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Abstract

According to Fountain (1979), type A semigroup is characterized as follows: that S is a type A semigroup if and only
if there are inverse semigroups S;,S,, and embeddings ¢:S — S;, ¢,:S = S,, such that ¢p,a” = (¢p,a)" =
(p10) " H(p,a), ¢prat = (p,a)T = (p,a)(p,a)~. With full transformation semigroup, this characterization leads to
faithful representation of type A semigroup. Offor et al. (2018) extended the representation to the translational hull of
type A semigroup. In this paper, we are further extending the representation to the category of the translational hull
of type A monoid.
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Introduction

Let S beasetand 6:S xS — S a binary operation that maps each ordered pair (x,y) of S to an
element 8(x, y) of S. The pair (S, 8) (or just S, if there is no fear of ambiguity) is called a groupoid. The mapping 6
is called a product of (S, 0). x -y, xy and 6(x, y) all mean the same and are called the product of x and y.

A groupoid S is called a semigroup, if the operation 6 is associative. That is, for all x,y,z €S, e(x,a(y, z)) =
8(0(x,y),z). A semigroup is a monoid, if it has an identity. An element e in a semigroup such that e? = e is called
an idempotent. We denote the set of idempotents of a semigroup S by Es.

Let (S1,-) and (S,,*) be two semigroups. A mapping a: S; — S, isa homomorphism, if Vx,y € S,

alx-y) = a(x) * a(y). It is an embedding if a(x) = a(y) implies x = y and if in addition, Vy € S,, 3x € 5,
with a(x) = y, then «a is called an isomorphism. The kernel as the relation ker(a) = {(x,y) | a(x) = a(y)}.
Let X be a set, and denote by Ty the set of all functions a: X — X. Ty is called the full transformation semigroup
on X with the operation of composition of functions. A homomorphism ¢: S — Ty is called the representation of
the semigroup S. The set of all partial one-one maps of any non-empty set X is an inverse semigroup and it is called
symmetric inverse semigroup usually denoted by Ty.

Let S be a semigroup and a,b € S. (a,b) € L* if Vx,y € S1, ax = ay if and if bx = by. R* is dual to £* and this
definition of £* apply in dual manner to R*. The intersection of £* and R* is denoted by #*. Reader should read
up the Green’s Equivalences and the *-Equivalences. See Lawson (1986), Asibong-Ibe (1991), Howie (1995) , and
Offor et al. (2018).

Some Basic Semigroup Theories
The Natural Order Relation on an Inverse Semigroup
According to Lawson (1987), it is possible to define a partial order on an inverse semigroup as follows:
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Given a, b in an inverse semigroup S with semilattice of idempotents E, a < b ifand only if 3e € E such that a =
eb. We show here that the relation is a partial order.
Since a = (aa™)a, a < a and hence the relation is reflexive. For antisymmetry, let a < band b < a. Then Je, f €
E such that a = eb and b = fa and it follows that

a=eb=cefa=fea=feeb=feb=fa=>h.
And for transitivity, assuming a < b and b < ¢, then e, f € E suchthat a = eb and b = fc. It follows that a =
(ef)c andsinceef €E,a <c.
Furthermore, the order relation is compatible with the multiplication of S and to see this, we have to show that [ a <
bandc € S] = [ac < bcand ca < cb].
The first implication is straightforward since a = eb implies that ac = e(bc). And for the second implication,
notice that if a = eb, then

ca = ceb = c[(c™c)elb = c(ec™c)b = (cec™)ch.
Finally, the relation is also compatible with inversion in the sense that a < b = a™* < b™1;
for a = eb impliesthat a™* = b~'e = b~ 'bb~te = b~ tebb™' = (b~ teb)b™ L.

The Inverse Semigroup and The Type A Semigroup

A semigroup S is called an inverse semigroup if foralla,b € S, (a™)™* =a, aa 'a=a and aa 'bhb™! =
bb~laa™?!

A semigroup is called left(right) abundant if each R*- (L-) class contains an idempotent and abundant if it is
both left and right abundant. If the idempotents of a left (right) abundant semigroup form a semilattice, it is called
left(right) adequate. It is called adequate if it is both left and right adequate.

In an adequate semigroup, the idempotents in each L£*-class and each R*-class are unique. If S is adequate, and a is
an element of S, then a*(at) will denote the unique idempotent in the £*- (R*-)class of a .

A left(right) adequate semigroup S is called left(right) type A if ae = (ae)Ta[ea = a(ea)*] forall a € S and all
idempotents e € S. An adequate semigroup is called type A if it is both left and right typeA.

Fountain (1979) characterised a type A semigroup as follows:

Lemma 2.2.1 Fountain (1979): Let S be an adequate semigroup. Then, Va € S and Ve € E(S), Sisatype A
semigroup if and only if eS* N aS* = eaS* and S'e N S'a = S'ae.

If S is an adequate semigroup with semilattice E of idempotents, then Va, b € S, if aL*b then L; = L}, and a™ is
the unique idempotent in £, b* unique idempotent in £;. Therefore, a* = b*.

