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Abstract  

Heart disease remains a leading cause of global mortality, underscoring the urgent need for effective prevention 

and control strategies. This study analyses a compartmental mathematical model that capture the transmission and 

prevention dynamics of heart disease, incorporating both lifestyle-related and genetic risk factors. The model 

consists of six compartments—susceptible, two exposed classes (lifestyle and genetic), infected, treated, and 

recovered populations. Analytical methods are employed to establish the positivity and boundedness of solutions, 

determine the disease-free equilibrium (DFE), and compute the basic reproduction number 𝑅0 using the next-

generation matrix approach. Global stability of the DFE is proven via LaSalle’s Invariance Principle and an 

appropriately constructed Lyapunov function. Numerical simulations implemented in R programming validate 

the theoretical results, demonstrating that when 𝑅0 < 1, the disease can be eradicated. Findings highlight the 

pivotal role of primary prevention, lifestyle modification, early detection, and treatment in reducing disease 

prevalence. This framework offers valuable insights for designing public health interventions and provides a basis 

for future model extensions incorporating demographic and spatial complexities. 
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Introduction 

Heart disease includes any condition that influences the heart and vascular system, such as coronary artery disease 

(CAD), arrhythmias, and heart failure. These disorders may result in myocardial damage, presenting symptoms 

like angina pectoralis and arrhythmias (National Heart, Lung, and Blood Institute [NHLBI], 2020). According to 

reports from the World Health Organisation, cardiovascular disease is the main cause of death worldwide. 

Moreover, for nearly all nations, the upward trend observed during the past thirty years persists (Cai et al., 2023). 

In 2019, cardiovascular illnesses was responsible for nearly 18 million deaths worldwide, constituting 32% of 

total mortality; myocardial infarctions and cerebrovascular accidents represented 85% of these deaths (World 

Health Organization [WHO], 2021). This phenomenon has prompted investigations into models of heart disease 

and the cardiovascular system (CVS), where research utilising mathematical and computational models is much 

more feasible and cost-effective than in vivo or in vitro studies. The elementary functions of the cardiovascular 

system are to deliver oxygen and nutrients to the body and to eliminate metabolic waste products. The pulmonary 

circulation, responsible for transporting blood through the lungs, and the systemic circulation, which distributes 

blood throughout the body, are the two vascular circuits through which the heart pumps blood to fulfill their roles 

(Batzel et al., 2007). Given that heart diseases constitute a relatively intricate system necessitating expertise from 

diverse disciplines of physics and chemistry to fully grasp its dynamics, models or simulators of varying detail 

have been created to offer a thorough understanding of the system's operation. Diverse models have been proposed 

and analysed from multiple perspectives, including gas exchange, neuro-regulation mechanisms, and cardiac 

haemodynamics; however, the latter has consistently garnered greater attention due to its potential physiological 

or clinical applications (Simaan, 2009). The two principal methodologies used for this type of analysis are (1) 

lumped-parameter models, which encapsulate the principal behaviours of each cardiac component in a simplified 

manner (Ortiz-Rangel et al., 2022). The distributed parameter models, employing finite element software to 

characterise the cardiovascular system (CVS) in one, two, or three dimensions as described by (Alastruey et al., 

2007), and the use a hydraulic modelling technique as proposed by (Rosalia et al., 2021).  
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When assessing and contrasting the effectiveness of various strategies for the prevention of heart disease, 

mathematical modeling is of the greatest importance. A multitude of studies has investigated the influence of 

preventive interventions on heart disease outcomes utilizing diverse modeling methodologies. The comparative 

effects of advanced medical treatments, secondary prevention via statin utilization, and primary prevention 

through sodium intake reduction were analyzed in a comprehensive Markov model specially designed for the 

Tunisian demographic (Saidi et al., 2019). The model suggests that the reduction of sodium intake could 

potentially lead to a 27% decrease in mortality attributable to ischemic heart disease and stroke, significantly 

exceeding the impact of secondary prevention (3%) and pharmacological interventions (1%). This underscores 

the substantial efficacy of primary prevention strategies in mitigating cardiovascular mortality. According to 

(Agbo et al., 2024), the model integrates agent-based modeling to reproduce individual-level modifications in 

lifestyle and environmental exposures, along with interconnected ordinary differential equations to elucidate 

population-level dynamics in disease transmission. The model is governed by the assumptions that risk factors 

are linearly additive, that populations exhibit homogeneity, and that parameters remain invariant over time (Agbo 

et al., 2024). 

