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Abstract  

According to Fountain (1979), type A semigroup is characterized as follows: that 𝑆 is a type 𝐴 semigroup if and only 

if there are inverse semigroups 𝑆1, 𝑆2, and  embeddings  𝜙1: 𝑆 → 𝑆1, 𝜙2: 𝑆 → 𝑆2, such that 𝜙1𝑎∗ = (𝜙1𝑎)∗ =
(𝜙1𝑎)−1(𝜙1𝑎),  𝜙2𝑎† = (𝜙2𝑎)† = (𝜙1𝑎)(𝜙1𝑎)−1. With full transformation semigroup, this characterization leads to 

faithful representation of type A semigroup. Offor et al. (2018) extended the representation to the translational hull of 

type A semigroup. In this paper, we are further extending the representation to the category of the translational hull 

of type A monoid.  
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Introduction 

Let 𝑆 be a set and 𝜃: 𝑆 × 𝑆 → 𝑆 a binary operation that maps each ordered pair (𝑥, 𝑦) of 𝑆 to an 

element 𝜃(𝑥, 𝑦) of S. The pair (𝑆, 𝜃) (or just 𝑆, if there is no fear of ambiguity) is called a groupoid. The mapping 𝜃 

is called a product of (𝑆, 𝜃). 𝑥 ∙ 𝑦, 𝑥𝑦 and 𝜃(𝑥, 𝑦) all mean the same and are called the product of 𝑥 and 𝑦.   

A groupoid 𝑆 is called a semigroup, if the operation 𝜃 is associative. That is, for all  𝑥, 𝑦, 𝑧 ∈ 𝑆, 𝜃(𝑥, 𝜃(𝑦, 𝑧)) =

𝜃(𝜃(𝑥, 𝑦), 𝑧). A semigroup is a 𝑚𝑜𝑛𝑜𝑖𝑑, if it has an identity. An element 𝑒 in a semigroup such that  𝑒2 = 𝑒 is called 

an 𝑖𝑑𝑒𝑚𝑝𝑜𝑡𝑒𝑛𝑡. We denote the set of idempotents of a semigroup 𝑆 by 𝐸𝑆.  

 

Let (𝑆1,·) and (𝑆2,∗) be two semigroups. A mapping 𝛼: 𝑆1  →  𝑆2 is a ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚, if  ∀𝑥, 𝑦 ∈  𝑆, 
 𝛼(𝑥 · 𝑦) =  𝛼(𝑥) ∗  𝛼(𝑦). It is an 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 if 𝛼(𝑥) = 𝛼(𝑦) implies 𝑥 = 𝑦 and if in addition, ∀𝑦 ∈ 𝑆2, ∃𝑥 ∈ 𝑆1 

with 𝛼(𝑥) = 𝑦, then 𝛼 is called an isomorphism. The 𝑘𝑒𝑟𝑛𝑒𝑙 as the relation 𝑘𝑒𝑟(𝛼)  =  {(𝑥, 𝑦) | 𝛼(𝑥)  =  𝛼(𝑦)} . 
Let 𝑋 be a set, and denote by 𝑇𝑋 the set of all functions 𝛼: 𝑋 →  𝑋. 𝑇𝑋 is called the 𝑓𝑢𝑙𝑙 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛  semigroup 

on 𝑋 with the operation of composition of functions. A homomorphism 𝜙: 𝑆 → 𝑇𝑋 is called the 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 of 

the semigroup 𝑆. The set of all partial one-one maps of any non-empty set 𝑋 is an inverse semigroup and it is called 

symmetric inverse semigroup usually denoted by 𝔗𝑋. 
Let 𝑆 be a semigroup and 𝑎, 𝑏 ∈ 𝑆.  (𝑎, 𝑏) ∈ ℒ∗ if ∀𝑥, 𝑦 ∈ 𝑆1, 𝑎𝑥 = 𝑎𝑦 if and if 𝑏𝑥 = 𝑏𝑦.  ℛ∗ is dual to ℒ∗ and this 

definition of ℒ∗ apply in dual manner to ℛ∗. The intersection of  ℒ∗ and  ℛ∗  is denoted by ℋ∗. Reader should read 

up the Green’s Equivalences and the  *-Equivalences. See Lawson (1986), Asibong-Ibe (1991), Howie (1995) , and 

Offor et al. (2018). 

 

Some Basic Semigroup Theories 

The Natural Order Relation on an Inverse Semigroup 

According to Lawson (1987), it is possible to define a partial order on an inverse semigroup as follows: 
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Given 𝑎, 𝑏 in an inverse semigroup 𝑆 with semilattice of idempotents 𝐸, 𝑎 ≤ 𝑏 if and only if ∃𝑒 ∈ 𝐸 such that 𝑎 =
𝑒𝑏. We show here that the relation is a partial order. 

Since 𝑎 = (𝑎𝑎−1)𝑎, 𝑎 ≤ 𝑎 and hence the relation is reflexive. For antisymmetry, let 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎. Then ∃𝑒, 𝑓 ∈
𝐸 such that 𝑎 = 𝑒𝑏 and 𝑏 = 𝑓𝑎 and it follows that  

     𝑎 = 𝑒𝑏 = 𝑒𝑓𝑎 = 𝑓𝑒𝑎 = 𝑓𝑒𝑒𝑏 = 𝑓𝑒𝑏 = 𝑓𝑎 = 𝑏. 
And for transitivity, assuming 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐, then ∃𝑒, 𝑓 ∈ 𝐸 such that 𝑎 = 𝑒𝑏 and 𝑏 = 𝑓𝑐. It follows that 𝑎 =
(𝑒𝑓)𝑐  and since 𝑒𝑓 ∈ 𝐸, 𝑎 ≤ 𝑐. 
Furthermore, the order relation is compatible with the multiplication of 𝑆 and to see this, we have to show that [ 𝑎 ≤
𝑏 and 𝑐 ∈ 𝑆]  ⇒   [𝑎𝑐 ≤ 𝑏𝑐 and 𝑐𝑎 ≤ 𝑐𝑏]. 
The first implication is straightforward since 𝑎 = 𝑒𝑏 implies that 𝑎𝑐 = 𝑒(𝑏𝑐). And for the second implication, 

notice that if 𝑎 = 𝑒𝑏, then  

 𝑐𝑎 = 𝑐𝑒𝑏 = 𝑐[(𝑐−1𝑐)𝑒]𝑏 = 𝑐(𝑒𝑐−1𝑐)𝑏 = (𝑐𝑒𝑐−1)𝑐𝑏. 

Finally, the relation is also compatible with inversion in the sense that 𝑎 ≤ 𝑏 ⇒ 𝑎−1 ≤ 𝑏−1; 
for  𝑎 = 𝑒𝑏 implies that  𝑎−1 = 𝑏−1𝑒 = 𝑏−1𝑏𝑏−1𝑒 = 𝑏−1𝑒𝑏𝑏−1 = (𝑏−1𝑒𝑏)𝑏−1. 

 

The Inverse Semigroup and The Type 𝑨 Semigroup 

 A semigroup 𝑆 is called an inverse semigroup if for all 𝑎, 𝑏 ∈ 𝑆,  (𝑎−1)−1 = 𝑎 ,    𝑎𝑎−1𝑎 = 𝑎   and   𝑎𝑎−1𝑏𝑏−1 =
𝑏𝑏−1𝑎𝑎−1 

A semigroup is called 𝑙𝑒𝑓𝑡(𝑟𝑖𝑔ℎ𝑡) 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 if each ℛ∗- (ℒ∗-) class contains an idempotent and 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 if it is 

both left and right abundant. If the idempotents of a left (right) abundant semigroup form a semilattice, it is called 

𝑙𝑒𝑓𝑡(𝑟𝑖𝑔ℎ𝑡) 𝑎𝑑𝑒𝑞𝑢𝑎𝑡𝑒. It is called 𝑎𝑑𝑒𝑞𝑢𝑎𝑡𝑒 if it is both left and right adequate. 

In an adequate semigroup, the idempotents in each ℒ∗-class and each ℛ∗-class are unique. If 𝑆 is adequate, and 𝑎 is 

an element of 𝑆, then 𝑎∗(𝑎†) will denote the unique idempotent in the ℒ∗- (ℛ∗-)class of 𝑎 .  
A left(right) adequate semigroup 𝑆 is called 𝑙𝑒𝑓𝑡(𝑟𝑖𝑔ℎ𝑡) 𝑡𝑦𝑝𝑒 𝐴 if 𝑎𝑒 = (𝑎𝑒)†𝑎[𝑒𝑎 = 𝑎(𝑒𝑎)∗] for all 𝑎 ∈ 𝑆 and all 

idempotents 𝑒 ∈ 𝑆. An adequate semigroup is called 𝑡𝑦𝑝𝑒 𝐴 if it is both left and right type𝐴. 
Fountain (1979) characterised a type A semigroup as follows: 

 

Lemma 2.2.1 Fountain (1979): Let 𝑆 be an adequate semigroup. Then, ∀𝑎 ∈ 𝑆 and  ∀𝑒 ∈ 𝐸(𝑆),  𝑆 is a type 𝐴 

semigroup if and only if  𝑒𝑆1 ∩ 𝑎𝑆1 = 𝑒𝑎𝑆1 and 𝑆1𝑒 ∩  𝑆1𝑎 =  𝑆1𝑎𝑒 . 

 If 𝑆 is an adequate semigroup with semilattice 𝐸 of idempotents, then ∀𝑎, 𝑏 ∈ 𝑆, if  𝑎ℒ∗𝑏 then ℒ𝑎
∗ = ℒ𝑏

∗  and 𝑎∗ is 

the unique idempotent in ℒ𝑎
∗ , 𝑏∗ unique idempotent in ℒ𝑏

∗ .  Therefore, 𝑎∗ = 𝑏∗.  
Conversely, if 𝑎∗ = 𝑏∗ then 𝑎∗ℒ∗𝑏∗  and we have   𝑎ℒ∗𝑎∗ℒ∗𝑏∗ℒ∗𝑏. So that 𝑎ℒ∗𝑏. Hence, 𝑎ℒ∗𝑏 if and only if 𝑎∗ =
𝑏∗  (∀𝑎, 𝑏 ∈ 𝑆). Dually, (∀𝑎, 𝑏 ∈ 𝑆) 𝑎ℛ∗𝑏  if and only if 𝑎† = 𝑏†.   
 𝑎ℒ∗𝑎∗  ⇒ 𝑎𝑏ℒ∗𝑎∗𝑏  and therefore  (𝑎𝑏)∗ =  (𝑎∗𝑏)∗.  𝑏ℛ∗𝑏†  ⇒ 𝑎𝑏ℛ∗𝑎𝑏† and therefore  (𝑎𝑏)† =  (𝑎𝑏†)†. 

It is therefore obvious that for 𝑒 ∈ 𝐸,  (𝑎𝑒)∗ = 𝑎∗𝑒  and  (𝑒𝑎)† =  𝑒𝑎†.  (𝑎𝑏)∗ and  𝑏∗ are idempotents. Therefore,  

(𝑎𝑏)∗𝑏∗ =  [(𝑎𝑏)∗𝑏∗]∗ =  (𝑎𝑏𝑏∗)∗ =  (𝑎𝑏)∗. Thus, 𝑏∗(𝑎𝑏)∗  = (𝑎𝑏)∗𝑏∗  = (𝑎𝑏)∗. 