Conversely, if a* = b* then a*L*b* and we have aL*a*L*b*L*b. So that aL*b. Hence, aL*b if and only if a* =
b* (Va,b € S). Dually, (Va,b € S) aR*b ifand only if at = b*.

al*a* = abL*a’b and therefore (ab)* = (a*b)*. bR*bT = abR*ab' and therefore (ab)™ = (ab™T.

It is therefore obvious that for e € E, (ae)* = a*e and (ea)t = ea’. (ab)* and b* are idempotents. Therefore,
(ab)'b* = [(ab)*b*]* = (abb*)* = (ab)*. Thus, b*(ab)* = (ab)*b* = (ab)".

Therefore, (ab)* < b*, where < is the usual ordering on E

Similarly, (ab)ta® = af(ab)t = [aT(ab)t]T = (aTab)t = (ab)'. Therefore, (ab)t < at.

Theorem 2.2.2 Fountain (1979): Let S be an adequate semigroup, then the following conditions are equivalent:
i S is atype A semigroup
ii. Va € Sand Ve € E(S), eS' naS! = eaS* and S'e N S'a = Slae.
iii. there are inverse semigroups S;, S,, and embeddings ¢;:S — S;, ¢,:S = S,, such that ¢p,a* =

(p10)" = (¢1a)_1(¢)1a), <]»"2a1L = (‘7»"2‘1)1L = (¢1a)(¢1a)_1-

Inverse Semigroup as a Member of Type A Semigroup

We know that an inverse semigroup S is regular with commuting idempotents. Therefore R = R*, £ = L* and thus,
every R*-class and every L*-class contains a unique idempotent. Hence, S is adequate with a’ = aa=* and a* =
a~la which are respectively the unique idempotents in R* and L*.

Now, ea =e(aa V)a =aa l(ea) =a(a tea) = alea) (ea) = a(ae)*
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and ae = a(ala)e = ae(a 'a) = (aea 1 )a = (ae)(ae) ta = (ae)ta. Hence, S is type A.
An inverse semigroup is therefore a member of type A semigroup. It is therefore natural that some of the results in
inverse semigroup can be generalized in type A.

THE TRANSLATIONAL HULL OF A SEMIGROUP

Preliminaries

According to Reilly (1974) a map A from a semigroup S to itself is a left translation of S if for all elements a,b €
S, A(ab) = (Aa)b. A map p from a semigroup S to itself is a right translation of S if (ab)p = a(bp) for all
elements a, b € S. A left translation A and a right translation p are linked if a(1b) = (ap)b forall a,b € S. The set
of all linked pairs (4, p) of left and right translations is called the translational hull of S and it is denoted by 2(S).
We denote the set of all the idempotents of 2(S) by E, ). The restriction of a function ¢ to a subset A of its domain
is denoted by ¢|A. The set of the left translations of S is denoted by A(S) and the set of the right translations of S is
denoted by P(S). 02(S) is a subsemigroup of the direct product A(S) x P(S). For (1,p)(A',p") € 2(S) , the
multiplication is given by (A, p)(X',p") = (A, pp") where A1’ denotes the composition of the left maps A and A’
(that is, first A" and then A) and pp’ denotes the composition of the right maps p and p’ (that is, first p and then p).
For each a in S, there is a linked pair (4,4, p,) within 2(S) defined by A,x = ax and xp, = xa, and called the
inner part of 2(S) and forall a,b € S, (A4, pa) Ay, Pp) = (Aap, Pap) 1S ObVious and this gives another obvious fact
that a = (A4, pg), @ map from S into 2(S), is a morphism. Petrich (1970) termed it the canonical homomorphism of
S into 2(S). The left translation A is symmetrical to the right translation p and therefore, properties of 1 can be
attributed symmetrically to p.

The Translational Hull of an Inverse Semigroup

The preliminaries above have given us some of the definitions and denotations we need in this section. One of the
central information captured in that section is that the set of all linked pairs (4, p) of left and right translations of a
semigroup S is called the translational hull of S and it is denoted by 2(S). And we also noted the following:

AS) = (4:S > S| Axy) = (Ax)y, Vx,y € S}

P(S) = {p:S—> S| (xy)p =x(yp), Vx,y €S}
The sets - A(S) and P(S) - are semigroups under composition of maps.

2(S) = {4 p) € AS) X P(S)| x(Ay) = (xp)y, Vx,y € S}
With multiplication defined by (4, p)(A, p") = (A1, pp"), 2(S) is a semigroup.
We also made mention of canonical homomorphism of S into 2(S). Now, let us call this map II; and then for a € S,
we have Il : a » (A4, pa). (Ae, pa) € 2(S) and the set I15(S) = {(Ag, pa)| @ € S, Agx = ax, xp, = xa, Vx € S}is
called the inner part of 2(S). The set idempotents of A(S) is denoted A(E) where E is the semilattice of
idempotents S. Let I'(S) = {A,:a € S}.
Assuming A, = 1, and p, = p,. Let a’ and b’ be inverses of a and b respectively. Then a = aa’a = (A,a’)a =
(Ap,a")a = ba'a. ba’'aS < bS and therefore aS < bS and thus R, < R,,.
Similar arguments show that R, < R,, L, <Ly, L, < L, and so aHb and therefore aa’ = bb" and a’a = b’b. It
then easily follows that a =ba'a=>bb'b =>b. Therefore, for an inverse semigroup S with a,b €S,
[Aa =2Ap, pa =pp]l = a=>b.
In any inverse semigroup S, e = Aee = (le)e = e(Ae) = (ep)e =e(ep) = ep [e €EEs, (A,p) € Eps)]

Theorem 3.2.1 Ault (1972): Translational hull of an inverse semigroup is an inverse semigroup.

