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Abstract 

In this paper, a mathematical computation of flow of non-Newtonian fluid with heat generation in a cylindrical 

pipe is undertaken and studied using the third-grade parameter to represent the non-Newtonian parameter. The 

coupled system of nonlinear ordinary differential equation (ODE) is solved using the traditional perturbation 

technique.  The results show that the third-grade parameter (𝛽) and the magnetic field parameter(M) reduces the 

flow velocity and the temperature while the Brinkman number enhances the temperature of the cylindrical walls. 

Some quantitative and numerical result are also presented to strengthen the utility of the method. 

 

 

Keywords: Computational flow Newtonian-fluid, heat generation, Brinkman number, magnetic field, 
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Introduction 

The study of non-Newtonian fluid flow in cylindrical pipes has gained significant in diverse engineering and 

industrial applications, such as polymer processing, biomedical fluid dynamics, and oil extraction (Bird et al., 

2006). In Newtonian fluids, the viscosity remains constant irrespective of shear rate, this attributes is  quite 

complex  with non-Newtonian fluids that  exhibit flow behaviours that require advanced mathematical models for 

proper analysis (Schowalter, 1978). Specifically, third-grade fluids, a subclass of non-Newtonian fluids, have 

attracted considerable attention due to their practical relevance in numerous scientific and industrial fields 

(Fosdick & Rajagopal, 1978). Critical to studying non-Newtonian fluid dynamics is understanding how external 

influences such as heat generation and magnetic fields influence fluid motion. The interaction of heat and fluid 

flow plays a crucial role in applications where temperature variations significantly alter the fluid’s viscosity and 

overall behavior (Mukhopadhyay et al., 2013). The presence of heat generation within the fluid may arise from 

chemical reactions, internal friction, or external sources, all of which contribute to the overall energy balance 

within the system (Gebhart et al., 1988). 

 

Mathematical modeling of such systems often involves solving coupled nonlinear ordinary differential equations 

(ODEs), which describe both the momentum and energy transport equations. Traditional analytical techniques 

such as the perturbation method provide effective means of approximating solutions to these equations, 

particularly when exact solutions are not feasible (Nayfeh, 2000). The perturbation technique has been widely 

used in fluid mechanics for handling nonlinear problems where small parameter expansions lead to manageable 

mathematical expressions (Van Dyke, 1975). Recent studies have demonstrated that the third-grade parameter (β) 

has a substantial impact on fluid velocity and temperature profiles (Hayat et al., 2007). Similarly, the magnetic 

field parameter (M) is known to influence flow resistance and energy dissipation, reducing both velocity and 

temperature in magnetohydrodynamic (MHD) flows (Rana et al., 2016). Moreover, the Brinkman number (Br), 

which represents the ratio of heat generated by viscous dissipation to heat conducted, plays a crucial role in 

determining the thermal characteristics of the fluid (Brinkman, 1952). A higher Brinkman number enhances heat 

transfer, leading to increased temperatures along the cylindrical walls (Mahmood et al., 2015). 

 

This study aims to contribute to the understanding of non-Newtonian fluid flow by employing the third-grade 

fluid model to analyze the effects of heat generation and magnetic field on flow characteristics in a cylindrical 

pipe. The application of the perturbation technique to solve the governing equations provides insights into the 

dynamic interplay of velocity, temperature, and external parameters. Additionally, numerical and quantitative 
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results are presented to validate the computational approach and highlight its effectiveness in handling nonlinear 

fluid flow problems. 

 

Mathematical Formulations 

We consider a steady incompressible non-Newtonian fluid flow, in non- dimensional form of the equations of 

motion as seen in   Farayola, (2017) 

 

      
  1

𝑟

𝑑

𝑑𝑟
(𝜇𝑟

𝑑𝑢

𝑑𝑟
) +

𝛽 𝜇

𝑘
𝑢 − 𝜎𝐵2𝑢 =

𝑑𝑝

𝑑𝑧
                                                                                         (2.1) 

1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑇

𝑑𝑟
) +

𝜇

𝑘
(

𝑑𝑢

𝑑𝑟
)

2

+ 𝜎𝐵0𝑢2 = 0                                                                                       (2.2) 

𝑑𝑢

𝑑𝑟
(0) =

𝑑𝑇

𝑑𝑟
(0), 𝑢(𝑎) = 0, 𝑇(𝑎)  = 𝑇0                                                                                   (2.3) 

Where u is fluid velocity, T is the absolute temperature, 𝜇 is the dynamic viscosity, 𝜎 is the electrical conductivity, 

𝑇0 is the ambient temperature, ‘a’ is the radius of the pipe and r is radial distance. 