Therefore,  (𝑎𝑏)∗ ≤ 𝑏∗,  where ≤ is the usual ordering on 𝐸 

Similarly,  (𝑎𝑏)†𝑎†  = 𝑎†(𝑎𝑏)† =  [𝑎†(𝑎𝑏)†]†  =  (𝑎†𝑎𝑏)†  =  (𝑎𝑏)†. Therefore, (𝑎𝑏)† ≤  𝑎†. 

 

Theorem 2.2.2 Fountain (1979): Let 𝑆 be an adequate semigroup, then the following conditions are equivalent: 

i. 𝑆 is a type 𝐴 semigroup  

ii. ∀𝑎 ∈ 𝑆 and  ∀𝑒 ∈ 𝐸(𝑆),  𝑒𝑆1 ∩ 𝑎𝑆1 = 𝑒𝑎𝑆1 and 𝑆1𝑒 ∩  𝑆1𝑎 =  𝑆1𝑎𝑒 . 

iii. there are inverse semigroups 𝑆1, 𝑆2, and embeddings  𝜙1: 𝑆 → 𝑆1, 𝜙2: 𝑆 → 𝑆2, such that 𝜙1𝑎∗ =
(𝜙1𝑎)∗ = (𝜙1𝑎)−1(𝜙1𝑎),  𝜙2𝑎† = (𝜙2𝑎)† = (𝜙1𝑎)(𝜙1𝑎)−1. 

 

Inverse Semigroup as a Member of Type 𝑨 Semigroup 

We know that an inverse semigroup 𝑆 is regular with commuting idempotents. Therefore ℛ = ℛ∗, ℒ = ℒ∗ and thus, 

every ℛ∗-class and every ℒ∗-class contains a unique idempotent. Hence, 𝑆 is adequate with 𝑎† = 𝑎𝑎−1 and  𝑎∗ =
𝑎−1𝑎 which are respectively the unique idempotents in ℛ∗ and ℒ∗. 
Now,     𝑒𝑎 = 𝑒(𝑎𝑎−1)𝑎 = 𝑎𝑎−1(𝑒𝑎) = 𝑎(𝑎−1𝑒𝑎) = 𝑎(𝑒𝑎)−1(𝑒𝑎) =  𝑎(𝑎𝑒)∗   
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and      𝑎𝑒 = 𝑎(𝑎−1𝑎)𝑒 = 𝑎𝑒(𝑎−1𝑎) = (𝑎𝑒𝑎−1)𝑎 = (𝑎𝑒)(𝑎𝑒)−1𝑎 =  (𝑎𝑒)†𝑎. Hence, 𝑆 is type 𝐴. 
An inverse semigroup is therefore a member of type 𝐴 semigroup. It is therefore natural that some of the results in 

inverse semigroup can be generalized in type 𝐴. 
 

THE TRANSLATIONAL HULL OF A SEMIGROUP 

Preliminaries 

According to Reilly (1974) a map 𝜆 from a semigroup 𝑆 to itself is a 𝑙𝑒𝑓𝑡 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 of 𝑆 if for all elements  𝑎, 𝑏 ∈
𝑆, 𝜆(𝑎𝑏) = (𝜆𝑎)𝑏. A map 𝜌 from a semigroup 𝑆 to itself is a 𝑟𝑖𝑔ℎ𝑡 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 of 𝑆 if (𝑎𝑏)𝜌 = 𝑎(𝑏𝜌) for all 

elements  𝑎, 𝑏 ∈ 𝑆. A left translation 𝜆 and a right translation 𝜌 are linked if 𝑎(𝜆𝑏) = (𝑎𝜌)𝑏 for all  𝑎, 𝑏 ∈ 𝑆. The set 

of all linked pairs (𝜆, 𝜌) of left and right translations is called the 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 ℎ𝑢𝑙𝑙 of 𝑆 and it is denoted by 𝛺(𝑆). 

We denote the set of all the idempotents of 𝛺(𝑆) by 𝐸𝛺(𝑆). The restriction of a function 𝜑 to a subset 𝐴 of its domain 

is denoted by  𝜑|𝐴.  The set of the left translations of 𝑆 is denoted by 𝛬(𝑆) and the set of the right translations of 𝑆 is 

denoted by 𝛲(𝑆).  𝛺(𝑆) is a subsemigroup of the direct product 𝛬(𝑆) × 𝛲(𝑆). For (𝜆, 𝜌)(𝜆′, 𝜌′)  ∈ 𝛺(𝑆) , the 

multiplication is given by  (𝜆, 𝜌)(𝜆′, 𝜌′) =  (𝜆𝜆′, 𝜌𝜌′) where 𝜆𝜆′ denotes the composition of the left maps 𝜆 and 𝜆′ 
(that is, first 𝜆′ and then 𝜆) and 𝜌𝜌′ denotes the composition of the right maps 𝜌 and 𝜌′ (that is, first 𝜌 and then 𝜌′). 
For each a in 𝑆, there is a linked pair (𝜆𝑎, 𝜌𝑎) within 𝛺(𝑆) defined by 𝜆𝑎𝑥 = 𝑎𝑥 and  𝑥𝜌𝑎 = 𝑥𝑎, and called the 

𝑖𝑛𝑛𝑒𝑟 𝑝𝑎𝑟𝑡 of 𝛺(𝑆) and for all 𝑎, 𝑏 ∈ 𝑆, (𝜆𝑎, 𝜌𝑎)(𝜆𝑏 , 𝜌𝑏) =  (𝜆𝑎𝑏 , 𝜌𝑎𝑏) is obvious and this gives  another obvious fact 

that 𝑎 ↦ (𝜆𝑎, 𝜌𝑎), a map from 𝑆 into 𝛺(𝑆), is a morphism. Petrich (1970) termed it the 𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙 homomorphism of 

𝑆 into 𝛺(𝑆). The left translation 𝜆 is symmetrical to the right translation 𝜌 and therefore, properties of 𝜆 can be 

attributed symmetrically to 𝜌. 

 

The Translational Hull of an Inverse Semigroup 

The preliminaries above have given us some of the definitions and denotations we need in this section. One of the 

central information captured in that section is that the set of all linked pairs (𝜆, 𝜌) of left and right translations of a 

semigroup 𝑆 is called the 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 ℎ𝑢𝑙𝑙 of 𝑆 and it is denoted by 𝛺(𝑆). And we also noted the following: 

 𝛬(𝑆)  =  {𝜆: 𝑆 → 𝑆 | 𝜆(𝑥𝑦) = (𝜆𝑥)𝑦,   ∀𝑥, 𝑦 ∈ 𝑆} 

 𝑃(𝑆)  =  {𝜌: 𝑆 → 𝑆 | (𝑥𝑦)𝜌 = 𝑥(𝑦𝜌),   ∀𝑥, 𝑦 ∈ 𝑆} 

The sets - 𝛬(𝑆)  and 𝑃(𝑆) - are semigroups under composition of maps. 

 𝛺(𝑆)  =  {(𝜆, 𝜌) ∈ 𝛬(𝑆) × 𝑃(𝑆)| 𝑥(𝜆𝑦) = (𝑥𝜌)𝑦, ∀𝑥, 𝑦 ∈ 𝑆} 

With multiplication defined by   (𝜆, 𝜌)(𝜆′, 𝜌′) =  (𝜆𝜆′, 𝜌𝜌′),  𝛺(𝑆)  is a semigroup. 

We also made mention of 𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙 homomorphism of 𝑆 into 𝛺(𝑆). Now, let us call this map  𝛱𝑆 and then for 𝑎 ∈ 𝑆, 

we have 𝛱𝑆 ∶ 𝑎 ↦ (𝜆𝑎 , 𝜌𝑎).  (𝜆𝑎 , 𝜌𝑎) ∈ 𝛺(𝑆) and the set 𝛱𝑆(𝑆) = {(𝜆𝑎 , 𝜌𝑎)| 𝑎 ∈ 𝑆, 𝜆𝑎𝑥 = 𝑎𝑥,  𝑥𝜌𝑎 = 𝑥𝑎, ∀𝑥 ∈ 𝑆} is 

called the 𝑖𝑛𝑛𝑒𝑟 𝑝𝑎𝑟𝑡 of 𝛺(𝑆).  The set idempotents of 𝛬(𝑆)  is denoted 𝛬(𝐸)  where 𝐸 is the semilattice of 

idempotents 𝑆. Let 𝛤(𝑆) = {𝜆𝑎: 𝑎 ∈ 𝑆}. 
Assuming 𝜆𝑎 = 𝜆𝑏  and  𝜌𝑎 = 𝜌𝑏 . Let 𝑎′ and 𝑏′ be inverses of 𝑎 and 𝑏 respectively. Then 𝑎 = 𝑎𝑎′𝑎 = (𝜆𝑎𝑎′)𝑎 =
(𝜆𝑏𝑎′)𝑎 = 𝑏𝑎′𝑎. 𝑏𝑎′𝑎𝑆 ⊆ 𝑏𝑆 and therefore 𝑎𝑆 ⊆ 𝑏𝑆  and thus 𝑅𝑎 ≤ 𝑅𝑏 .  
Similar arguments show that 𝑅𝑏 ≤ 𝑅𝑎,  𝐿𝑎 ≤ 𝐿𝑏 , 𝐿𝑏 ≤ 𝐿𝑎 and so 𝑎𝐻𝑏  and therefore  𝑎𝑎′ = 𝑏𝑏′ and  𝑎′𝑎 = 𝑏′𝑏. It 
then easily follows that    𝑎 = 𝑏𝑎′𝑎 = 𝑏𝑏′𝑏 = 𝑏. Therefore, for an inverse semigroup 𝑆 with 𝑎, 𝑏 ∈ 𝑆,  
[𝜆𝑎 = 𝜆𝑏 , 𝜌𝑎 = 𝜌𝑏] ⇒ 𝑎 = 𝑏. 

In any inverse semigroup 𝑆, 𝜆𝑒 = 𝜆𝑒𝑒 = (𝜆𝑒)𝑒 = 𝑒(𝜆𝑒)  = (𝑒𝜌)𝑒 = 𝑒(𝑒𝜌)  =  𝑒𝜌   [𝑒 ∈ 𝐸𝑆 , (𝜆 , 𝜌)  ∈  𝐸𝛺(𝑆)]    

 

Theorem 3.2.1 Ault (1972): Translational hull of an inverse semigroup is an inverse semigroup.  