Numerous academic publications  elucidate the utilization of Lyapunov functions and Volterra-Lyapunov matrices 

within the domain of global stability analysis. For instance, (Masoumnezhad et al., 2020) provide a comprehensive 

refinement of the Volterra-Lyapunov matrix methodology aimed at establishing the global stability of endemic 

equilibria in infectious disease models. In a parallel context (Sadki et al., 2023) apply the Lyapunov-LaSalle 

invariance principle to execute a global stability analysis pertaining to the dynamics of hepatitis C virus infection 

(Sadki et al., 2023). Such methodologies possess the potential for adaptation in the examination of global stability 

characteristics within heart disease models. Notably, a plethora of scholarly articles also introduces alternative 

methodologies for conducting global stability analysis. (Cardoso et al., 2021) expand upon Barbalat's Lemma to 

encompass fractional-order systems, thereby facilitating asymptotic analysis (Cardoso et al., 2021), while (Kifle 

& Obsu, 2022) apply the Castillo-Chavez and Song framework to substantiate the global stability of the disease 

free equilibrium point (Kifle & Obsu, 2022). The diversity inherent in these methodologies accentuates the 

importance of judiciously selecting the appropriate techniques predicated upon the unique attributes of the heart 

disease model under scrutiny. 

The existing corpus of literature provides a substantial framework for understanding this epidemiology of heart 

disease, the associated risk factors, and the importance of employing mathematical modeling techniques. 

However, there is a notable shortfall in the application of the global stability analysis to heart disease model. By 

employing global stability analysis techniques, including LaSalle’s Invariance Principle and linear stability 

analysis, this research endeavor aims to formulate a model based on the reproduction number, endemic 

equilibrium, and disease free equilibrium. 

 

Materials and Methods 

This section discusses the global stability of the heart disease model developed by (Agbo et al., 2025).The model 

consists of six compartments: the population of susceptible healthy individuals to the disease, denoted as S, 

population of individual who are exposed to the disease by lifestyle and genetic disposition is denoted by E1 and 

E2, the population of infected individuals I, population of individual receiving treatment is denoted by T and the 

population of recovered individuals R and the model also consider the interaction between the compartment 

denoted by different parameter. Figure1 shows the schematic diagram of the heart disease model and Table1 

shows the parameters with its description. 
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Fig1: Schematic diagram of heart disease model (Agbo et al., 2025) 

 

The model equations are as follows 

𝑑𝑆

𝑑𝑡
= 𝜇 − (𝛽 + 𝜌)𝑆𝐼 − 𝛼𝑆 + 𝜏𝐸1 + 𝜎𝐸2 + 𝜁𝑅                                                (1) 

𝑑𝐸1

𝑑𝑡
= 𝛽𝑆𝐼 − (𝛾 + 𝜏 + 𝛼)𝐸1                                                                            (2) 

𝑑𝐸2

𝑑𝑡
= 𝜌𝑆𝐼 − (𝜂 + 𝜎 + 𝛼)𝐸2                                                                            (3) 

𝑑𝐼

𝑑𝑡
= 𝛾𝐸1 + 𝜂𝐸2 − (𝛼 + 𝜔 + 𝛿)𝐼                                                                     (4) 

𝑑𝑇

𝑑𝑡
= 𝛿𝐼 − (𝛼 + 𝜃)𝑇                                                                                        (5) 

𝑑𝑅

𝑑𝑡
=  𝜃𝑇 − (𝛼 + 𝜁)𝑅                                                                                       (6) 

 