Introducing the following parameters for non-dimensionalization, 

�̅� =
𝑟

𝑎
, �̅� =

𝑢

𝑢0
, 𝜃

𝑇

𝑇0
                                                                                                                  (2.4) 

Substituting eqn (2.4) into equation  (2.1) yields  

1

𝑎�̅�

𝑑

𝑑(𝑎�̅�)
(𝜇𝑎�̅�

𝑑(𝑢0�̅�)

𝑑(𝑎�̅�)
) +  

𝛽 𝜇(𝑢0�̅�)

𝑘
 − 𝜎𝐵2

0𝑢0�̅� =
𝑑𝑝 

𝑑𝑧
  

𝑢𝑜

𝑎2�̅�

𝑑

𝑑�̅�
 (𝜇�̅�

𝑑�̅�

𝑑�̅�
) + 

𝑢𝑜𝛽𝜇�̅�

𝐾
−  𝑢𝑜𝜎𝐵𝑜

2�̅� =
𝑑𝑝

𝑑𝑧
  

 

 Divide through by  
𝑢𝑜𝜇

𝑎2 ,  we have 

1

�̅�

𝑑

𝑑�̅�
(�̅�

𝑑�̅�

𝑑�̅�
) +  

𝑎2𝑢𝑜𝜇𝛽�̅�

𝑢𝑜𝜇𝐾
−

𝑎2𝑢𝑜𝜎𝐵𝑜
2�̅�

𝑢𝑜𝜇
=  

𝑎2

𝑢𝑜𝜇
 
𝑑𝑝

𝑑𝑧
  

  

1

�̅�

𝑑

𝑑�̅�
(�̅�

𝑑�̅�

𝑑�̅�
) +  

𝛽�̅�𝑎2

𝐾
−

𝑎2𝜎𝐵𝑜
2�̅�

𝜇
=  

𝑎2

𝑢𝑜𝜇
 
𝑑𝑝

𝑑𝑧
  

  
1

�̅�

𝑑

𝑑�̅�
(�̅�

𝑑�̅�

𝑑�̅�
) +  𝛿𝛽�̅� − 𝑀�̅� =  𝐶  

 

Dropping the bars for simplicity, 
1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑢

𝑑�̅�
) +  𝛿𝛽𝑢 − 𝑀𝑢 =  −1                                                                                                 (2.5) 

Where 𝛿 is the porosity parameter  

         𝛽 is the material coefficient 

Relating to third grade fluid 

U(0)  =  0, u(1)  =  0, 𝜃 (0) = 0, 𝜃(1) = 0                                                                              (2.6) 

 

Method of solution  

In order to solve equation (2.5), we introduce the perturbation series as  

𝑢(𝑟) =  𝑢𝑜(𝑟) + 𝛽𝑢1(𝑟) +  0(𝛽2), 𝜃(𝑟) +  𝛽𝜃1(𝑟) +  0(𝛽2), 
𝑚 =  𝛽𝑚 𝛿 =  𝛽𝑄                                                                                                                      (3.1) 

 Substituting equation (6) into equation (5), we have  
1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑢

𝑑�̅�
) +  𝛿𝛽𝑢 − 𝑀𝑢 =  −1                                                                                    

 
1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑

𝑑�̅�
(𝑢𝑜 + 𝛽𝑢1) ) + 𝛽2𝑄 (𝑢𝑜 + 𝛽𝑢1) −  𝛽𝑚 (𝑢𝑜 + 𝛽𝑢1) =  −1    

1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑢𝑜

𝑑�̅�
+ 𝑟𝛽

𝑑𝑢1

𝑑𝑟
 ) + 𝛽2𝑄𝑢𝑜 +  𝛽3𝑄𝑢1 − 𝛽𝑚𝑢𝑜 − 𝛽2𝑚𝑢1 =  −1                                      (3.2) 

Choosing the order of 𝛽 from equation 

𝛽𝑜: 
1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑢𝑜

𝑑�̅�
 ) =  −1                                                                                                                 (3.3) 

 