Definition 3.2.2 Ault (1972): For (𝜆, 𝜌) ∈ 𝛺(𝑆), the inverse (𝜆, 𝜌)−1 is denoted by (𝜆−1, 𝜌−1) and is defined by  

 𝜆−1𝑥 =  (𝑥−1 𝜌)−1 ,   and  𝑥𝜌−1 = (𝜆𝑥−1 )−1    ∀ 𝑥 ∈ 𝑆.  
The left translation 𝜆  is symmetrical to the right translation 𝜌 and therefore, properties of 𝜆 is attributed symmetrically 

to 𝜌.  
Let 𝑆 be an inverse semigroup with the semilattice of idempotents 𝐸𝑆 and (𝜆, 𝜌) ∈ 𝛺(𝑆). Assuming 𝜆𝑒 = 𝜆′𝑒 for all 

𝑒 ∈ 𝐸𝑆, and that 𝑎 is an element of 𝑆. Then, 𝜆𝑎 = 𝜆𝑎𝑎−1𝑎  =  𝜆(𝑎𝑎−1)𝑎  =  𝜆′(𝑎𝑎−1)𝑎  =  𝜆′𝑎𝑎−1𝑎 =  𝜆′𝑎. Thus, 

𝜆 = 𝜆′. The converse is obvious. That of 𝜌 follows symmetrically. Thus, two left (right) translations of an inverse 

semigroup 𝑆 are equal if they agree on all idempotents of 𝑆. That is, if  𝜆|𝐸𝑆
=  𝜆′|𝐸𝑆

   (𝜌|𝐸𝑆
= 𝜌′|𝐸𝑆

). 
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Furthermore, assuming (𝜆, 𝜌) be an idempotent in 𝛺(𝑆). Then 𝜆−1 = 𝜆,  𝜌−1 = 𝜌 and therefore 𝑒𝜌 = 𝑒𝜌−1 for all 𝑒 ∈
𝐸𝑆. We know that  𝑒𝜌−1 = (𝜆𝑒−1 )−1 = (𝜆𝑒)−1. Therefore, 𝑒𝜌 = (𝜆𝑒)−1. So that 𝜆𝑒 = (𝜆𝑒)(𝜆𝑒)−1(𝜆𝑒) =
(𝜆𝑒)(𝑒𝜌)(𝜆𝑒)  = (𝜆𝑒𝑒𝜌)(𝜆𝑒) = (𝜆𝑒𝜌)𝜆𝑒  = 𝜆𝑒(𝜆𝜆𝑒)  = (𝜆𝑒)(𝜆𝑒). Thus,  𝜆𝑒 ∈ 𝐸𝑆 .  Similarly, 𝑒𝜌 ∈ 𝐸𝑆 .  
Conversely, let 𝜆(𝐸𝑆) ⊆ 𝐸𝑆. Then,  𝜆2𝑒 = 𝜆(𝜆𝑒) = 𝜆(𝑒(𝜆𝑒))  = (𝜆𝑒)(𝜆𝑒) = 𝜆𝑒. Therefore  𝜆2 = 𝜆. By symmetry, we 

also have 𝜌2 = 𝜌. Hence,  (𝜆, 𝜌) 2 = (𝜆, 𝜌). This shows that (𝜆, 𝜌) is idempotent if and only if  𝜆(𝐸𝑆) ⊆ 𝐸𝑆  and  

(𝐸𝑆)𝜌 ⊆ 𝐸𝑆 .   

 

The Translational Hull of a Type 𝑨 Semigroup  

Let’s start by noting that two left (right) translations of a type 𝐴 semigroup are equal if they agree on all 

idempotents. 

If 𝑎 be an element of 𝑆 and 𝑒 be an idempotent in the ℛ∗-class of 𝑎, then 𝑒𝑎 = 𝑎 and so 𝜆𝑎 =  𝜆(𝑒𝑎) = (𝜆𝑒)𝑎 =

(𝜆′𝑒)𝑎 =  𝜆′(𝑒𝑎) =  𝜆′𝑎 and thus,  𝜆 = 𝜆′. Thus, if the restrictions of 𝜆 , 𝜆′ (𝜌 , 𝜌′ ) to the set of idempotents of 𝑆 

are equal, 𝜆 = 𝜆′ (𝜌 = 𝜌′). 

Assuming 𝑆 is an adequate semigroup with semilattice of idempotents 𝐸(𝑆). Let (𝜆 , 𝜌) ∈ 𝛺(𝑆) and for all 𝑎 ∈ 𝑆, 

define maps 𝜆†, 𝜆∗, 𝜌†, 𝜌∗ of 𝑆 to itself as follows:   𝜆†𝑎 = (𝑎†𝜌)†𝑎  ;       𝜆∗𝑎 = (𝜆𝑎†)∗𝑎 

 𝑎𝜌† = 𝑎(𝑎∗𝜌)†  ;        𝑎𝜌∗ = 𝑎(𝜆𝑎∗)∗ 

And for 𝑒 ∈ 𝐸,  𝜆†𝑒 =  (𝜆𝑒)†   ;     𝜆∗𝑒 =   (𝜆𝑒)∗;     𝑒𝜌†  =  (𝑒𝜌)†  ;      𝑒𝜌∗  =   (𝑒𝜌)∗ 

We notice from the definition that 𝜆†𝑒,  𝜆∗𝑒,  𝑒𝜌†  and  𝑒𝜌∗ are idempotents. We also need to note that 𝜆†𝑏†  and  

𝑎∗𝜌† are idempotent of 𝑆 since  𝜆†𝑏† .  𝜆†𝑏†  =  𝜆†𝑏†𝑏†𝜌† = 𝜆†𝑏†𝜌† = 𝜆†𝜆†𝑏† = 𝜆†𝑏†    

And          𝑎∗𝜌† .  𝑎∗𝜌†  =  𝜆†𝑎∗ .  𝑎∗𝜌†  =  𝜆†𝑎∗𝜌†  =  𝑎∗𝜌†𝜌† =  𝑎∗𝜌† 

We note the following also: 

 i)   𝜆†𝑒 =  (𝑒𝜌)†𝑒 = 𝑒(𝑒𝜌)† = 𝑒(𝑒∗𝜌)† = 𝑒𝜌†           ii)        𝜆∗𝑒 = (𝜆𝑒)∗𝑒 = 𝑒(𝜆𝑒)∗ =  𝑒𝜌∗ 

Let  𝑒 ∈ 𝐸.   (𝜆∗)2𝑒 =   𝜆∗(𝜆∗𝑒)  =  𝜆∗(𝜆𝑒†)∗𝑒   = 𝜆∗𝑒(𝜆𝑒)∗  = (𝜆∗𝑒)(𝜆∗𝑒) = 𝜆∗𝑒.   So that   (𝜆∗)2 =  𝜆∗ 

and (𝜆†)2𝑒 = 𝜆†(𝜆†𝑒) = 𝜆†(𝑒†𝜌)†𝑒  = 𝜆†𝑒(𝑒†𝜌)† = 𝜆†𝑒(𝜆𝑒†)† = 𝜆†𝑒(𝜆𝑒)† = (𝜆†𝑒)(𝜆†𝑒) = 𝜆†𝑒 

So that (𝜆†)2 =  𝜆†. In similar argument, we have  (𝜌∗)2 =  𝜌∗  and   (𝜌†)2 =  𝜌†. 

Thus, for any member (𝜆 , 𝜌) of 𝛺(𝑆), the elements (𝜆∗, 𝜌∗) and  (𝜆†, 𝜌†) are idempotents. 

Now, 𝜆†(𝑎𝑏)  =  [(𝑎𝑏)†𝜌]†𝑎𝑏  =  [[(𝑎𝑏)†𝑎†]𝜌]†𝑎𝑏  = [(𝑎𝑏)†(𝑎†𝜌)]†𝑎𝑏  = (𝑎𝑏)†(𝑎†𝜌)†𝑎𝑏   

                        =  (𝑎†𝜌)†(𝑎𝑏)†𝑎𝑏  =  (𝑎†𝜌)†𝑎𝑏  =  (𝜆†𝑎)𝑏. This shows that 𝜆† is a left translation.  

Similarly, (𝑎𝑏)𝜌∗ =  𝑎𝑏[𝜆(𝑎𝑏)∗]∗  =   𝑎𝑏[𝜆(𝑏∗)(𝑎𝑏)∗]∗  =  𝑎𝑏[(𝜆𝑏∗)(𝑎𝑏)∗]∗  = 𝑎𝑏(𝜆𝑏∗)∗(𝑎𝑏)∗  

                      = 𝑎𝑏(𝑎𝑏)∗(𝜆𝑏∗)∗  = 𝑎𝑏(𝜆𝑏∗)∗  =  𝑎(𝑏𝜌∗). This shows that 𝜌∗ is a right translation. 

In the same vein, 𝜆∗(𝑎𝑏)  =  [𝜆(𝑎𝑏)†]∗𝑎𝑏   =  [𝜆[𝑎†(𝑎𝑏)†]]∗𝑎𝑏  =  [(𝜆𝑎†)(𝑎𝑏)†]∗𝑎𝑏  =  (𝜆𝑎†)∗(𝑎𝑏)†𝑎𝑏  

                                    =  (𝜆𝑎†)∗𝑎𝑏 =  (𝜆∗𝑎)𝑏. This shows that 𝜆∗ is a left translation 

And, (𝑎𝑏)𝜌† = 𝑎𝑏[(𝑎𝑏)∗𝜌]† =  𝑎𝑏[[(𝑎𝑏)∗𝑏∗]𝜌]†  =  𝑎𝑏[(𝑎𝑏)∗(𝑏∗𝜌)]† = 𝑎𝑏(𝑎𝑏)∗(𝑏∗𝜌)†  =  𝑎𝑏(𝑏∗𝜌)†  

                 = 𝑎(𝑏𝜌†). This shows that 𝜌† is a right translation. 

Furthermore, 𝑎∗(𝜆†𝑏†)  =  (𝜆†𝑏†)𝑎∗    = 𝜆†(𝑏†𝑎∗) = (𝑏†𝑎∗)𝜌† =  𝑏†(𝑎∗𝜌†)    = (𝑎∗𝜌†)𝑏†. 

So that, 𝑎(𝜆†𝑏)  =  𝑎𝑎∗[𝜆†(𝑏†𝑏)]  = 𝑎𝑎∗𝜆†(𝑏†𝑏)  = 𝑎𝜆†𝑎∗(𝑏†𝑏) = 𝑎(𝑎∗𝜌†)𝑏†𝑏  = (𝑎𝑎∗)𝜌†(𝑏†𝑏) = (𝑎𝜌†)𝑏. This 

implies that  𝜆† and 𝜌† are linked. 
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And 𝑎(𝜆∗𝑏) =  𝑎(𝜆𝑏†)∗𝑏 =  𝑎𝜆∗𝑏†𝑏 =  𝑎𝜌∗𝑏†𝑏  =  (𝑎𝜌∗)𝑏 shows that 𝜆∗ and 𝜌∗ are linked.  

Thus, for all (𝜆, 𝜌) ∈ 𝛺(𝑆),  (𝜆∗, 𝜌∗),  (𝜆†, 𝜌†) are members of 𝛺(𝑆). More details on this can be found in Guo and 

Guo (2000) and Guo and Shum (2003) 

Theorem 3.3.1 Fountain and Lawson (1985).  The translational hull of a type 𝐴 semigroup is type𝐴. 

 

Category Theory   

Preliminaries 

Category can be viewed in two versions which are indeed implicitly the same. Namely:   

The object – morphism version of category and The generalized monoid version of category. 