Definition 3.2.2 Ault (1972): For (4, p) € 12(5), the inverse (A, p)~! is denoted by (171, p™1) and is defined by
Alx= (x"tp)?, and xp™ 1= (Ax"1)! vxe€eS.

The left translation A is symmetrical to the right translation p and therefore, properties of 4 is attributed symmetrically

to p.

Let S be an inverse semigroup with the semilattice of idempotents Es and (4, p) € 2(S). Assuming Ae = A'e for all

e € Eg, and that a is an element of S. Then, Aa = daa™ta = A(aa™Ha = V(aa H)a = AFaa 'a= ANa. Thus,

A = A". The converse is obvious. That of p follows symmetrically. Thus, two left (right) translations of an inverse

semigroup S are equal if they agree on all idempotents of S. That is, if A|z; = A'|gg (Pleg = P'lgg)-
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Furthermore, assuming (4, p) be an idempotent in 2(S). Then A=t = A, p~! = p and therefore ep = ep~* foralle €
E;. We know that ep™ = (le™1)™! = (1e)~t. Therefore, ep = (le)~1. So that de = (1e)(le)1(le) =
(1e)(ep)(Ae) = (leep)(Ae) = (lep)ie = Ae(Ale) = (Ae)(Ae). Thus, Ae € Es . Similarly, ep € Es .
Conversely, let A(Es) € E;. Then, A2e = A(1e) = A(e(Ae)) = (le)(Ae) = Ae. Therefore A2 = A. By symmetry, we
also have p? = p. Hence, (4,p)? = (4, p). This shows that (4, p) is idempotent if and only if A(Es) € E; and
(Es)p S Es .

The Translational Hull of a Type A Semigroup

Let’s start by noting that two left (right) translations of a type A semigroup are equal if they agree on all
idempotents.

If a be an element of S and e be an idempotent in the R*-class of a, then ea = a and so Aa = A(ea) = (Ae)a =
(Xe)a = A'(ea) = Aaandthus, A = A". Thus, if the restrictionsof 1, 1’ (p,p’) to the set of idempotents of S
areequal, A = A" (p = p").

Assuming S is an adequate semigroup with semilattice of idempotents E(S). Let (1,p) € 2(S) and forall a € S,
define maps At, 1%, pt, p* of S to itself as follows: Afa = (atp)fa ; A'a = (Aah)a
apt =a(a’p)t ;  ap* =a(la’)"
Andfore € E, Afe = (Ae)t ; Xe = (Qe)*; ept = (ep)t ; ep* = (ep)
We notice from the definition that Ate, 1*e, ept and ep* are idempotents. We also need to note that ATht and
a*pt are idempotent of S since ATht. Atbt = ATbThTpT = AThTpt = ATATHT = AThT
And apt.apt = 2ta*. a*pt = AMTa'pt = a*pfpt = a*pt
We note the following also:
i) Afe= (ep)te=ce(ep)t =e(e’p)’ =ept i) Qe =(le)'e=-e(le) = ep”
Let e € E. (1)%e = A*(X'e) = F(leD)e = Ae(le)* = (Fe)(Ae) = e. Sothat (A9)2 = A*
and (A)2e = AT(ATe) = AT (efp)Te = ATe(efp)t = ATe(le)T = ATe(Ae)t = (ATe)(ATe) = ATe
So that (AT)? = AT, In similar argument, we have (p*)? = p* and (pH)? = pt.
Thus, for any member (1, p) of 2(S), the elements (1%, p*) and (AT, p1) are idempotents.
Now, 7(ab) = [(ab)p]Tab = [[(ab)'al]p]Tab = [(ab)T(a’p)]Tab = (ab)'(aTp)tab
= (a'p)f(ab)Tab = (atp)tab = (ATa)b. This shows that AT is a left translation.
Similarly, (ab)p* = ab[A(ab)']* = ab[A(b*)(ab)']* = ab[(Ab*)(ab)*]* = ab(1b*)* (ab)*
= ab(ab)*(Ab*)* = ab(Ab*)* = a(bp*). This shows that p* is a right translation.
In the same vein, 1*(ab) = [A(ab)']*ab = [A[aT(ab)T]]*ab = [(Aa")(ab)t]*ab = (AaT)*(ab)Tab
= (Aa™)*ab = (1*a)b. This shows that A* is a left translation
And, (ab)p* = ab[(ab)*p]" = ab[[(ab)*b*]p]" = ab[(ab)*(b*p)]" = ab(ab)*(b*p)" = ab(b*p)*
= a(bp™). This shows that p* is a right translation.