𝛽: 
1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑢1

𝑑�̅�
 ) −  𝑀𝑢𝑜 = 0                                                                                                      (3.4) 
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Solution of Momentum equation of the zeroth order solving equation (2.8) with the condition equation (3.4)(3.2), 

yields  
1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑢𝑜

𝑑�̅�
 ) =  −1  

Multiply through by r, yields 
𝑑

𝑑𝑟
(𝑟

𝑑𝑢𝑜

𝑑�̅�
 ) =  −𝑟                                                                                                                   (3.5) 

Integrating equation (3.5) 

𝑟
𝑑𝑢𝑜

𝑑�̅�
=  − 

𝑟2

2
+  𝐶  

Divide through by r 
𝑑𝑢𝑜

𝑑�̅�
=  − 

𝑟

2
+ 

𝐶

𝑟
                                                                                                                         (3.6) 

Integrating eqn (2) wrt r, we have 

𝑢𝑜 =  −
𝑟2

4
+ 𝐶 𝑙𝑛𝑟 + 𝐷                                                                                                             (3.7) 

C = 0 for bounded solution 

𝑢𝑜 =  −
𝑟2

4
+  𝐷  

Using the condition (12), we have 

0 =  0 + 𝐷 ⟹ 𝐷 = 0  

0 =  − 
1

4
+ 𝐷 ⟹ 𝐷 =

1

4
  

∴  𝑢𝑜 = −
𝑟2

4
+  

1

4
   

𝑢𝑜(𝑟) =
1

4
−

1

4
𝑟2              

𝑑𝑢𝑜

𝑑𝑟
=  −

1

2
𝑟                                                                                                                           (3.8) 

 

3. Solution of the Momentum equation of order 𝛽 in order to solve the momentum equation of order 𝛽, we 

substitute for 𝑢𝑜 in equation (3.2), and yields  
1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑢1

𝑑�̅�
 ) –  𝑀 (

1

4
− 

1

4
𝑟2) =  0                                                                                              (3.9) 

Multiply through by r,  
𝑑

𝑑𝑟
(𝑟

𝑑𝑢1

𝑑�̅�
 ) –  𝑀 (

1

4
𝑟 − 

1

4
𝑟3) =  0                                                                                             (2.16) 

Integrating equation (16) wrt r,  

𝑟
𝑑𝑢1

𝑑�̅�
–  𝑀 (

1

8
𝑟2 −  

1

16
𝑟4) +  𝐶 =  0                                                                                          (3.10) 

Divide eqn (17) through by r 
𝑑𝑢1

𝑑�̅�
–  𝑀 (

1

8
𝑟 −  

1

16
𝑟3) +  

𝐶

𝑟
=  0                                                                                                (3.11) 

Integrating equation (18) wrt r, 

𝑢1–  𝑀 (
1

16
𝑟2 − 

1

64
𝑟4) +  𝐶𝑙𝑛𝑟 + 𝐷 =  0  

C = 0, for bounded solution,  

𝑢1–  𝑀 (
1

16
𝑟2 − 

1

64
𝑟4) + 𝐷 =  0                                                                                               (3.12) 

Using eqn (3.2) in eqn (3.12), we obtain  

0 –  0 +  𝐷 = 0 ⟹  𝐷 = 0  

0 − 𝑀 (
1

16
−  

1

64
) +  𝐷 = 0  

 𝐷 =
1

16
−  

1

64
  =

4−1

64
=  

3

64
     

∴ 𝐷 =
3

64
𝑀                                                                                                             (3.14) 

𝑢1–  𝑀 (
1

16
𝑟2 − 

1

64
𝑟4) − 𝐷  

𝑢1–  𝑀 (
1

16
𝑟2 − 

1

64
𝑟4) −  

3

64
𝑀                                                                                 (3.15) 

𝑑𝑢1

𝑑�̅�
=  𝑀 (

1

8
𝑟 −  

1

16
𝑟3)  

𝑢(𝑟) =
1

4
 –

1

4
𝑟2 +   𝛽 (𝑀 (

1

16
𝑟2 − 

1

64
𝑟4) −  

3

64
𝑀)                                                 (3.16) 

3.3  Heat Transfer Analysis 

Recall equation (2.2) 
1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑇

𝑑𝑟
) +  

𝜇

𝐾
(

𝑑(𝑢)

𝑑(𝑟)
)

2

+  𝐽𝛽𝑜𝑢2 = 0  
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Substituting eqn (4) into eqn (2), yields 
1