The Object – Morphism Version of Category 

According to Asibong-Ibe (1993), category consists of  

- a class of objects (usually denoted by 𝑪- obj) 

- a set of morphisms between the objects in 𝑪 which are denoted by ℎ𝑜𝑚𝑪(𝐴, 𝐵) or simply ℎ𝑜𝑚 (𝐴, 𝐵) for 

morphisms between 𝐴 and 𝐵, satisfying the following conditions: 

i. for any set of objects 𝐴, 𝐵, 𝐶 ∈ 𝑪, the 𝑪-morphisms  𝑓 ∈ ℎ𝑜𝑚 (𝐴, 𝐵), 𝑔 ∈ ℎ𝑜𝑚 (𝐵, 𝐶) imply 𝑔  ⃘𝑓 ∈
ℎ𝑜𝑚 (𝐴, 𝐶) 

ii. for each object 𝐴, an identity morphism 1𝐴 ∈ ℎ𝑜𝑚 (𝐴, 𝐴)  

iii. if 𝑓 ∈ ℎ𝑜𝑚 (𝐴, 𝐵), 𝑔 ∈ ℎ𝑜𝑚 (𝐵, 𝐶) and ℎ ∈ ℎ𝑜𝑚 (𝐶, 𝐷), then ℎ  ⃘(𝑔  ⃘𝑓) = (ℎ   ⃘𝑔)  ⃘𝑓 ∈ ℎ𝑜𝑚 (𝐴, 𝐷) 

iv. for every object 𝐴, 1𝐴 ∈ ℎ𝑜𝑚 (𝐴, 𝐴) and 𝑓  ⃘1𝐴 = 𝑓,  1𝐵   ⃘𝑔 = 𝑔, for every 𝑓, 𝑔 ∈ ℎ𝑜𝑚 (𝐴, 𝐵). 

v. every distinct pair of 𝑪- objects has distinct set of morphisms. That is, if (𝐴, 𝐵) ≠ (𝐶, 𝐷), then 

ℎ𝑜𝑚 (𝐴, 𝐵) ∩ ℎ𝑜𝑚 (𝐶, 𝐷) = ∅. 

So, in a category, there must be a class consisting of systems of the same type, referred to as 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 and between 

any pair of objects 𝐴 and 𝐵 in the class, there must arrows 𝑓: 𝐴 → 𝐵 and each arrow is a structure preserving map 

referred to as morphism. 

4.1.2 Subcategory   

Let 𝑫 be a subclass of a category 𝑪 such that each object in 𝑫 is also a 𝑪- object. Then 𝑫 is a subcategory if  

i. for any pair of objects 𝐴, 𝐵 in 𝑫, each morphism  𝑓: 𝐴 → 𝐵 in 𝑫 is also a morphism in 𝑪 

ii. each object in 𝑫 has an identity morphisms in 𝑫 and  

iii. 𝑫 contains the product of its morphisms. That is, the products of 𝑫-morphisms 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶 

which is 𝑔  ⃘𝑓: 𝐴 → 𝐶 is also a 𝑫-morphism.  

 

The Generalized Monoid Version of Category 

Let 𝐶 be a class and ′′ ∙ ′′ be a partial binary operation on 𝐶. For 𝑥, 𝑦 ∈ 𝐶, we write ∃𝑥 ∙ 𝑦 if 𝑥 ∙ 𝑦 ∈ 𝐶. An element 

𝑒 ∈ 𝐶 is called an idempotent if ∃𝑒 ∙ 𝑒 and 𝑒 ∙ 𝑒 = 𝑒. The idempotents  𝑒 ∈ 𝐶 which satisfy the conditions that for 𝑥 ∈

𝐶, ∃𝑒 ∙ 𝑥  ⇒ 𝑒 ∙ 𝑥 = 𝑥  and ∃𝑥 ∙ 𝑒 ⇒ 𝑥 ∙ 𝑒 = 𝑥, are called the identities of 𝐶. We denote the set identities of 𝐶 by 𝐶𝑜. 

The pair (𝐶,∙) is called a category if the following hold: 

i. ∃𝑥 ∙ (𝑦 ∙ 𝑧) ⇔ ∃(𝑥 ∙ 𝑦) ∙ 𝑧  and in which case, 𝑥 ∙ (𝑦 ∙ 𝑧) = (𝑥 ∙ 𝑦) ∙ 𝑧  ………….(Ai) 

ii. ∃𝑥 ∙ (𝑦 ∙ 𝑧) ⇔ ∃𝑥 ∙ 𝑦 and ∃𝑦 ∙ 𝑧      ……………….(Aii) 

iii. ∀𝑥 ∈ 𝐶, there exist unique identities 𝒅(𝑥), 𝒓(𝑥) ∈ 𝐶𝑜 such that ∃𝒅(𝑥) ∙ 𝑥  and ∃𝑥 ∙ 𝒓(𝑥)  …….(Aiii) 

Whenever the partial multiplication in category (𝐶,∙) is clear, we simply refer to category 𝐶. The identity 𝒅(𝑥) is 

called the domain of 𝑥 and the identity  𝒓(𝑥) is called the range of 𝑥. Since 𝒅(𝑥), 𝒓(𝑥) ∈  𝐶𝑜 , 𝒅(𝑥) ∙ 𝑥 = 𝑥  and  𝑥 ∙

𝒓(𝑥) = 𝑥. Thus, for any identity 𝑒, 𝒅(𝑒) = 𝒓(𝑒) = 𝑒. 

 

Lemma 4.1.4 Lawson (1991):  Let (𝐶,∙) be a category with 𝑥, 𝑦 ∈ 𝐶. 

i. ∃𝑥 ∙ 𝑦 ⇔ 𝒓(𝑥) = 𝒅(𝑦)  
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ii. If ∃𝑥 ∙ 𝑦, then 𝒅(𝑥 ∙ 𝑦 ) = 𝒅(𝑥) and  𝒓(𝑥 ∙ 𝑦) = 𝒓(𝑦). 

Let (𝐶,∙) be a category. For , 𝑓 ∈ 𝐶𝑜 , we define the set 𝑚𝑜𝑟(𝑒, 𝑓) by: 

 𝑚𝑜𝑟(𝑒, 𝑓) = {𝑥 ∈ 𝐶: 𝒅(𝑥) = 𝑒, 𝒓(𝑥) = 𝑓}. 

When 𝑒 = 𝑓, 𝑚𝑜𝑟(𝑒, 𝑓) is a monoid. To see this, for ∈ 𝑚𝑜𝑟(𝑒, 𝑒), 𝑒 ∙ 𝑥 = 𝒅(𝑥) ∙ 𝑥 = 𝑥,  𝑥 ∙ 𝑒 = 𝒓(𝑥) = 𝑥. Therefore, 

𝑒 is the identity in 𝑚𝑜𝑟(𝑒, 𝑒). Let 𝑥, 𝑦 ∈ 𝑚𝑜𝑟(𝑒, 𝑒). Then, 𝒅(𝑥 ∙ 𝑦 ) = 𝒅(𝑥) = 𝑒 and  𝒓(𝑥 ∙ 𝑦) = 𝒓(𝑦) = 𝑒. Therefore, 

𝑥 ∙ 𝑦 ∈ 𝑚𝑜𝑟(𝑒, 𝑒). It then follows that ∃𝑥 ∙ (𝑦 ∙ 𝑧) and ∃(𝑥 ∙ 𝑦) ∙ 𝑧, ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑚𝑜𝑟(𝑒, 𝑒), and since 𝑚𝑜𝑟(𝑒, 𝑒) ∈ 𝐶,   

𝑥 ∙ (𝑦 ∙ 𝑧) = (𝑥 ∙ 𝑦) ∙ 𝑧. 

 𝑚𝑜𝑟(𝑒, 𝑒) is called the 𝑙𝑜𝑐𝑎𝑙 𝑠𝑢𝑏𝑚𝑜𝑛𝑜𝑖𝑑 of 𝐶 at 𝑒.  Thus, category is regarded as a generalization of a monoid.  A 

𝑢𝑛𝑖𝑝𝑜𝑡𝑒𝑛𝑡 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 is a category in which every local submonoid contains only one idempotent.  

 

Lemma 4.1.5 Lawson (1999):  Let (𝐶,∙ , ≤) be an ordered category and suppose that 𝑎 ∈ 𝐶 and 𝑒 ∈ 𝐶𝑜.  If 𝑎 ≤ 𝑒, then 

𝑎 ∈ 𝐶𝑜.  
Consequently, in an ordered category (𝐶,∙ , ≤), if the greatest lower bound (𝑡ℎ𝑒 𝑚𝑒𝑒𝑡) of two identities – 𝑒, 𝑓 , denoted 

by 𝑒˄𝑓 (with respect to ≤) exists, then it is an identity.  

 

Functor 

Let 𝑪 and 𝑫 be categories. A function 𝜙: 𝑪 → 𝑫 is called a 𝑓𝑢𝑛𝑐𝑡𝑜𝑟 if it satisfies the following conditions: 

i. If ∃𝑎 ∙ 𝑏 in 𝑪, then ∃𝑎𝜙 ∙ 𝑏𝜙 in 𝑫 and  

ii. 𝑎𝜙 ∙ 𝑏𝜙 = (𝑎 ∙ 𝑏)𝜙  

A functor 𝜙: 𝑪 → 𝑫 is called an 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑓𝑢𝑛𝑐𝑡𝑜𝑟 (or 𝑜𝑟𝑑𝑒𝑟 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑜𝑟) if 𝑎 ≤ 𝑏 in 𝑪, then 𝑎𝜙 ≤ 𝑏𝜙 

in 𝑫. 
 

Construction of a Category from an Inverse Semigroup 

This construction is done in analogy with Lawson (1991)’s  construction of inductive category from a restriction 

semigroup. 

Given an inverse semigroup 𝑆1, we define a product in 𝑆1 by 

 𝑎 ∙ 𝑏 = {
𝑎𝑏    𝑖𝑓  𝑎−1𝑎 = 𝑏𝑏−1 

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       𝑎, 𝑏 ∈ 𝑆1   ………………………. (Gi) 

Theorem 4.2.1:  Let 𝑆1 be an inverse semigroup with the natural partial order ≤. Then  (𝑆1,∙ , ≤) = 𝑪(𝑺𝟏) is a 

category with 𝑪(𝑺𝟏)𝑜 = 𝐸(𝑆1), 𝒅(𝑎) = 𝑎𝑎−1, 𝒓(𝑎) = 𝑎−1𝑎, ∀𝑎 ∈ 𝑆1, where ′′ ∙ ′′ is the product defined in (Gi). 

Proof:   Assuming 𝑒 is an identity in (𝑆1,∙)such that ∃𝑒 ∙ 𝑥 for 𝑥 ∈ 𝑆1. Then, by the definition of ′′ ∙ ′′,  𝑒 = 𝑥𝑥−1. 