Furthermore, a*(ATh") = (ATbha* = At(bta*) = (bta)pt = bi(a*p?) = (a*pH)b'.
So that, a(A'h) = aa*[AT(bth)] = aa*At(b'h) = arta*(bth) = a(a’pN)bth = (aa*)pt(b'h) = (ap™)b. This
implies that AT and pT are linked.
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And a(A*b) = a(AbY)*b = al*b™h = ap*bth = (ap*)b shows that 1* and p* are linked.

Thus, for all (4, p) € 2(S), (A%, p*), (AT, p1) are members of 2(S). More details on this can be found in Guo and
Guo (2000) and Guo and Shum (2003)

Theorem 3.3.1 Fountain and Lawson (1985). The translational hull of a type A semigroup is typeA.

Category Theory
Preliminaries
Category can be viewed in two versions which are indeed implicitly the same. Namely:
The object — morphism version of category and The generalized monoid version of category.
The Object — Morphism Version of Category
According to Asibong-1be (1993), category consists of
- aclass of objects (usually denoted by C- obj)
- aset of morphisms between the objects in € which are denoted by hom¢(4, B) or simply hom(4, B) for
morphisms between A and B, satisfying the following conditions:
i. for any set of objects 4, B, C € C, the C-morphisms f € hom(4, B), g € hom(B, C) imply gof €
hom(A4,C)
ii. for each object A, an identity morphism 1, € hom(4, A)
iii. if f € hom(4,B), g € hom(B,C) and h € hom(C, D), then ho(gef) = (hog)of € hom(A, D)
iv. for every object 4, 1, € hom(4,A) and fol, = f, 1309 = g, forevery f,g € hom(4, B).
V. every distinct pair of C- objects has distinct set of morphisms. That is, if (4, B) # (C, D), then
hom(A,B) N hom(C,D) =
So, in a category, there must be a class consisting of systems of the same type, referred to as objects and between
any pair of objects A and B in the class, there must arrows f: A — B and each arrow is a structure preserving map
referred to as morphism.
4.1.2  Subcategory
Let D be a subclass of a category € such that each object in D is also a C- object. Then D is a subcategory if
i. for any pair of objects 4, B in D, each morphism f: A — B in D is also a morphismin €
ii. each object in D has an identity morphisms in D and
iii. D contains the product of its morphisms. That is, the products of D-morphisms f: 4 —» B and g:B — C
which is gef: A — C is also a D-morphism.

The Generalized Monoid Version of Category

Let C be a class and " - "' be a partial binary operation on C. For x,y € C, we write 3x -y if x -y € C. An element
e € Cis called an idempotent if 3e - e and e - e = e. The idempotents e € C which satisfy the conditions that for x €
C,3ex =2e-x=x and Ix e = x - e = x, are called the identities of C. We denote the set identities of C by C,.

The pair (C,) is called a category if the following hold:

i. Ax-(y-z)©3I(x-y) -z andinwhichcase,x-(y-2) =(x"y)* Zz ...l (Ai)
ii. Ax-(y-z) e Ix-yandIy-z ...l (Aii)
iii. Vx € C, there exist unique identities d(x), r(x) € C, such that 3d(x) - x and 3x - r(x) ....... (Aiii)

Whenever the partial multiplication in category (C,-) is clear, we simply refer to category C. The identity d(x) is
called the domain of x and the identity r(x) is called the range of x. Since d(x), r(x) € C, ,d(x)-x =x and x-

r(x) = x. Thus, for any identity e, d(e) = r(e) = e.

Lemma 4.1.4 Lawson (1991): Let (C,-) be a category with x,y € C.
i. Ax-y o rkx) =dy)
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ii. If3x -y, thend(x-y) =d(x)and r(x-y) =r(y).
Let (C,-) be a category. For, f € C, , we define the set mor(e, f) by:
mor(e, f)={xeC:dx) =er(x)=f}
When e = f, mor(e, ) isamonoid. To see this, for € mor(e,e),e-x = d(x) -x = x, x - e = r(x) = x. Therefore,
e isthe identity in mor(e, e). Let x,y € mor(e,e). Then,d(x -y ) = d(x) = eand r(x - y) = r(y) = e. Therefore,
x -y € mor(e, e). It then follows that 3x - (y-z) and 3(x - y) -z, V x,y,z € mor(e, e), and since mor(e,e) € C,
x-(yz)=(x"y)z

mor(e, e) is called the local submonoid of C at e. Thus, category is regarded as a generalization of a monoid. A
unipotent category is a category in which every local submonoid contains only one idempotent.

Lemma 4.1.5 Lawson (1999): Let (C,-, <) be an ordered category and suppose thata € Cand e € C,. If a < e, then
a € C,.

Consequently, in an ordered category (C,-, <), if the greatest lower bound (the meet) of two identities—e, f , denoted
by eaf (with respect to <) exists, then it is an identity.

