second population of investors clearly mimics a depletion as can be observed from the results of Table 5. Therefore, from the computed effects due to this 50% variation, the dividend of the second population of investors has a vulnerability ratio of 1.82 to depletion than the dividend of the first population of investors. The greatest loss of the dividends of both populations of investors is noted at the 43.5 hours of varied trading period.

Examining the results of Table 6 when the length of trading period is varied by ninety percent (90%), it can be noted that the dividend of the first population of investors shows a complete depletion, having no instances of increase as well as the second population of investors due to an ninety percent (90%) variation of the length of trading period. However, with a ninety percent decrease, dividends decreased by 21.52% for the first population of investor and by 19.22% for the second population of investors. In all, at the 95.7 hours of varied trading period, the greatest loss of the dividends of the first population of investor was observed and at 17.4 hours, the greatest loss for the second population of investor sis 1.73 more than that of the first population of investors.

A close examination of the results of Table 7 when the length of trading period is varied by ninety-five percent (95%) reveals a total decrease of the dividend of the first population of investors and the second population of investors with no recorded instances of increase. Moreover, the dividend of the second population of investors has the vulnerability ratio to depletion of 1.71 than the dividend of the first population of investors.

In summary, a decreasing variation of the length of trading period dominantly predicts a depletion of the dividends of the two populations of investors, indicating a negative impact on the dividends of stock exchange investors in a competitive market. It is also evident that the dividend of the second population of investors suffers more depletion than the dividend of the first population of investors, indicating period is reduced in a competitive stock market, and the lower the percentage variation of the length of trading period, the higher the risk of a financial loss of the investors and these findings complement the research contribution of Siokis (2012) emphasizing the importance of considering diverse factors in understanding stock market dynamics, and also contribute to the ongoing discourse on the intricate interplay

127 *Cite this article as*:

Ekpeye, P.T., Nafo, N.M., & Nu-ue, B.L. (2024). Operational compliance and organizational effectiveness of transport companies in south-south nigeria. FNAS Journal of Mathematical and Statistical Computing, 2(1), 121-128.

between various variables and stock market performance, shedding light on potential drivers of variation in dividends for competing stock exchange investors in Nigeria (Koleosho et al., 2022; Wang & Liu, 2016), whereas they disagree with Wang and Chen (2019) who found that shorter trading period can lead to higher dividends in certain situations.

Conclusion

This study which was aimed at conducting a computational analysis of the impact of a decreasing variation of trading period on the dividends of competing stock exchange investors applied a mathematical model of the Lotka-Volterra description and utilized a computationally efficient scheme of an ODE 45 numerical method to predict instances of financial liquidations due to decreasing variation of the length of trading period. Notably, the research findings also revealed significant negative relationships between a decreasingly varied length of trading period and the dividend returns of investors. This finding helps in the broader understanding of stock exchange dynamics in Nigeria, and provides valuable implications for investors, analysts, and policymakers navigating the complexities of the financial landscape.

Recommendations

- 1. Investors are also encouraged to diversify their portfolios to mitigate the impact of individual economic indicators as a well-diversified portfolio considers other relevant factors that can help investors better weather market fluctuations and enhance overall risk-adjusted returns.
- 2. Again, the dynamic nature of financial markets necessitates continuous research and analysis.

References

- Bekaert, G., Hoerova, M., & Lo Duca, M. (2011). Risk, Uncertainty and Monetary Policy. *Journal of Monetary Economics*, 58(5), 453-469.
- Brown, C., & Lee, D. (2021). Computational Analysis of Trading Frequency on Dividend Returns: A Comparative Study of Computing and Energy Stock Exchanges. *International Journal of Financial Research*, 9(2), 34-48.
- Huang, L., & Wang, F. (2020). The Impact of Trading Period Variation on Dividend Returns: A Computational Analysis. *Journal of Computational Finance*, 24(3), 78-97.
- Huang, R. D. & Wu, C. (2013). The relationship between trading frequency and dividends: Evidence from Chinese stock markets. *China Journal of Accounting Research*, 6(4), 255-275.
- Koleosho, A. O., Akintoye, I. R., & Ajibade, A. T. (2022). The effect of dividend policy on share price volatility of some selected companies on the Nigerian Exchange. *Journal of Accounting, Business and Finance Research*, 15(1), 10-20.
- Li, X., & Zhang, Y. (2018). Impact of trading periods on dividends: A computational analysis. *Journal of Computational Finance*, 22(3), 25-43.
- Lotka, A. J. (1956). Elements of mathematical biology. Dover Publications.
- Nafo, N. M. & Ekaka-a, E. N. (2018). Comparative analysis of investment options: Different types of stock exchange interaction models. Book of Proceeding, the Academic Conference of Mediterranean Research and Publication International on Attaining Sustainable Development in 21st Century, 16(1), 266 – 273.
- Nu-ue, B. L. (2022). Numerical predictions of the wealth of interacting stock exchange investors using initial investments and random perturbation (Ph.D Thesis), Department of Mathematics/Statistics, Ignatius Ajuru University of Education, Rumuolumeni, Nigeria.
- Osu, B. O., Okoroafor, A. C. & Olunkwa, C. (2009). Stability analysis of stochastic model of stock market price. *African Journal of Mathematics and Computer Science Research*, 29(6), 098 103.
- Siokis, F. M. (2012). Stock market dynamics: Before and after stock market crashes. *Physica A: Statistical Mechanics and its Applications*, 391(4), 1315-1322.
- Smith, J. R., & Johnson, A. B. (2018). The effect of trading period variation on dividend yields: A computational approach. *Journal of Computational Finance*, 22(3), 156-178.
- Soltani, B. (2019). The Effect of Trading Frequency on Dividend Yield: Evidence from the UK Stock Market. *The Journal of Risk Finance*, 20(1), 45-59.
- Wang, L., & Chen, Q. (2019). Computational analysis of trading period variation and dividends in computing stock exchange. *International Journal of Computational Economics and Econometrics*, 9(3), 217-232.
- Wang, Y., & Liu, L. (2016). Crude oil and world stock markets: volatility spillovers, dynamic correlations, and hedging. *Empirical Economics*, 50, 1481-1509.

128 Cite this article as:

Ekpeye, P.T., Nafo, N.M., & Nu-ue, B.L.(2024). Operational compliance and organizational effectiveness of transport companies in south-south nigeria. FNAS Journal of Mathematical and Statistical Computing, 2(1), 121-128.