Similarly, if 𝑓 is an identity in (𝑆1,∙) such that ∃𝑥 ∙ 𝑓 for 𝑥 ∈ 𝑆1. Then 𝑓 = 𝑥−1𝑥. Thus, idempotents in 𝑆1 are the 

identities in (𝑆1,∙). 𝑥𝑥−1 ∙ 𝑥 exists since (𝑥𝑥−1)−1(𝑥𝑥−1) = 𝑥𝑥−1. Of course, 𝑥𝑥−1 ∙ 𝑥 = 𝑥 and by uniqueness of 

𝒅(𝑥), 𝑥𝑥−1 = 𝒅(𝑥). Similarly, 𝑥−1𝑥 = 𝒓(𝑥). 
Next, we show that (∀𝑥, 𝑦, 𝑧 ∈ 𝑆1) ∃𝑥 ∙ (𝑦 ∙ 𝑧) ⇔ ∃(𝑥 ∙ 𝑦) ∙ 𝑧  and that 𝑥 ∙ (𝑦 ∙ 𝑧) = (𝑥 ∙ 𝑦) ∙ 𝑧, ∃𝑥 ∙ 𝑦 ; ∃𝑦 ∙ 𝑧. 
Assuming ∃𝑥 ∙ (𝑦 ∙ 𝑧), then 𝑥−1𝑥 = (𝑦 ∙ 𝑧)(𝑦 ∙ 𝑧)−1  

But (𝑦 ∙ 𝑧) = 𝑦𝑧 such that 𝑦−1𝑦 = 𝑧𝑧−1 

Therefore, ∃𝑥 ∙ (𝑦 ∙ 𝑧) ⇒ 𝑥−1𝑥 = (𝑦𝑧)(𝑦𝑧)−1 and 𝑦−1𝑦 = 𝑧𝑧−1  

So that 𝑥−1𝑥 = (𝑦𝑧)(𝑦𝑧)−1 = 𝑦𝑧𝑧−1𝑦−1 = 𝑦𝑧𝑧−1𝑧𝑧−1𝑦−1 = 𝑦𝑦−1𝑦𝑦−1𝑦𝑦−1 (since 𝑦−1𝑦 = 𝑧𝑧−1)  = 𝑦𝑦−1 

 Therefore, ∃𝑥 ∙ 𝑦. Similarly, ∃𝑦 ∙ 𝑧. 
Again, 𝑥 ∙ (𝑦 ∙ 𝑧) = 𝑥𝑦𝑧 such that 𝑥−1𝑥 = (𝑦𝑧)(𝑦𝑧)−1 and 𝑦−1𝑦 = 𝑧𝑧−1 . But 𝑥−1𝑥 = (𝑦𝑧)(𝑦𝑧)−1 = 𝑦𝑦−1. 

Therefore, 𝑥 ∙ (𝑦 ∙ 𝑧) = 𝑥𝑦𝑧 such that 𝑥−1𝑥 = 𝑦𝑦−1; 𝑦−1𝑦 = 𝑧𝑧−1. 

On the other hand, (𝑥 ∙ 𝑦) ∙ 𝑧 = 𝑥𝑦𝑧 such that (𝑥𝑦)−1(𝑥𝑦) = 𝑧𝑧−1 and 𝑥−1𝑥 = 𝑦𝑦−1. 

But (𝑥𝑦)−1(𝑥𝑦) = 𝑦−1𝑥−1𝑥𝑦 = 𝑦−1𝑥−1𝑥𝑥−1𝑥𝑦 = 𝑦−1𝑦𝑦−1𝑦𝑦−1𝑦 = 𝑦−1𝑦. 

So that  (𝑥 ∙ 𝑦) ∙ 𝑧 = 𝑥𝑦𝑧  such that 𝑦−1𝑦 = 𝑧𝑧−1; 𝑥−1𝑥 = 𝑦𝑦−1 

Thus, ∃𝑥 ∙ (𝑦 ∙ 𝑧) ⇒ ∃(𝑥 ∙ 𝑦) ∙ 𝑧  and 𝑥 ∙ (𝑦 ∙ 𝑧) = (𝑥 ∙ 𝑦) ∙ 𝑧. 

Hence, (𝑆1,∙) is a category.  We denote by 𝑪(𝑺𝟏) this category associated with an inverse semigroup 𝑆1, and the set 

of identities of 𝑪(𝑺𝟏) by 𝑪(𝑺𝟏)𝑜 
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Corollary 4.2.2:  Let 𝑆1 be an inverse semigroup with the natural partial order ≤. Then  (𝑆1 ,∙ , ≤) = 𝑪(𝑺𝟏) is an 

inductive category with 𝑪(𝑺𝟏)𝑜 = 𝐸(𝑆1), 𝒅(𝑎) = 𝑎𝑎−1, 𝒓(𝑎) = 𝑎−1𝑎, ∀𝑎 ∈ 𝑆1, where ′′ ∙ ′′ is the product defined 

in (Gi) above 

 

Construction of a Category from a Type 𝑨 Semigroup 

In a very similar fashion as that of inverse semigroup, a category from a type 𝐴 semigroup is constructed as follows: 

Let 𝑆 be a type 𝐴 semigroup and define a product in 𝑆 by 

 𝑎 ∙ 𝑏 = {
𝑎𝑏    𝑖𝑓  𝑎∗ = 𝑏† 

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       𝑎, 𝑏 ∈ 𝑆1    ………………………. (Gii) 

 

Theorem 4.3.1:   Let 𝑆 be a type 𝐴 semigroup with the natural partial order ≤. Then  (𝑆,∙ , ≤) = 𝑪(𝑺) is a category 

with 𝑪(𝑺)𝑜 = 𝐸(𝑆), 𝒅(𝑎) = 𝑎†, 𝒓(𝑎) = 𝑎∗, ∀𝑎 ∈ 𝑆, where ′′ ∙ ′′ is the product defined in (Gii). 

Proof:  Assuming 𝑒 is an identity in (𝑆,∙) such that ∃𝑒 ∙ 𝑥 for 𝑥 ∈ 𝑆. Then  𝑒 = 𝑥†. Similarly, if 𝑓 is an identity in 

(𝑆,∙) such that ∃𝑥 ∙ 𝑓 for 𝑥 ∈ 𝑆. Then 𝑓 = 𝑥∗. Thus, idempotents in 𝑆 are the identities in (𝑆,∙). 𝑥† ∙ 𝑥 exists since 

(𝑥†)∗ = 𝑥†. Of course, 𝑥† ∙ 𝑥 = 𝑥 and by uniqueness of 𝒅(𝑥), 𝑥† = 𝒅(𝑥). Similarly, 𝑥∗ = 𝒓(𝑥). 
Now, suppose ∃𝑥 ∙ (𝑦 ∙ 𝑧). That is  𝑥∗ = (𝑦𝑧)† and 𝑦∗ = 𝑧†. So that 𝑥∗ = (𝑦𝑧†)† = (𝑦𝑦∗)† = 𝑦†. So ∃𝑥 ∙ (𝑦 ∙ 𝑧) ⇒ 

𝑦∗ = 𝑧†; 𝑥∗ = 𝑦†. But (𝑥𝑦)∗ = (𝑥∗𝑦)∗ = (𝑦†𝑦)∗ = 𝑦∗ = 𝑧†. So that ∃𝑥 ∙ (𝑦 ∙ 𝑧) ⇔ (𝑥𝑦)∗ = 𝑧†; 𝑥∗ = 𝑦†⇔  ∃(𝑥 ∙
𝑦) ∙ 𝑧. Hence, 𝑥 ∙ (𝑦 ∙ 𝑧) = (𝑥 ∙ 𝑦) ∙ 𝑧. 
Moreover, ∃𝑥 ∙ (𝑦 ∙ 𝑧) ⇒ 𝑥∗ = 𝑦†; 𝑦∗ = 𝑧† ⇒ ∃𝑥 ∙ 𝑦 ; ∃𝑦 ∙ 𝑧.  

Hence, (𝑆,∙) is a category.  We denote by 𝑪(𝑺) this category associated with type 𝐴 semigroup 𝑆, and the set of 

identities of 𝑪(𝑺) by 𝑪(𝑺)𝑜. 

 

Results  

Using theorem 2.2.2 above, Fountain (1979):  obtained an embedding of type𝐴 semigroup into an inverse semigroup. 

Offor et al. (2018) extended the representation to the translational hull of type 𝐴 semigroup. Now, our effort in this 

section is to further extend the representation to the category of the translational hull of type 𝐴 monoid.  

Now, we recall from section 3.1 that for each element 𝑎 in a semigroup 𝑆 whose translational hull 𝛺(𝑆) is considered, 

there is a linked pair (𝜆𝑎, 𝜌𝑎) within 𝛺(𝑆) defined by 𝜆𝑎𝑥 = 𝑎𝑥 and  𝑥𝜌𝑎 = 𝑥𝑎, and it is called the 𝑖𝑛𝑛𝑒𝑟 𝑝𝑎𝑟𝑡 of 

𝛺(𝑆). The product is defined by (𝜆𝑎 , 𝜌𝑎)(𝜆𝑏 , 𝜌𝑏) = (𝜆𝑎𝑏 , 𝜌𝑎𝑏). 𝑎 ↦ (𝜆𝑎 , 𝜌𝑎) is a map of 𝑆 into 𝛺(𝑆) is denoted by 

𝛱𝑆. 𝛱𝑆(𝑆) = {(𝜆𝑎, 𝜌𝑎)│𝑎 ∈ 𝑆, 𝜆𝑎𝑥 = 𝑎𝑥, 𝑥𝜌𝑎 = 𝑥𝑎, ∀𝑥 ∈ 𝑆} 

We let  𝑪𝜞𝑺: 𝑎 ↦ 𝜆𝑎, and 𝑪𝜞(𝑺) = {𝜆𝑎: 𝑎 ∈ 𝑪(𝑺)}.  We also let 𝑪𝜟𝑺: 𝑎 ↦ 𝜌𝑎 and 𝑪𝜟(𝑺)  = {𝜌𝑎: 𝑎 ∈ 𝑪(𝑺)}. 

 

Theorem 5.1:  Given the category of a type𝐴 monoid 𝑪(𝑺), there are inverse semigroups categories 𝑪(𝑺𝟏), 𝑪(𝑺𝟐), 

and embeddings  𝑪𝝓𝟏: 𝑪(𝑺) → 𝑪(𝑺𝟏), 𝑪𝝓𝟐: (𝑺) → (𝑺𝟐), such that 𝑪𝝓𝟏𝑎∗ = (𝑪𝝓𝟏𝑎)∗ = (𝑪𝝓𝟏𝑎)−1(𝑪𝝓𝟏𝑎),  
𝑪𝝓𝟐𝑎† = (𝑪𝝓𝟐𝑎)† = (𝑪𝝓𝟐𝑎)(𝑪𝝓𝟐𝑎)−1, and there are also embeddings  𝑪𝝍𝟏: 𝜦[𝑪(𝑺)] → 𝜦[(𝑺𝟏)],    
𝑪𝝍𝟐: 𝑷[𝑪(𝑺)] → 𝑷[(𝑺𝟐)] such that each of the diagrams 

 

 

 

 

 

 

 

commutes  

𝑪𝝍𝟏 

𝑪(𝑺𝟏) 𝑪(𝑺) 

𝜦[𝑪(𝑺)] 𝜦[𝑪(𝑺𝟏)] 

𝑪𝜞𝑺𝟏
   𝑪𝜞𝑺   

𝑪𝝓𝟏 

(𝑖) 

𝑪𝝍𝟐 

𝑪(𝑺𝟐) 𝑪(𝑺) 

𝑷[𝑪(𝑺)] 𝑷[𝑪(𝑺𝟐)] 

𝑪𝜟𝑺𝟏
   𝑪𝜟𝑺   

𝑪𝝓𝟐 

(𝑖𝑖) 
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and 𝑪𝝍𝟏(𝝀∗) =  [𝑪𝝍𝟏(𝝀)]∗ =  [𝑪𝝍𝟏(𝝀)]−𝟏 𝑪𝝍𝟏(𝝀),       𝑪𝝍𝟐(𝝆†) =  [𝑪𝝍𝟐(𝝆)]† =

 𝑪𝝍𝟐(𝝆)[𝑪𝝍𝟐(𝝆)]−𝟏. 