Functor
Let € and D be categories. A function ¢: € — D is called a functor if it satisfies the following conditions:
i. If 3a- b in C, then Ja¢ - b in D and
ii. ap -bp = (a-b)¢p
A functor ¢: € — D is called an ordered functor (or order preserving functor) if a < b in C, then a¢p < b¢
in D.

Construction of a Category from an Inverse Semigroup
This construction is done in analogy with Lawson (1991)’s construction of inductive category from a restriction
semigroup.
Given an inverse semigroup S;, we define a product in S; by
_(ab if ata=bb7?! .

a*b= {undefined, otherwise ADES, (Gi)
Theorem 4.2.1: Let S; be an inverse semigroup with the natural partial order <. Then (S;,-,<) = C(5;) isa
category with C(S;), = E(S;), d(a) = aa™*,r(a) = a ta, Va € S;, where " - " is the product defined in (Gi).
Proof: Assuming e is an identity in (S;,-)such that 3e - x for x € S;. Then, by the definition of " - "', e = xx~1.
Similarly, if f is an identity in (S;,") such that 3x - f for x € S;. Then f = x~1x. Thus, idempotents in S; are the
identities in (S,-). xx~1 - x exists since (xx~ 1)~ (xx~1) = xx~1. Of course, xx~* - x = x and by uniqueness of
d(x), xx™t = d(x). Similarly, x 1x = r(x).
Next, we show that (Vx,y,z€S;)3x-(y-2z) @ 3I(x-y)-z andthatx- (y-z) = (x-y) -z, Ax-y; Iy z.
Assuming 3x - (y-z),thenx"lx = (y - 2)(y - 2) 7!
But (y - z) = yz suchthat y~ly = zz~!
Therefore, 3x - (y - z) = x7'x = (yz)(yz) tand y~ly = zz~
Sothat x™tx = (yz)(yz) ! = yzz~ly ™t = yzz lzz7ly™1 = yy~lyy~lyy~1 (since yly = zz71) = yy !
Therefore, 3x - y. Similarly, 3y - z.
Again, x - (v - z) = xyz such that x 1x = (yz)(yz) " and y~ty = zz~
Therefore, x - (y - z) = xyz such that x™x = yy™1; y~ly = zz7L.
On the other hand, (x - y) - z = xyz such that (xy)~1(xy) = zz"tand x~1x = yy~L.
But Cey) H(xy) =y lx Tty =y Tx Tl ley = y T lyy Tlyy Ty = vy,
Sothat (x:y)-z=xyz suchthat y~™ly = zz7%; x " 1x = yy~1
Thus,Ax-(y-2)=3x-y)-zandx-(y-z)=(x-y) -z
Hence, (S;,7) is a category. We denote by €C(S,) this category associated with an inverse semigroup S;, and the set
of identities of C(8,) by C(S1),

1

1

Butx™lx = (y2)(yz)"t = yy~L.
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Corollary 4.2.2: Let S; be an inverse semigroup with the natural partial order <. Then (S; ,7,<) = €(S1) isan
inductive category with €(51), = E(S;), d(a) = aa™%,r(a) = a™'a, Va € S;, where "’ - " is the product defined
in (Gi) above

Construction of a Category from a Type 4 Semigroup
In a very similar fashion as that of inverse semigroup, a category from a type A semigroup is constructed as follows:
Let S be a type A semigroup and define a product in S by

L ab if a* =bt ..
a-b= {undefined, otherwise a,b€ES, . (Gii)

Theorem 4.3.1: Let S be a type A semigroup with the natural partial order <. Then (S,-, <) = €(S) is a category
with €(S), = E(S), d(a) = a’, r(a) = a*, Va € S, where " - "' is the product defined in (Gii).

Proof: Assuming e is an identity in (S,) such that 3e - x for x € S. Then e = xT. Similarly, if f is an identity in
(5,) such that 3x - f for x € S. Then f = x*. Thus, idempotents in S are the identities in (S,). xT - x exists since
(x1)* = x*. Of course, xT - x = x and by uniqueness of d(x), xT = d(x). Similarly, x* = r(x).

Now, suppose 3x - (y - z). Thatis x* = (yz)T and y* = zF. Sothat x* = (yzH)t = (yy)T =y Soax - (y - 2) =
y* =zt x* =yt But (xy)" = (x*y)" = (yTy) =y* =zt. Sothatax- (y-2z) © (xy) = z"; x* = yte I(x-
y)-z.Hence,x-(y-z)=(x"y) -z

Moreover, 3x - (y-z) = x* =yh y =z =3x-y;3y -z

Hence, (S,") is a category. We denote by C(S) this category associated with type A semigroup S, and the set of
identities of C(S) by €(S),.

Results

Using theorem 2.2.2 above, Fountain (1979): obtained an embedding of typeA semigroup into an inverse semigroup.
Offor et al. (2018) extended the representation to the translational hull of type A semigroup. Now, our effort in this
section is to further extend the representation to the category of the translational hull of type A monoid.