Table1: Model parameters and description 

S/NO  PARAMETERS DESCRIPTION 

1 𝜇  Birth rate  

2 𝛼  Natural death rate 

3 𝛽   Transmission rate by unhealthy lifestyles  

4 𝜌  Transmission rate of heart diseases through  genetic 

disposition 

5 𝛾   Rate of infection due to  unhealthy dietary habit 

6 τ   Rate of  effective change in lifestyle 

7 σ  Rate of control on genetic transmission  

8 𝜂  Infection transmission rate through to genetic  

9 𝜔  Mortality rate cause by heart diseases 

 

10 𝛿  Treatment rate 

11  𝜃  Recovery rate 

 

12 ζ                                                                      Loss of  immunity 
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Results  

This section provide the analytical solution to the heart disease model finding the positivity and boundedness of 

solution and the disease free equilibrium. We then compute the basic reproduction number and analyse the stability 

of the disease-free equilibrium point. 

Positivity and  boundedness 

For equation (1)-(3), let  𝑆(0) = 𝑆0 ≥ 0, E1(0) = 𝐸10
≥ 0,  E2(0) = 𝐸20

≥ 0, 𝐼(0) = 𝐼0 ≥ 0,  𝑇(0) = 𝑇0 ≥

0, 𝑅(0) = 𝑅0 ≥ 0 as initial condition. To show the positivity and boundedness of the model let Π = (𝛽 + 𝜌)𝐼 

from equation(1) then 

𝑆̇ = 𝜇 − ΠS − αS                                                                                              (7) 

𝑑𝑆

𝑑𝑡
= −(Π + α)𝑆 ≡

𝑑𝑆

𝑑𝑡
= −(Π + α)𝑑𝑡                                                              (8)  

Integrating (8) 

∫
𝑑𝑡

𝑆
≥ − ∫ (Π + α)𝑆𝑑𝑡

𝑡

0

𝑆

0
                                                                                   (9)    

ln|𝑆(𝑡)| ≥ −(Π + α)𝑆(𝑡) + 𝐶                                                                       (10) 

Hence 

S(t) ≥ Ce−(Π+α)𝑆(𝑡)                                                                                        (11) 

At time t = 0, ⇒ S(t) ≥  Ce−(Π+α)𝑆(𝑡) ≥ 0  Since  −(Π + α) ≥ 0 .             (12) 

Similarly, it can be shown that 𝑆0 > 0, 𝐸10
> 0,  𝐸20

> 0, 𝐼0 > 0,  𝑇0 > 0, 𝑅0 > 0. 

hence all the solutions of the model Equation (1-6) remain positive for all non-negative initial conditions as 

required at all time t > 0. hence prove completed. 

 Stability analysis  

Stability analysis is carried out to determine the disease-free equilibrium point and endemic equilibrium point. To 

determine the two equilibrium points, each equation (1-6) must be equal to zero(0) or 
𝑑𝑆

𝑑𝑡
= 0, 

𝑑𝐸1

𝑑𝑡
= 0, 

𝑑𝐸2

𝑑𝑡
= 0, 

𝑑𝐼

𝑑𝑡
= 0,

𝑑𝑇

𝑑𝑡
= 0,

𝑑𝑅

𝑑𝑡
= 0   thus obtained 

0 = 𝜇 − (𝛽 + 𝜌)𝑆𝐼 − 𝛼𝑆 + 𝜏𝐸1 + 𝜎𝐸2 + 𝜁𝑅                                                 (13) 

0 = 𝛽𝑆𝐼 − (𝛾 + 𝜏 + 𝛼)𝐸1                                                                               (14) 

0 = 𝜌𝑆𝐼 − (𝜂 + 𝜎 + 𝛼)𝐸2                                                                               (15) 

0 = 𝛾𝐸1 + 𝜂𝐸2 − (𝛼 + 𝜔 + 𝛿)𝐼                                                                      (16) 

0 = 𝛿𝐼 − (𝛼 + 𝜃)𝑇                                                                                          (17)  

0 = 𝜃𝑇 − (𝛼 + 𝜁)𝑅                                                                                          (18)                                                                                     

Which is the stable state of 𝑆, 𝐸1, 𝐸2, 𝐼, 𝑇 𝑎𝑛𝑑 𝑅 . 