𝑎�̅�

𝑑

𝑑(𝑎�̅�)
(𝑎�̅�

𝑑𝜃𝑇0

𝑑(𝑎�̅�)
) + 

𝜇

𝐾
(

𝑑(𝑢𝑜𝑢)

𝑑(𝑎�̅�)
)

2

+  𝐽𝛽𝑜(𝑢𝑜�̅�)2 = 0  

𝑎𝑇0

𝑎3

𝑑

𝑑�̅�
(�̅�

𝑑𝜃

𝑑�̅�
) + 

𝜇𝑢𝑜

𝑎2𝐾
(

𝑑𝑢

𝑑�̅�
)

2

+  𝐽𝛽𝑜𝑢𝑜
2�̅�2 = 0  

Divide through by
𝑇0

𝑎2,  we have 

1

�̅�

𝑑

𝑑�̅�
(�̅�

𝑑𝜃

𝑑�̅�
) +

𝑎2

𝑇0
 

𝜇𝑢𝑜

𝑎2𝐾
(

𝑑𝑢

𝑑�̅�
)

2

+  
𝑎2

𝑇0
𝐽𝛽𝑜𝑢𝑜

2�̅�2 = 0  

1

�̅�

𝑑

𝑑�̅�
(�̅�

𝑑𝜃

𝑑�̅�
) + 

𝜇𝑢𝑜

𝑇0𝐾
(

𝑑𝑢

𝑑�̅�
)

2

+  
𝑎2𝐽𝛽𝑜𝑢𝑜

2𝑢2

𝑇0
= 0  

1

�̅�

𝑑

𝑑�̅�
(�̅�

𝑑𝜃

𝑑�̅�
) +  𝛽𝑟 (

𝑑𝑢

𝑑�̅�
)

2

+ 𝑀�̅� =  0                                                                                          (3.17) 

 

Dropping the bars in eqn (23), yields  
1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝜃

𝑑𝑟
) +  𝛽𝑟 (

𝑑𝑢

𝑑𝑟
)

2

+ 𝑀𝑢 =  0                                                                                           (3.18) 

In order to solve eqn (24), we substitute eqn (6) into eqn (24) and yields 
1

𝑟

𝑑

𝑑𝑟
(𝑟 

𝑑

𝑑𝑟
(𝜃𝑜 + 𝛽𝜃1)) +  𝛽𝑟 (

𝑑

𝑑𝑟
(𝑢𝑜 + 𝛽𝑢1)

2

+ 𝛽𝑀 (
𝑑

𝑑𝑟
(𝑢𝑜 + 𝛽𝑢1)

2

=  0  

1

𝑟

𝑑

𝑑𝑟
(𝑟 

𝑑𝜃𝑜

𝑑𝑟
+ 𝛽

𝑑𝜃1

𝑑𝑟
)) +  𝛽𝑟 {(

𝑑𝑢𝑜

𝑑𝑟
)

2

+ 2𝛽
𝑑𝑢𝑜

𝑑𝑟
 
𝑑𝑢1

𝑑𝑟
+ 𝛽2 (

𝑑𝑢1

𝑑𝑟
)

2

}  

𝛽𝑀(𝑢𝑜 +  2𝛽𝑢𝑜𝑢1 + 𝛽2𝑢1
2) = 0                                                                                           (3.19) 

Choosing the order of 𝛽, we have 

𝛽𝑜 : 
1

𝑟

𝑑

𝑑𝑟
 (𝑟

𝑑𝜃0

𝑑𝑟
) +  𝛽𝑟 (

𝑑𝑢𝑜

𝑑𝑟
)  = 0                                                                                             (3.20) 

𝛽: 
1

𝑟

𝑑

𝑑𝑟
 (𝑟

𝑑𝜃1

𝑑𝑟
) + 𝛽𝑟

𝑑𝑢𝑜

𝑑𝑟
 

𝑑𝑢1

𝑑𝑟
+  𝑀𝑢𝑜

2 = 0                                                                                (3.21) 

3. Solution of energy equation of the zeroth order  
1

𝑟

𝑑

𝑑𝑟
 (𝑟

𝑑𝜃0

𝑑𝑟
) +  𝛽𝑟 (

𝑑𝑢𝑜

𝑑𝑟
)