Now, we recall from section 3.1 that for each element a in a semigroup S whose translational hull 2(S) is considered,
there is a linked pair (14, p,) within 2(S) defined by 1,x = ax and xp, = xa, and it is called the inner part of
0(S). The product is defined by (A4, p2)(Ap, Pb) = (Aap, Pap)- @ = (A, po) is @ map of S into 2(S) is denoted by
. I5(S) = {(Aa, Pa) | a €S, Ax =ax,xp, = xa,Vx € S}

Welet CI'g:a - A,,and CI'(S) = {1,:a € C(S)}. We also let CAg: a - p, and CA(S) = {p,:a € C(S)}.

Theorem 5.1: Given the category of a typeA monoid C(S), there are inverse semigroups categories C(S;), €(S>),
and embeddings C¢: C(S) — C(S;), Cd,: (S) — (S3), such that Cpia* = (Cp,a)* = (CPpra) (CPqa),
Co,at = (CPp,a)T = (CPp,a)(CP,a)~?, and there are also embeddings Cypy: A[C(S)] = A[(S1)],

Cy,: P[C(S)] — P[(S,)] such that each of the diagrams

C
C(S) CP1 s C(S) 22 s c(sy)
CI"S CF51 CAS CAS1
C
A[C(S)] ., A[C(SY)] P[C(S)] e, P[C(S2)]
0) (i)
commutes
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and Cp1 (A7) = [CP1(D]* = [CP (D] CP1(A),  Ca(p") = [Cha(p)]T =
CY2(p)[CP,(P)] 7"

We prove this theorem through the following propositions, lemmas and corollaries. Diagram (i) is dual to diagram
(ii) and therefore every fact established about diagram (i) applies in dual manner to diagram (ii).

Proposition 5.2: Given the category of typeA monoid C(S), there are inverse semigroup categories €(S;), C(S,) and
embeddings C(¢1)S 4 Sl! C(¢2)S 4 Sz, SUCh that (I)la* = (¢1a)* = (¢1a)_1(¢1a), ¢2a+ = (¢2a)1- =
(¢p20) ()"
Proof:
Let C(S) be a category of typeA monoid. To start with, we need to establish the existence of the categories of inverse
semigroup(s) €(S4) [and €(S>)].
Foreach a € C(S), (a*,a) € L" since C(S) is abundant.
Define a map n,: a*C(S) — aC(S) defined by n,(a*s) = as, s € C(S).
Leta's' = a*s", s',s" € C(S).
na(a*s’) = as' = aa*s’ [a" isaright identity to a]
= aa’s" = as” =nq,(a*s"). Thus, n, is well defined.
Let n (a*s;) = ng.(a*s,), sq,s, € C(S). This implies that as; = as,. Since (a*,a) € L, as; = as, implies that
a*s; = a*s,. Thus, n, is one — one and therefore, a member of the symmetric inverse semigroup T¢(s) on C(S).
So, T¢(s) becomes the C(Sy).
74 1S as well surjective since Vas € aC(S), as = aa*s = n,(a’s), which implies that every element as € aC(S) has
apre—image a*s € a*C(S).
Thus, n, is a bijection.
Hence, Va € C(S), there is a bijection n,: a*C(S) — aC(S) defined by n,(a*s) = as, [s € €C(S)] which maps a” to
a.
Now, define a map C(¢1): €(S) — €(S1) by (C(¢1))(a) =1q, [a € C(S)]
For a, b € C(S), the domain of 1,1, is n71(b*C(S) N aC(S))
nz1(b*C(S) N aC(S)) =nz (b aC(S)) [since for the category of a type A semigroup C(S), eC(S) NnaC(S) =
eaC(S), (Va € C(S))(Ve € C(S),)]-
=1ng'[a(b"a)"C(S)] = na'na[(b*a)* C($)] = (b"a)"C(S).
Now, since baLl*(ba)* = (b*a)*, dom(nye) = (b*a)*C(S) = dom(nyng,).
For (b*a)*s € (b*a)*C(S) = dom(npy)
Npal(b"a)"s] = bas = bb*as = nyb*as = nya(b*a)'s nyna[(b*a)’s]
Thus, Npe = MpNa Ya,b € C(S).
Hence, Va, b € C(S), (C(¢1))ba = Npq = NpNa = [C(¢1)]b[C(P1)]a.
Therefore, C(¢,) is a homomorphism.
Let (C(¢p1))a = (C(¢p1))b. This implies that n, = n,. Thatis, dom n, = dom n,, = eC(S) (say).
Then, a = n,(e) = n,(e) = b.
Thus, €(¢,) is one — one and hence an embedding.
Now, we want to establish that C(¢p;)a* = (C(¢1)a)* = (C(P1)a) (C(p,)a), (Va € C(S))
Since C(S4) is regular, L(C(S1)) = L*(C(S1)).
So that for a € C(S), [C(¢p1)]a € C(Sy), [C(Pp1)al” = (C(Pp1)a) ' (C(P1)a) € L ¢g,)q Since the idempotent
must be unique.
We show next that C(¢p{)a” = [C(p1)a]".
Leta,x,y € C(S). [C(¢1)a C(p1)x = C(P1)al(@1)y] & [C(Pp1)(ax) = C(¢p1)(ay)]
© [ax = ay] & [a'x = a’y] & [ C(¢1)(a"x) = C(Pp1)(a"y)]
& [C(¢1)(a)C(P1)(x) = C(P1)(a") C(p) ()] & C(P1)(a)L" C(¢1)(a").