 

We prove this theorem through the following propositions, lemmas and corollaries. Diagram (𝑖) is dual to diagram 

(𝑖𝑖) and therefore every fact established about diagram (𝑖) applies in dual manner to diagram (𝑖𝑖). 

Proposition 5.2: Given the category of type𝐴 monoid 𝑪(𝑺), there are inverse semigroup categories 𝑪(𝑺𝟏), 𝑪(𝑺𝟐) and 

embeddings  𝑪(𝝓𝟏): 𝑺 → 𝑺𝟏, 𝑪(𝝓𝟐): 𝑺 → 𝑺𝟐, such that 𝝓𝟏𝑎∗ = (𝝓𝟏𝑎)∗ = (𝝓𝟏𝑎)−1(𝝓𝟏𝑎),  𝝓𝟐𝑎† = (𝝓𝟐𝑎)† =
(𝝓𝟐𝑎)(𝝓𝟐𝑎)−1. 

Proof:     

Let 𝑪(𝑺) be a category of type𝐴 monoid. To start with, we need to establish the existence of the categories of inverse 

semigroup(s) 𝑪(𝑺𝟏) [and 𝑪(𝑺𝟐)]. 

For each 𝑎 ∈ 𝑪(𝑺) , (𝑎∗, 𝑎) ∈ ℒ∗ since 𝑪(𝑺) is abundant.  

Define a map 𝜂𝑎: 𝑎∗𝑪(𝑺) → 𝑎𝑪(𝑺) defined by 𝜂𝑎(𝑎∗𝑠) = 𝑎𝑠, 𝑠 ∈ 𝑪(𝑺). 

Let 𝑎∗𝑠′ = 𝑎∗𝑠′′ ,  𝑠′, 𝑠′′ ∈ 𝑪(𝑺).   
        𝜂𝑎(𝑎∗𝑠′) = 𝑎𝑠′ = 𝑎𝑎∗𝑠′      [𝑎∗ is a right identity to 𝑎] 

                                 =  𝑎𝑎∗𝑠′′  =  𝑎𝑠′′ = 𝜂𝑎(𝑎∗𝑠′′).   Thus, 𝜂𝑎 is well defined.   

Let 𝜂𝑎(𝑎∗𝑠1) = 𝜂𝑎(𝑎∗𝑠2),  𝑠1, 𝑠2 ∈ 𝑪(𝑺). This implies that 𝑎𝑠1 = 𝑎𝑠2. Since (𝑎∗, 𝑎) ∈ ℒ∗, 𝑎𝑠1 = 𝑎𝑠2 implies that 

𝑎∗𝑠1 = 𝑎∗𝑠2. Thus, 𝜂𝑎 is one – one and therefore, a member of the 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑠𝑒𝑚𝑖𝑔𝑟𝑜𝑢𝑝 𝔗𝑪(𝑺) on 𝑪(𝑺).  

So, 𝔗𝑪(𝑺) becomes the 𝑪(𝑺𝟏). 

 𝜂𝑎 is as well surjective since ∀𝑎𝑠 ∈ 𝑎𝑪(𝑺), 𝑎𝑠 = 𝑎𝑎∗𝑠 = 𝜂𝑎(𝑎∗𝑠), which implies that every element 𝑎𝑠 ∈ 𝑎𝑪(𝑺) has 

a pre – image 𝑎∗𝑠 ∈ 𝑎∗𝑪(𝑺).  
Thus, 𝜂𝑎 is a bijection.  

Hence, ∀𝑎 ∈ 𝑪(𝑺), there is a bijection 𝜂𝑎: 𝑎∗𝑪(𝑺) → 𝑎𝑪(𝑺) defined by 𝜂𝑎(𝑎∗𝑠) = 𝑎𝑠, [𝑠 ∈ 𝑪(𝑺)] which maps 𝑎∗ to 

𝑎. 
Now, define a map 𝑪(𝝓𝟏): 𝑪(𝑺) → 𝑪(𝑺𝟏) by (𝑪(𝝓𝟏))(𝑎) = 𝜂𝑎, [𝑎 ∈ 𝑪(𝑺)]  
For 𝑎, 𝑏 ∈ 𝑪(𝑺), the domain of 𝜂𝑏𝜂𝑎 is 𝜂𝑎

−1(𝑏∗𝑪(𝑺) ∩ 𝑎𝑪(𝑺)) 

 𝜂𝑎
−1(𝑏∗𝑪(𝑺) ∩ 𝑎𝑪(𝑺)) = 𝜂𝑎

−1(𝑏∗𝑎𝑪(𝑺)) [since for the category of a type 𝐴 semigroup 𝑪(𝑺), 𝑒𝑪(𝑺) ∩ 𝑎𝑪(𝑺) =
𝑒𝑎𝑪(𝑺), (∀𝑎 ∈ 𝑪(𝑺))(∀𝑒 ∈ 𝑪(𝑺)𝑜)]. 
     = 𝜂𝑎

−1[𝑎(𝑏∗𝑎)∗𝑪(𝑺)] = 𝜂𝑎
−1𝜂𝑎[(𝑏∗𝑎)∗𝑪(𝑺)] = (𝑏∗𝑎)∗𝑪(𝑺).  

Now, since 𝑏𝑎ℒ∗(𝑏𝑎)∗ = (𝑏∗𝑎)∗, 𝑑𝑜𝑚(𝜂𝑏𝑎) = (𝑏∗𝑎)∗𝑪(𝑺) = 𝑑𝑜𝑚(𝜂𝑏𝜂𝑎).  

 For (𝑏∗𝑎)∗𝑠 ∈ (𝑏∗𝑎)∗𝑪(𝑺) = 𝑑𝑜𝑚(𝜂𝑏𝑎) 

 𝜂𝑏𝑎[(𝑏∗𝑎)∗𝑠] = 𝑏𝑎𝑠 = 𝑏𝑏∗𝑎𝑠 = 𝜂𝑏𝑏∗𝑎𝑠 =  𝜂𝑏𝑎(𝑏∗𝑎)∗𝑠 𝜂𝑏𝜂𝑎[(𝑏∗𝑎)∗𝑠] 
Thus, 𝜂𝑏𝑎 = 𝜂𝑏𝜂𝑎  ∀𝑎, 𝑏 ∈ 𝑪(𝑺). 

Hence, ∀𝑎, 𝑏 ∈ 𝑪(𝑺), (𝑪(𝝓𝟏))𝑏𝑎 = 𝜂𝑏𝑎 = 𝜂𝑏𝜂𝑎 = [𝑪(𝝓𝟏)]𝑏[𝑪(𝝓𝟏)]𝑎. 

Therefore, 𝑪(𝝓𝟏) is a homomorphism. 

Let (𝑪(𝝓𝟏))𝑎 = (𝑪(𝝓𝟏))𝑏. This implies that 𝜂𝑎 = 𝜂𝑏. That is, 𝑑𝑜𝑚 𝜂𝑎 = 𝑑𝑜𝑚 𝜂𝑏 = 𝑒𝑪(𝑺) (say). 

Then, 𝑎 = 𝜂𝑎(𝑒) = 𝜂𝑏(𝑒) = 𝑏.  
Thus, 𝑪(𝝓𝟏) is one – one and hence an embedding. 

Now, we want to establish that  𝑪(𝝓𝟏)𝑎∗ = ( 𝑪(𝝓𝟏)𝑎)∗ = ( 𝑪(𝝓𝟏)𝑎)−1( 𝑪(𝝓𝟏)𝑎), (∀𝑎 ∈ 𝑪(𝑺)) 

Since 𝑪(𝑺𝟏) is regular, ℒ(𝑪(𝑺𝟏)) = ℒ∗(𝑪(𝑺𝟏)). 

So that for 𝑎 ∈ 𝑪(𝑺),  [𝑪(𝝓𝟏)]𝑎 ∈  𝑪(𝑺𝟏), [𝑪(𝝓𝟏)𝑎]∗ = ( 𝑪(𝝓𝟏)𝑎)−1( 𝑪(𝝓𝟏)𝑎) ∈ ℒ 𝑪(𝝓𝟏)𝑎 since the idempotent 

must be unique. 

We show next that  𝑪(𝝓𝟏)𝑎∗ = [𝑪(𝝓𝟏)𝑎]∗. 

Let 𝑎, 𝑥, 𝑦 ∈ 𝑪(𝑺). [ 𝑪(𝝓𝟏)𝑎 𝑪(𝝓𝟏)𝑥 =  𝑪(𝝓𝟏)𝑎𝑪(𝝓𝟏)𝑦] ⇔ [𝑪(𝝓𝟏)(𝑎𝑥) = 𝑪(𝝓𝟏)(𝑎𝑦)]  
⇔ [𝑎𝑥 = 𝑎𝑦] ⇔ [𝑎∗𝑥 = 𝑎∗𝑦] ⇔ [ 𝑪(𝝓𝟏)(𝑎∗𝑥) = 𝑪(𝝓𝟏)(𝑎∗𝑦)]  
⇔ [𝑪(𝝓𝟏)(𝑎∗)𝑪(𝝓𝟏)(𝑥) =  𝑪(𝝓𝟏)(𝑎∗) 𝑪(𝝓𝟏)(𝑦)] ⇔  𝑪(𝝓𝟏)(𝑎)ℒ∗ 𝑪(𝝓𝟏)(𝑎∗). 
Since 𝑪(𝝓𝟏) is a homomorphism, 𝑪(𝝓𝟏)(𝑎∗) is an idempotent in 𝔗𝑪(𝑺) and since idempotent in ℒ𝑪(𝝓𝟏)𝑎 must be 

unique, 𝑪(𝝓𝟏)(𝑎∗) =  (𝑪(𝝓𝟏)𝑎)∗. 
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We have just shown that given a type𝐴 monoid 𝑪(𝑺), there is an inverse semigroup 𝑪(𝑺𝟏) and an embedding  

𝑪(𝝓𝟏): 𝑪(𝑺) → 𝑪(𝑺𝟏) such that 𝑪(𝝓𝟏)𝑎∗ = (𝑪(𝝓𝟏)𝑎)∗ = (𝑪(𝝓𝟏)𝑎)−1(𝑪(𝝓𝟏)𝑎). 
Referring to ℛ∗ (instead of ℒ∗), 𝔗𝑪(𝑺) becomes our 𝑪(𝑺𝟐), and carrying out the dual argument gives the second part 

of the result – 

Given a type𝐴 monoid 𝑪(𝑺), there is a category of an inverse semigroup 𝑪(𝑺𝟐) and an embedding  𝑪(𝝓𝟐): 𝑪(𝑺) →
𝑪(𝑺𝟐) such that  𝑪(𝝓𝟐)𝑎† = (𝑪(𝝓𝟐)𝑎)† = (𝑪(𝝓𝟐)𝑎)(𝑪(𝝓𝟐)𝑎)−1. 