2

 = 0  

Substituting for 
𝑑𝑢𝑜

𝑑𝑟
 in eqn (26), we have 

1

𝑟

𝑑

𝑑𝑟
 (𝑟

𝑑𝜃0

𝑑𝑟
) +  𝛽𝑟 (−

1

2𝑟
)

2

 = 0  

Multiply through by r 
𝑑

𝑑𝑟
 (𝑟

𝑑𝜃0

𝑑𝑟
) +  𝛽𝑟 (

1

4
 𝑟3)  = 0  

Integrating eqn (28) wrt, yields 

(
1

4
−  

1

4
𝑟2) (

1

4
− 

1

4
𝑟2) =

1

16
−  

1

16
𝑟2 − 

1

16
𝑟2 +

1

16
𝑟4 =  

1

16
−

1

8
𝑟2 +

1

8
𝑟4   

 𝑟
𝑑𝜃0

𝑑𝑟
+  𝛽𝑟 (

1

16
 𝑟4) +  𝐶 = 0 

Divide through by r 
𝑑𝜃0

𝑑𝑟
+  𝛽𝑟 (

1

16
 𝑟3) + 

𝐶

𝑟
= 0                                                                                                  (3.22) 

Integrating eqn (29) wrt r, we have 

𝜃1 +
1

16
 𝑟4𝐵𝑟 + 𝑐𝑙𝑛𝑟 + 𝐷 = 0                                                                                           (3.23) 

Using the condition in eqn (30), we have  

𝜃0(0) = 0,  𝜃0(1) = 0   
0 + 0 + 0 + 𝐷 = 0 ⟹ 𝐷 = 0  

𝐶 = 0, 𝑓𝑜𝑟 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  

0 +
1

64
𝛽𝑟 + 𝐷 = 0  

𝐷 =  −
1

64
𝛽𝑟                                                                                                                     (3.24) 

𝜃𝑜 =  
1

64
 𝑟4𝐵𝑟 +  

1

16
𝐵𝑟  

𝜃𝑜 =  (
1

64
− 

1

64
𝑟4) 𝐵𝑟                                                                                                        (3.25) 

Solution of energy equation of order 𝛽  
1

𝑟

𝑑

𝑑𝑟
 (𝑟

𝑑𝜃1

𝑑𝑟
) + 2𝛽𝑟 (

𝑑𝑢𝑜

𝑑𝑟
 
𝑑𝑢1

𝑑𝑟
) +  𝑀𝑢𝑜

2 = 0  

Substituting for 
𝑑𝑢𝑜

𝑑𝑟
,

𝑑𝑢1

𝑑𝑟
 and 𝑢𝑜 in eqn (27), gives 

1

𝑟

𝑑

𝑑𝑟
 (𝑟

𝑑𝜃1

𝑑𝑟
) + 2𝛽𝑟 {(− 

1

2
𝑟) (𝑀 (

1

8
𝑟 −

1

16
𝑟3))} +  𝑀 (

1

4
−

1

4
𝑟2)

2

= 0                            (3.25) 
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Expanding eqn (32), gives 
1

𝑟

𝑑

𝑑𝑟
 (𝑟

𝑑𝜃1

𝑑𝑟
) + 2𝛽𝑟 (𝑀 (−

1

16
𝑟2 +

1

32
𝑟4)) +  𝑀 (

1

16
−

1

8
𝑟2 +

1

16
𝑟4) = 0                      (3.27) 

Expanding eqn (33) further, yields  
1

𝑟

𝑑

𝑑𝑟
 (𝑟

𝑑𝜃1

𝑑𝑟
) + 𝛽𝑟 (𝑀 (−

1

8
𝑟2 +

1

16
𝑟4)) +  𝑀 (

1

16
−

1

8
𝑟2 +

1

16
𝑟4) = 0                        (3.28) 

Multiplying eqn (34) by r, we have  
𝑑

𝑑𝑟
 (𝑟

𝑑𝜃1

𝑑𝑟
) + 𝛽𝑟 (𝑀 (−

1

8
𝑟3 +

1

16
𝑟5)) +  𝑀 (

1

16
𝑟 −

1

8
𝑟3 +

1

16
𝑟5) = 0                                   (3.29) 

Integrating eqn (3.37) wrt r, yields 

𝑟
𝑑𝜃1

𝑑𝑟
+ 𝛽𝑟 (𝑀 (−

1

32
𝑟3 +

1

96
𝑟6)) +  𝑀 (

1

16
𝑟 −

1

24
𝑟3 +

1

80
𝑟6) +  𝐶 = 0                                 (3.30) 