Since C(¢1) is a homomorphism, C(¢,)(a”) is an idempotent in T and since idempotent in L4,y Must be

unique, C(¢4)(a”) = (C(¢1)a)".
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We have just shown that given a typeA monoid C(S), there is an inverse semigroup €(S;) and an embedding
C(p1): C(S) - €(Sy) such that C(¢1)a” = (C(p1)a)" = (C(p1)a) ' (C(p1)a).

Referring to R* (instead of L*), T sy becomes our €(S>), and carrying out the dual argument gives the second part
of the result —

Given a typeA monoid C(S), there is a category of an inverse semigroup C(S,) and an embedding C(¢,): C(S) -

C(Sy) suchthat C(¢z)a’ = (C(¢p2)a)" = (C(p2)a) (C(P)a)™".

Lemma 5.3: For an inverse semigroup €(S;), C(I'): a ~ A, is an isomorphism from €(S;) onto C(I')[C(S,)].
Proof:

Fora,b € C(S1), C(IN)[ab] = Ag = Agdp = C(IN)(a)C(I)(b). Therefore, C(I') is a homomorphism.

Let 4, = 1,.

a=aata=Aata =Aata=bata<h.

Similarly, b < a, and therefore a = b.

Thus, C(I') is injective. It is also an onto map since VA, € C(IN[C(S,)], 3a € C(S) witha ~ A,.

Lemma 5.4: For a typeA semigroup C(S), C(I'):a ~ A, is an isomorphism from €(S) onto C(I')[C(S)].
Fora,b € C(S1), C(IN)[ab] = Ay, = Agdp, = C(IN)(a)C(I')(b). Therefore, C(I') is a homomorphism.
Let 1, = 1.

a=aa" =,a" = Apa” = ba” < b.Similarly, b < g, and therefore a = b.

Thus, C(I') is injective. It is also an onto map since VA, € C(I[C(S)], 3a € C(S) witha ~ A,.

Corollary 5.5: For a category of an inverse semigroup €(S;), C(4s,): a = p, is an isomorphism from C€(S;) onto
C(4)[C(S4)]. Similarly, for a category of a typeA semigroup C(S), C(4y):a - p, is an isomorphism from C(S)
onto C(A)[C(S)].

Proposition 5.6: Given a category of a typeA monoid C(S), there are categories of inverse semigroups €(S¢), C(S,),
and embeddings Ciyq: A[C(S)] = A[C(S1)], Cy,: P[C(S)] = P[C(S,)] such that Cy,(4") = [CY, (D] =
P[CII);(/D]_l CP1(D),  Cr(p") = [CPa(p)]T = CPo(P)[CP2(p)] 7"
roof:
Let us denote the symmetric inverse semigroup on A[C(S)] by Tccs)- For each A € A[C(S)], we define a map
0,: L*A[C(S)] » 24[C(S)] by 6,(A*A) = 244, A4 € A[C(S)].
We show that 8, is one-one.
Let 6,(A*A;) = 0;,(A*A,), Ay, A, € A[C(S)]. This implies that A1, = AA,.
Since AL*A*, A=A, © A =22,
Thus, 8, is one-one and 6, € T¢(sy)- SO that we take A(S;) to be Tyiesy)
Evidently, 6, is surjective since VA1, € 14[C(S)], A1, = AX*A; = 6;1*A,. So that every
A1, € AA[C(S)] has a pre-image A1*1; in A*A[C(S)].
Hence, VA € A[C(S)], there is a bijection 8;: A*A[C(S)] —» AA[C(S)] defined by 6;(1*1,) = A4,
A € A[C(S)], which maps A* to A.
Now, define the map Cy4: A[C(S)] - A[C(S;)] by CyY,;(A) =0,.
We show that Cip, is a homomorphism.
For 4,1 € A[C(S)], the domain of 6,6, is 6;*[24[C(S)] n I*A[C(S)]] [see Howie 1995, pg 148]
This implies that dom 6,6, = 8;*[1*24[C(S)]] since for a type A semigroup, eS N aS = eaS, (Ya € S) (Ve € E)
01 [1'24[C()]] = 67 [AC D AIC)]] = 67 6: [ D) A[C()H]] = ("D A[C(S)]
Since IAL*(IA)* = (I*A)*, dom 8, = (" A)*A[C(S)].
Thus, dom 6,6, = dom 0;;.
Moreover, for (I*A)*A; € dom 6},
Ol 4] = A4, = A4 = 6,[I"A0] = 6,[A(1" )" A1] = 6,6, [(I" )" 4]
Hence, 6,6, = 6,;.
Therefore, VA, L € A[C(S)], Cp,(I1) = 6, = 6,0, = CP()CP, (). Thus, Cy4 is a homomorphism.