 

Lemma 5.3: For an inverse semigroup 𝑪(𝑺𝟏) ,  𝑪(𝜞): 𝑎 ↦ 𝜆𝑎 is an isomorphism from 𝑪(𝑺𝟏)  onto 𝑪(𝜞)[𝑪(𝑺𝟏)].  
Proof: 

For 𝑎, 𝑏 ∈ 𝑪(𝑺𝟏),  𝑪(𝜞)[𝑎𝑏] =  𝜆𝑎𝑏  = 𝜆𝑎𝜆𝑏  = 𝑪(𝜞)(𝑎)𝑪(𝜞)(𝑏). Therefore, 𝑪(𝜞) is a homomorphism. 

Let  𝜆𝑎 = 𝜆𝑏.  

𝑎 = 𝑎𝑎−1𝑎 = 𝜆𝑎𝑎−1𝑎  = 𝜆𝑏𝑎−1𝑎 = 𝑏𝑎−1𝑎 ≤ 𝑏 .  

Similarly,  𝑏 ≤ 𝑎, and therefore  𝑎 = 𝑏. 
Thus, 𝑪(𝜞) is injective. It is also an onto map since ∀𝜆𝑎 ∈  𝑪(𝜞)[𝑪(𝑺𝟏)],  ∃𝑎 ∈ 𝑪(𝑺) with 𝑎 ↦ 𝜆𝑎. 

 

Lemma 5.4: For a type𝐴 semigroup 𝑪(𝑺),   𝑪(𝜞): 𝑎 ↦ 𝜆𝑎 is an isomorphism from 𝑪(𝑺) onto  𝑪(𝜞)[𝑪(𝑺)].  
For 𝑎, 𝑏 ∈ 𝑪(𝑺𝟏),  𝑪(𝜞)[𝑎𝑏] =  𝜆𝑎𝑏  = 𝜆𝑎𝜆𝑏  = 𝑪(𝜞)(𝑎)𝑪(𝜞)(𝑏). Therefore, 𝑪(𝜞) is a homomorphism. 

Let  𝜆𝑎 = 𝜆𝑏.  

𝑎 = 𝑎𝑎∗ = 𝜆𝑎𝑎∗ =  𝜆𝑏𝑎∗ = 𝑏𝑎∗ ≤ 𝑏. Similarly,  𝑏 ≤ 𝑎, and therefore  𝑎 = 𝑏. 
Thus,  𝑪(𝜞) is injective. It is also an onto map since ∀𝜆𝑎 ∈  𝑪(𝜞)[𝑪(𝑺)],  ∃𝑎 ∈ 𝑪(𝑺) with 𝑎 ↦ 𝜆𝑎. 

 

Corollary 5.5: For a category of an inverse semigroup 𝑪(𝑺𝟏),  𝑪(𝜟𝑺𝟏
): 𝑎 ↦ 𝜌𝑎 is an isomorphism from  𝑪(𝑺𝟏) onto 

𝑪(𝜟)[𝑪(𝑺𝟏)]. Similarly, for a category of a type𝐴 semigroup 𝑪(𝑺),  𝑪(𝜟𝑺): 𝑎 ↦ 𝜌𝑎 is an isomorphism from 𝑪(𝑺) 

onto 𝑪(𝜟)[𝑪(𝑺)]. 
 

Proposition 5.6:  Given a category of a type𝐴 monoid 𝑪(𝑺), there are categories of inverse semigroups 𝑪(𝑺𝟏), 𝑪(𝑺𝟐), 

and embeddings  𝑪𝝍𝟏: 𝜦[𝑪(𝑺)] → 𝜦[𝑪(𝑺𝟏)],    𝑪𝝍𝟐: 𝑷[𝑪(𝑺)] → 𝑷[𝑪(𝑺𝟐)] such that 𝑪𝝍𝟏(𝝀∗) =  [𝑪𝝍𝟏(𝜆)]∗ =
 [𝑪𝝍𝟏(𝜆)]−1 𝑪𝝍𝟏(𝜆),       𝑪𝝍𝟐(𝜌†) =  [𝑪𝝍𝟐(𝜌)]† =  𝑪𝝍𝟐(𝜌)[𝑪𝝍𝟐(𝜌)]−1. 

Proof: 

Let us denote the symmetric inverse semigroup on 𝜦[𝑪(𝑺)] by 𝕿𝜦[𝑪(𝑺)].  For each 𝜆 ∈ 𝜦[𝑪(𝑺)], we define a map

 𝜃𝜆: 𝜆∗𝜦[𝑪(𝑺)] → 𝜆𝜦[𝑪(𝑺)] by  𝜃𝜆(𝜆∗𝜆1) = 𝜆𝜆1,   𝜆1 ∈  𝜦[𝑪(𝑺)]. 
We show that 𝜃𝜆 is one-one.  

Let 𝜃𝜆(𝜆∗𝜆1) = 𝜃𝜆(𝜆∗𝜆2),    𝜆1, 𝜆2 ∈  𝜦[𝑪(𝑺)]. This implies that 𝜆𝜆1 = 𝜆𝜆2. 

Since  𝜆ℒ∗𝜆∗,   𝜆𝜆1 = 𝜆𝜆2   ⇔   𝜆∗𝜆1 = 𝜆∗𝜆2.  

Thus, 𝜃𝜆 is one-one and 𝜃𝜆 ∈ 𝕿𝜦[𝑪(𝑺)]. So that we take 𝛬(𝑆1) to be 𝕿𝜦[𝑪(𝑺)]    

Evidently, 𝜃𝜆 is surjective since ∀𝜆𝜆1 ∈ 𝜆𝜦[𝑪(𝑺)], 𝜆𝜆1 = 𝜆𝜆∗𝜆1 = 𝜃𝜆𝜆∗𝜆1. So that every 

 𝜆𝜆1 ∈ 𝜆𝜦[𝑪(𝑺)] has a pre-image 𝜆∗𝜆1 in 𝜆∗𝜦[𝑪(𝑺)]. 
Hence, ∀𝜆 ∈ 𝜦[𝑪(𝑺)], there is a bijection 𝜃𝜆: 𝜆∗𝜦[𝑪(𝑺)] → 𝜆𝜦[𝑪(𝑺)] defined by 𝜃𝜆(𝜆∗𝜆1) = 𝜆𝜆1,    

𝜆1 ∈  𝜦[𝑪(𝑺)], which maps 𝜆∗ to 𝜆. 
Now, define the map 𝑪𝝍𝟏: 𝜦[𝑪(𝑺)] → 𝜦[𝑪(𝑺𝟏)]   by  𝑪𝝍𝟏(𝜆) = 𝜃𝜆 . 
We show that 𝑪𝝍𝟏 is a homomorphism. 

For 𝜆, 𝑙 ∈ 𝜦[𝑪(𝑺)], the domain of 𝜃𝑙𝜃𝜆 is  𝜃𝜆
−1[𝜆𝜦[𝑪(𝑺)]  ∩  𝑙∗𝜦[𝑪(𝑺)]]  [see Howie 1995, pg 148] 

This implies that 𝑑𝑜𝑚 𝜃𝑙𝜃𝜆 = 𝜃𝜆
−1[𝑙∗𝜆𝜦[𝑪(𝑺)]]  since for a type 𝐴 semigroup, 𝑒𝑆 ∩ 𝑎𝑆 = 𝑒𝑎𝑆, (∀𝑎 ∈ 𝑆) (∀𝑒 ∈ 𝐸) 

 𝜃𝜆
−1[𝑙∗𝜆𝜦[𝑪(𝑺)]]  = 𝜃𝜆

−1[𝜆(𝑙∗𝜆)∗𝜦[𝑪(𝑺)]]  = 𝜃𝜆
−1𝜃𝜆[(𝑙∗𝜆)∗𝜦[𝑪(𝑺)]]  = (𝑙∗𝜆)∗𝜦[𝑪(𝑺)] 

Since 𝑙𝜆ℒ∗(𝑙𝜆)∗ = (𝑙∗𝜆)∗,  𝑑𝑜𝑚 𝜃𝑙𝜆 = (𝑙∗𝜆)∗𝜦[𝑪(𝑺)]. 
Thus, 𝑑𝑜𝑚 𝜃𝑙𝜃𝜆 =  𝑑𝑜𝑚 𝜃𝑙𝜆. 

Moreover, for (𝑙∗𝜆)∗𝜆1 ∈  𝑑𝑜𝑚 𝜃𝑙𝜆 

  𝜃𝑙𝜆[(𝑙∗𝜆)∗𝜆1] = 𝑙𝜆𝜆1 = 𝑙𝑙∗𝜆𝜆1 = 𝜃𝑙[𝑙∗𝜆𝜆1] = 𝜃𝑙[𝜆(𝑙∗𝜆)∗𝜆1] = 𝜃𝑙𝜃𝜆[(𝑙∗𝜆)∗𝜆1] 
Hence,   𝜃𝑙𝜃𝜆 =  𝜃𝑙𝜆. 

Therefore, ∀𝜆, 𝑙 ∈ 𝜦[𝑪(𝑺)], 𝑪𝝍𝟏(𝑙𝜆) = 𝜃𝑙𝜆 =  𝜃𝑙𝜃𝜆 = 𝑪𝝍𝟏(𝑙)𝑪𝝍𝟏(𝜆). Thus, 𝑪𝝍𝟏 is a homomorphism. 

 

Let 𝑪𝝍𝟏(𝑙) = 𝑪𝝍𝟏(𝜆). Then,  𝜃𝑙 =  𝜃𝜆. That is,  𝑑𝑜𝑚 𝜃𝑙 = 𝑑𝑜𝑚 𝜃𝜆 = 𝜆′ 𝜦[𝑪(𝑺)](say). 
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Therefore, 𝜆 = 𝜃𝜆(𝜆′) =  𝜃𝑙(𝜆′) = 𝑙. Thus, 𝑪𝝍𝟏 is injective and hence an embedding. 

 ℒ(𝜦[𝑪(𝑺𝟏)]) = ℒ∗(𝜦[𝑪(𝑺𝟏)]) since 𝜦[𝑪(𝑺𝟏)] is regular. Therefore, for each 𝑪𝝍𝟏(𝜆) ∈ 𝜦[𝑪(𝑺𝟏)],   [𝑪𝝍𝟐(𝜆)]∗ =
 [𝑪𝝍𝟏(𝜆)]−1𝑪𝝍𝟏(𝜆) ∈  ℒ𝑪𝝍𝟏(𝜆) = ℒ∗

𝑪𝝍𝟏(𝜆) since the idempotent must be unique. 