Divide eqn (3.38) through by r, yields 

𝑟
𝑑𝜃1

𝑑𝑟
+ 𝛽𝑟 (𝑀 (−

1

32
𝑟2 +

1

96
𝑟5)) +  𝑀 (

1

16
𝑟 −

1

24
𝑟2 +

1

80
𝑟5) + 

𝐶

𝑟
= 0                                 (3.31) 

Integrating eqn (37) wrt r, yields 

𝜃1 +  𝛽𝑟 (𝑀 (−
1

96
𝑟3 +

1

576
𝑟6)) +  𝑀 (

1

16
𝑟 −

1

72
𝑟3 +

1

480
𝑟6)  

+ 𝐶𝑙𝑛𝑟 + 𝐷 = 0                                                                                                                        (3.32) 

Applying the condition (6) in eqn (38) gives c = 0, for bounded solution  

0 + 𝐵𝑟 (𝑀 (−
1

𝑎
 0 + 0 + 0 + 0 + 𝐷 = 0 ⟹ 𝐷 = 0))                                                          (3.33) 

0 + 𝛽𝑟 (𝑀 (−
1

96
+

1

576
)) +  𝑀 (

1

16
−

1

72
+

1

480
) +  𝐷 = 0 

𝛽𝑟 (−
5

576
𝑀) −

73

1440
𝑀                                                                                                             (3.34) 

Substituting for value of D in eqn (38), we have  

𝜃1 =  −𝛽𝑟 (𝑀 (−
1

96
𝑟3 +

1

576
𝑟6)) +  𝑀 (

1

16
𝑟 −

1

72
𝑟3 +

1

480
𝑟6)  

𝛽𝑟 (−
5

576
𝑀) −

73

1440
𝑀                                                                                                            (3.35) 

𝜃(𝑟) = (
1

64
−  

1

64
𝑟4) 𝐵𝑟 +  𝛽 (−𝐵𝑟 (𝑀 (− 

1

96
𝑟3 +

1

576
𝑟6))) 

+ 𝑀 ( 
1

16
𝑟 =  

1

72
𝑟3 +

1

480
𝑟6) + 𝑀 ( 

73

1440
−  

5

576
𝐵𝑟)                                                              (3.36) 

 

 

4.0 Numerical Simulations of Results 
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Figure 1 shows the effects of third grade parameter on the velocity fluid flow. Results indicate that as the third 

grade parameter increases, the velocity decreases as seen in the profile 

 

 
Figure 2 is the effects of magnetic field parameter on the flow regime. It is seen that increase in the magnetic field 

parameter reduces the flow velocity 
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Figure 3 shows the effects of third grade parameter on the temperature of the system. It is observed that the 

parameter (𝛽) has the tendency of reducing the temperature at the cylindrical walls. 

 

 
Figure 4 is the temperature profiles for various values of the magnetic field parameters. It is seen that as the 

magnetic field increases, the temperature of the system decreases. 
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Figure 5 shows the temperature profiles for variation of the Brinkman number. Results show that increase in the 

Brinkman number, enhances the temperature of the cylindrical pipe. 

 

Discussion  

Figure 1 illustrates the effect of the third-grade parameter (β) on velocity when the magnetic field parameter (M) 

is set to 5. Key observations from the figure includes the fact that as β increases from 0.3 to 0.9, the velocity 

decreases significantly across the radial distance. The highest velocity is observed for β = 0.3 (solid red line), 

while the lowest is for β = 0.9 (dotted blue line). The trend confirms that increasing the third-grade parameter (β) 

leads to a reduction in fluid velocity, which aligns with the behavior of non-Newtonian fluids where higher-order 

effects introduce more resistance to flow. 