Let Cy,() = CyY,(1). Then, 6, = 6,. Thatis, dom 6, = dom 8; = 1" A[C(S)](say).
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Therefore, A = 6;(1") = 06,(1") = l. Thus, Cy, is injective and hence an embedding.

L(A[C(S1)]) = L*(A[C(S,)]) since A[C(Sy)] is regular. Therefore, for each Cy,(4) € A[C(S1)], [CY,(D)]* =
[CY1 (D] T CP1(A) € Ly, 2y = L cpy ) SiNCe the idempotent must be unigue.

Now, we just need to show that Cy, (1) = [Cp,(D)]*

For 4, X, 2" € A[C(S)], let CPp;(D)CP1 () = CP;(DCP,(X") & CP,(AN) = Cp,(AX") @ AN = AL
SN =21 o CP(A)CP1(X) = CPpy(A)CPy(A"). So that Capy () L*Cpy(1Y).

Since Cy, is a homomorphism and A* an idempotent in A[C(S)], Cy (1) is an idempotent in A[C(S;)] and since
idempotent in Ly, 2y Must be unique, C4(1°) = [CP,(D)]".

By dual argument, it follows that Cip,: P[C(S)] = P[C(S5)] is an embedding such that Cy,(p™) = [CYP,(p)]T =
CY, () [CP2(p)]

Proposition 5.7: Each of the diagrams commutes

CP,

C(S > C(S
s ois ) (S2)
cr, cr, CAg CAg,
v,
P[C(S) > P[C(S
A1CS)] —21 s prc(sy) ] €S

(i)
@
Proof: We defined the map C¢,: C(S) - C(S1) by Cp,(a) = n,. The rest are —
CTs:a—> Ay, Clg :ng— Ay, and Cy: A, = 6,
Thus, Cy4[CT'g(a)] = 6;, and Clg [CP,(a)] = 4y,
So, forany x € €C(S), 0;,(x) = A,(x) = ax
and 2, (x) = ax = 4,(x) = 6;,(x)
Therefore, C,CIg = CI's, Cp, . Hence, diagram (i) commutes and dually, diagram (ii) commutes.

Conclusion

In this paper, we basically engaged ourselves with the study of translational hulls of type A semigroup and inverse
semigroup alongside their categories.

The major result is that given the category of a typeA monoid C(S), there are inverse semigroups categories €(S;),
C(S,), and embeddings C¢,: C(S) = C(S;1), CP,: (S) — (S3), such that Cp,a* = (CPp1a)* = (Cp,a) 1 (Cp,a),
Cop,a’ = (Cpra)T = (CPpra)(Cep,a)™?, and there are also embeddings Cip: A[C(S)] = A[(S)],

Cy,: P[C(S)] — P[(S,)] such that each of the diagrams

cs)—E81 sy cs)— 82— ¢(s,)

Crg Clg CAg CAg,

CY,

A[C(S)] oy, A[C(S))] P[C(S)] > P[C(S>)]

commutes (i) (i)
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and C1 (1) = [CP1(D]" = [CP1(D]7 CP1 (D), C2(p") = [C(p)]T =

CY2(p)[CP,(P)] 7"

Just as abundant semigroups are analogous to regular semigroups, so are type A semigroups analogous to inverse
semigroups. Just as the study of abundant semigroups is guided by the existing results for regular semigroups, study
of type A semigroups is guided by the existing results for inverse semigroups. This explains the reason why inverse
semigroup is found in most corners of this paper even though our primary target is type A semigroup. Behind most
successful results in type A semigroup are existing results in inverse semigroups! Besides, we cannot talk about
representation of type A semigroup without talking about the inverse semigroup.
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TABLE OF SYMBOLS

LR, H,D,7T Green’s relations

L R*, H*, D", J*

Extended Green'’s relations

A left translation lambda
A(S) The set of the left translations of a semigroup A = capital letter lamda
S
p right translation rho
P(S) The set of the right translations of a P = capital letter rho
semigroup S
02(S) the translation hull of a semigroup S 0 = omega
Aw Pa) inner part of 2(S)
I (S) Set of inner parts of 2(5)
res) Set of left inner parts of 2(S)
Iz orsimply I’ an isomorphism from S onto I"(S) I' = gamma
plA The restriction of a function ¢ to a subset A
of its domain
Egor E(S) The set of all the idempotents of a semigroup
S
Eocs) The set of all the idempotents of 2(S)
I homomorphism of S into 2(S)
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a unique idempotent in the £*
at unique idempotent in the R*
(a) A set generated by a
U The largest congruence contained in F* Greek letter, pronounced
Mu
Ty symmetric inverse semigroup on set X.
t diagonal relation or identity map = iota, Greek letter
1y Or iy diagonal relation on X or identity map on X
c(S) a category constructed from a semigroup S
S[C(S)] a semigroup constructed from a category
c(s)
S/a a factor semigroup
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