Now, we just need to show that 𝑪𝝍𝟏(𝜆∗) = [𝑪𝝍𝟏(𝜆)]∗ 

For 𝜆, 𝜆′, 𝜆′′ ∈ 𝜦[𝑪(𝑺)], let  𝑪𝝍𝟏(𝜆)𝑪𝝍𝟏(𝜆′) = 𝑪𝝍𝟏(𝜆)𝑪𝝍𝟏(𝜆′′)  ⇔  𝑪𝝍𝟏(𝜆𝜆′) =  𝑪𝝍𝟏(𝜆𝜆′′)  ⇔ 𝜆𝜆′ = 𝜆𝜆′′ 

⇔ 𝜆∗𝜆′ = 𝜆∗𝜆′′  ⇔ 𝑪𝝍𝟏(𝜆∗)𝑪𝝍𝟏(𝜆′) = 𝑪𝝍𝟏(𝜆∗)𝑪𝝍𝟏(𝜆′′). So that  𝑪𝝍𝟏(𝜆)ℒ∗𝑪𝝍𝟏(𝜆∗).  

Since 𝑪𝝍𝟏 is a homomorphism and 𝜆∗ an idempotent in 𝜦[𝑪(𝑺)], 𝑪𝝍𝟏(𝜆∗) is an idempotent in 𝜦[𝑪(𝑺𝟏)]  and since 

idempotent in ℒ𝑪𝝍𝟏(𝜆) must be unique, 𝑪𝝍𝟏(𝜆∗) =  [𝑪𝝍𝟏(𝜆)]∗. 

By dual argument, it follows that  𝑪𝝍𝟐: 𝑷[𝑪(𝑺)] → 𝑷[𝑪(𝑺𝟐)] is an embedding such that  𝑪𝝍𝟐(𝜌†) =  [𝑪𝝍𝟐(𝜌)]† =
 𝑪𝝍𝟐(𝜌)[𝑪𝝍𝟐(𝜌)]−1 

 

Proposition 5.7: Each of the diagrams commutes 

         

 

 

 

 

      

 

Proof:   We defined the map 𝑪𝝓𝟏: 𝑪(𝑺) → 𝑪(𝑺𝟏) by 𝑪𝝓𝟏(𝑎) = 𝜂𝑎. The rest are –  

   𝑪𝜞𝑺: 𝑎 →  𝜆𝑎 ,     𝑪𝜞𝑺𝟏 ∶  𝜂𝑎 →  𝜆𝜂𝑎
 and  𝑪𝝍𝟏:  𝜆𝑎 → 𝜃𝜆𝑎

 

Thus, 𝑪𝝍𝟏[𝑪𝜞𝑺(𝑎)] = 𝜃𝜆𝑎
   and   𝑪𝜞𝑺𝟏

[𝑪𝝓𝟏(𝑎)] =  𝜆𝜂𝑎
 

So, for any 𝑥 ∈ 𝑪(𝑺),   𝜃𝜆𝑎
(𝑥) =  𝜆𝑎(𝑥) = 𝑎𝑥 

and   𝜆𝜂𝑎
(𝑥) = 𝑎𝑥 =  𝜆𝑎(𝑥) = 𝜃𝜆𝑎

(𝑥)  

Therefore,  𝑪𝝍𝟏𝑪𝜞𝑺 = 𝑪𝜞𝑺𝟏 𝑪𝝓𝟏 . Hence, diagram (𝑖) commutes and dually, diagram (𝑖𝑖) commutes.  

 

Conclusion 

In this paper, we basically engaged ourselves with the study of translational hulls of type 𝐴 semigroup and inverse 

semigroup alongside their categories.  

The major result is that given the category of a type𝐴 monoid 𝑪(𝑺), there are inverse semigroups categories 𝑪(𝑺𝟏), 

𝑪(𝑺𝟐), and embeddings  𝑪𝝓𝟏: 𝑪(𝑺) → 𝑪(𝑺𝟏), 𝑪𝝓𝟐: (𝑺) → (𝑺𝟐), such that 𝑪𝝓𝟏𝑎∗ = (𝑪𝝓𝟏𝑎)∗ = (𝑪𝝓𝟏𝑎)−1(𝑪𝝓𝟏𝑎),  
𝑪𝝓𝟐𝑎† = (𝑪𝝓𝟐𝑎)† = (𝑪𝝓𝟐𝑎)(𝑪𝝓𝟐𝑎)−1, and there are also embeddings  𝑪𝝍𝟏: 𝜦[𝑪(𝑺)] → 𝜦[(𝑺𝟏)],    
𝑪𝝍𝟐: 𝑷[𝑪(𝑺)] → 𝑷[(𝑺𝟐)] such that each of the diagrams 

 

 

 

 

 

 

commutes  

𝑪𝝍𝟏 

𝑪(𝑺𝟏) 𝑪(𝑺) 

𝜦[𝑪(𝑺)] 𝜦[𝑪(𝑺𝟏)] 

𝑪𝜞𝑺𝟏
   𝑪𝜞𝑺   

𝑪𝝓𝟏 

(𝑖) 

𝑪𝝍𝟐 

𝑪(𝑺𝟐) 𝑪(𝑺) 

𝑷[𝑪(𝑺)] 𝑷[𝑪(𝑺𝟐)] 

𝑪𝜟𝑺𝟏
   𝑪𝜟𝑺   

𝑪𝝓𝟐 

(𝑖𝑖) 

𝑪𝝍𝟐 

𝑪(𝑺𝟐) 𝑪(𝑺) 

𝑷[𝑪(𝑺)] 𝑷[𝑪(𝑺𝟐)] 

𝑪𝜟𝑺𝟏
   𝑪𝜟𝑺   

𝑪𝝓𝟐 

(𝑖𝑖) 

𝑪𝝍𝟏 

𝑪(𝑺𝟏) 𝑪(𝑺) 

𝜦[𝑪(𝑺)] 𝜦[𝑪(𝑺𝟏)] 

𝑪𝜞𝑺𝟏
   𝑪𝜞𝑺   

𝑪𝝓𝟏 

(𝑖) 
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and 𝑪𝝍𝟏(𝝀∗) =  [𝑪𝝍𝟏(𝝀)]∗ =  [𝑪𝝍𝟏(𝝀)]−𝟏 𝑪𝝍𝟏(𝝀),       𝑪𝝍𝟐(𝝆†) =  [𝑪𝝍𝟐(𝝆)]† =

 𝑪𝝍𝟐(𝝆)[𝑪𝝍𝟐(𝝆)]−𝟏. 

Just as abundant semigroups are analogous to regular semigroups, so are type 𝐴 semigroups analogous to inverse 

semigroups. Just as the study of abundant semigroups is guided by the existing results for regular semigroups, study 

of type 𝐴 semigroups is guided by the existing results for inverse semigroups. This explains the reason why inverse 

semigroup is found in most corners of this paper even though our primary target is type 𝐴 semigroup. Behind most 

successful results in type 𝐴 semigroup are existing results in inverse semigroups! Besides, we cannot talk about 

representation of type 𝐴 semigroup without talking about the inverse semigroup. 
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TABLE OF SYMBOLS 

ℒ, ℛ, ℋ, 𝒟, ℐ Green’s relations  

ℒ∗, ℛ∗, ℋ∗, 𝒟∗, ℐ∗ Extended Green’s relations  

𝜆 left translation lambda 

𝛬(𝑆) The set of the left translations of a semigroup 

𝑆 

 𝛬 = capital letter lamda  

𝜌 right translation rho 

𝛲(𝑆) The set of the right translations of a 

semigroup 𝑆 

 𝛲 = capital letter rho 

𝛺(𝑆) the translation hull of a semigroup 𝑆  𝛺 = omega 

(𝜆𝑎 , 𝜌𝑎) inner part of 𝛺(𝑆)  

𝛱𝑆(𝑆) Set of inner parts of 𝛺(𝑆)  

𝛤(𝑆) Set of left inner parts of 𝛺(𝑆)  

𝛤𝑆 or simply 𝛤 an isomorphism from 𝑆 onto 𝛤(𝑆)  𝛤 = gamma 

𝜑|𝐴 The restriction of a function 𝜑 to a subset 𝐴 

of its domain 

 

𝐸𝑆 or 𝐸(𝑆) The set of all the idempotents of a semigroup 

𝑆 

 

𝐸𝛺(𝑆) The set of all the idempotents of 𝛺(𝑆)  

𝛱𝑆 homomorphism of 𝑆 into 𝛺(𝑆)  
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𝑎∗ unique idempotent in the ℒ∗  

𝑎† unique idempotent in the ℛ∗  

〈𝑎〉 A set generated by 𝑎  

𝜇 The largest congruence contained in ℋ∗ Greek letter, pronounced 

Mu 

𝔗𝑋 symmetric inverse semigroup on set 𝑋.  

𝜄 diagonal relation or identity map  𝜄 = iota, Greek letter 

       1𝑋 or 𝜄𝑋 diagonal relation on 𝑋 or identity map on 𝑋  

𝐶(𝑆) a category constructed from a semigroup 𝑆  

𝑆[𝐶(𝑆)] a semigroup constructed from a category 

𝑪(𝑺) 

 

𝑆/𝛼 a factor semigroup  

 

 

References 

Asibong-Ibe, U. (1991). Representation of type a monoids. Bull Austral Math Soc. 44. 131 – 138. 

Asibong-Ibe, U. (1993). Basic principles of category theory. A Foundation Post Graduate Course in Algebra for 

National Mathematical Centre, Abuja (Lecture Note). 

Ault, J. E. (1972).  The translational hull of an inverse semigroup. Glasgow Math. J. 14(1), 56 – 64. 

Daniele, T. (2001).  Category theory lecture notes. Laboratory for Foundations of Computer Science, University of 

Edinburgh. Free online edition visited on April 11, 2018 

Fountain, J. B. & Lawson, M.V(1985). The translational hull of an adequate semigroup. Semigroup Forum, 32,79 – 

86. 

Fountain, J. B. (1977). A class of right pp monoids. Quart. J. Math. 28, 285 – 300.     

Fountain, J. B. (1979). Adequate semigroups. Proc. Edinburgh Math. Soc. 22, 113 – 125.     

Fountain, J. B. (1982). Abundant semigroups. Proc. London Math. Soc. 44, 103 –

Guo, X. & Guo, Y. (2000). The translational hull of a strong right type A semigroup. Science In China (Series 

A)44(1) 6-12.  

Guo, X. & Shum, K. P.(2003). On translational hulls of typeA semigroups. Elsevier Journal of Algebra 269, 240 – 

249. 

Howie,  J. M. (1995). Fundamentals of semigroup theory. Oxford University Press Inc.  

Lawson, M. V. (1986). The structure of type a semigroups. Quart. J, Math. Oxford 37(2) 279 – 298. 

Lawson, M. V. (1987). The natural partial order on an abundant semigroup. Proc. Edinburgh Math. Soc. 30, 169–186.  

Lawson, M. V. (1999). Constructing inverse semigroup from category actions. Journal of Pure and Applied 

Algebra. 137, 57 – 101. 

Lawson, M.V. (1991). Semigroups and ordered category; The reduced case. Journal of Algebra. 141, 422 – 462. 

Offor, P. U., Asibong-Ibe, U. & Udoakpan, I.U. (2018).  Faithful Representation of Translational Hull of Type A 

Semigroup, Int. J. Math. Trends Technol. 62, 134–142. 
Petrich, M. (1970), The Translational Hull in Semigroups and Rings, Semigroup Forum 1, 283–302.  

Reilly, N. R. (1974). The translational hull of an inverse semigroup. Can. J. Math., XXVI(5) 1050-1068.  

 