 

Figure 2  shows how the magnetic field strength (M) affects the velocity when the third-grade parameter is fixed 

at β=0.003.  It could be seen from the figure that as M increases (from 500 to 2000), the velocity decreases 

significantly. The highest velocity occurs when M=500M  (solid red line), and the lowest velocity is at M=2000 

(dotted blue line). This means that increasing the magnetic field strength slows down the fluid flow, which is a 

common effect in magneto hydrodynamics (MHD). Over all, higher values of β make the fluid more resistant to 

motion, reducing its velocity. Stronger magnetic fields (M) also slow down the fluid, likely due to electromagnetic 

forces opposing the flow. The graph (figures 3) examines how varying the third-grade parameter (β) affects 

temperature distribution within a fluid when the magnetic field parameter (M) is fixed at 1 and Br=500. The x-

axis represents the radial distance, while the y-axis represents temperature. Different curves correspond to 

different values of β: Red (solid) line: β=0.3 Green (dashed) line: β=0.5 Brown (dash-dot) line: β=0.7 Blue (dotted) 

line: β=0.9. As the third-grade parameter (β) increases, the overall temperature of the fluid decreases. The highest 

temperature is observed for β = 0.3 (solid red line), while the lowest temperature occurs at β = 0.9 (dotted blue 

line). The temperature is relatively stable near the center but drops sharply towards the boundary (radial distance 

= 1). This indicates that higher values of β enhance heat dissipation, leading to lower temperature levels 

throughout the fluid. A lower third-grade parameter (β) retains more heat in the fluid, whereas higher β results in 

a more significant temperature drop. This suggests that increasing β enhances thermal conduction or energy 

dissipation within the fluid system. 

 

Figure 4  depicts how varying the magnetic field parameter (M) influences temperature distribution within a fluid 

when the third-grade parameter is fixed at β=0.1. The x-axis represents the radial distance, while the y-axis 

represents temperature. Different curves correspond to different values of M: Red (solid) line: M=1. Green 

(dashed) line: M=3 Brown (dash-dot) line: M=5 Blue (dotted) line: M=7 As the magnetic field parameter (M) 



 
Mathematical Computation of the Flow of Non-Newtonian Fluid with Heat Generation in a Cylindrical Pipe 

 

 

119 Cite this article as:   

Ibe, A., Akpan, A.U., & Anyaogu, U. (2025). Mathematical computation of the flow of non-Newtonian fluid with heat 
generation in a cylindrical pipe. FNAS Journal of Mathematical and Statistical Computing, 2(2), 111-119.   

 

increases, the overall temperature decreases. The highest temperature is observed for M=1 (solid red line), while 

the lowest temperature occurs at M=7 (dotted blue line). The temperature remains relatively stable near the center 

but drops significantly as the radial distance approaches 1. A stronger magnetic field leads to enhanced heat 

dissipation, reducing the fluid temperature. The application of a higher magnetic field (M) creates a magneto 

hydrodynamic (MHD) effect, which enhances resistance to fluid motion and reduces temperature. This suggests 

that increasing M enhances thermal conduction and cooling within the system. 

 

This graph (Figure 5) shows how the Brinkman parameter (Br) affects the temperature distribution when the third-

grade parameter is fixed at β= 0.3 and the magnetic field parameter is M=1.The x-axis represents radial distance 

(r), and the y-axis represents temperature. The different curves correspond to different values of Br: Red (solid) 

line: Br=5, Green (dashed) line: Br=10, Brown (dash-dot) line: Br=15, Blue (dotted) line: Br=20. Observably, 

Higher Br leads to higher temperature. The smallest Brinkman parameter (Br=5) results in the lowest temperature 

profile (red line). The largest Brinkman parameter (Br=20) corresponds to the highest temperature profile (blue 

dotted line). Near the center (r=0), temperature increases with Br and stabilizes. At the boundary (r=1), 

temperature drops to zero for all cases.  Interpretation The Brinkman parameter (Br) is linked to the porosity 

effects in fluid flow. Increasing Br leads to greater thermal diffusion, enhancing heat transfer within the system. 

This suggests that higher porosity increases heat retention, raising the overall temperature. 

 

Conclusion Mathematical computation of flow of non-Newtonian fluid with heat generation in cylindrical pipe 

has  been considered in this study aided by the formulation of a coupled  system of non-linear  differential equation. 

The analysis of temperature profiles under varying magnetic field strength (M), Brinkman parameter (Br), and 

other flow parameters reveals that increasing M reduces temperature due to enhanced resistive effects, while 

higher Br enhances heat retention by increasing thermal diffusion. Additionally, the influence of third-grade fluid 

parameters highlights the complex interplay between viscosity and heat transfer. These findings provide insight 

into optimizing thermal management in magneto hydrodynamic (MHD) and porous media flows. Future research 

could extend this study by incorporating variable thermal conductivity, non-Newtonian effects, or considering 

time-dependent boundary conditions for a more comprehensive understanding of real-world applications. 
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