Disease free equilibrium 

Equilibrium point for disease-free are conditions where there is no disease which implies 

𝐸1=𝐸2 = 𝐼 = 𝑇 = 𝑅 = 0                                                                                        (19) 

then from eqn (13)                                                                                                                   
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𝑆 =
𝜇

𝛼
                                                                                                                         (20) 

Then, the equilibrium point of disease free for the heart disease model are  

𝐾0 = (𝑆, 𝐸1, 𝐸2, 𝐼, 𝑇, 𝑅) = (
𝜇

𝛼
, 0,0,0,0,0)                                                                (21) 

Basic reproduction number 

The basic reproduction number represents the quantity of secondary infections generated by a single infected 

individual within a completely susceptible community. This is acquired with next-generation matrix (Alsulami et 

al., 2024). Initially, we define the matrices F and V in the following manner: 

𝐹 = (
𝛽𝑆𝐼
𝜌𝑆𝐼

)     𝑉 = (

(𝛾 + 𝜏 + 𝛼)𝐸1

(𝜂 + 𝜎 + 𝛼)𝐸2

(𝛼 + 𝛿 + 𝜔) 𝐼 − 𝛾𝐸1 − 𝜂𝐸2

(𝛼 + 𝜃)𝑇 − 𝛿𝐼

)                                                 (22)  

The Jacobian matrices of Fand V  at 𝐾0when S =
μ

β
 where the transition and transmission matrix respectively gives 























=

0000

0000

000

000








F ,  





















+

++

++

++

=

)(00

0)(

00)(0

000)(









V        (23)

                 

𝐹𝑉−1 =

)
0

( )

0

2 2 ( )  (

2 2 ( )( )

0 0 0

0

( )

0

0 0 0

  +  +   +  +  + +  +  +  + +    +  + + +  + + +  + + 





  +  +   +  + 



+ +  +  +  + + 

   
 
 
  

  +  + + ++  


 
 





 

 

+ +  + + 
 

It follows that the basic reproduction number, denoted by 𝑅0 given by 𝜎(𝐹𝑉−1) where 𝜎 denoted  the spectral 

radius is 

 𝑅0 =
𝜇(𝛼𝛽𝛾+𝛼𝜂𝜌+𝛽𝜂𝛾+𝛽𝛾𝜎+𝜂𝛾𝜌+𝜂𝜌𝜏)

𝛼(𝛼+𝛿+𝜔)(𝛼+𝜂+𝜎)(𝛼+𝛾+𝜏)
                                                                               (24) 

Global stability analysis 

Stability analysis is fundamental to dynamical analysis. Only stable solutions can be observed empirically. In this 

part, we analyse the global asymptotic stability of all equilibrium point by constructing appropriate Lyapunov 

functions and utilising the Lyapunov-LaSalle asymptotic stability theorem (L-LAST). 

Global stability of the disease-free equilibrium 

Global stability of the disease-free equilibrium when 𝑅0 ≤ 1 using Lasalle’s Invariance Principle.  

Theorem1 
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The disease-free equilibrium 𝐾0 = (𝑆, 𝐸1, 𝐸2, 𝐼, 𝑇, 𝑅) = (
𝜇

𝛼
, 0,0,0,0,0) of model equation is globally 

asymptotically stable if 𝑅0 > 0 and 𝑅0 ≤ 1.  

Proof 

Using the method used in  (Oladipupo et al., 2023). Let the Lyapunov function be ∇(𝑆, 𝐸1, 𝐸2, 𝐼, 𝑇, 𝑅) according 

to the approach in then  

𝛻 = (𝑆, 𝐸1, 𝐸2, 𝐼, 𝑇, 𝑅) = (𝑆 − 𝑆0 − 𝑆0 ln
𝑆

𝑆0
) + 𝐸1

′ + 𝐸2
′ + 𝐼′ + 𝑇′ + 𝑅′                (25) 

Differentiating ∇(𝑆, 𝐸1, 𝐸2, 𝐼, 𝑇, 𝑅) with respect to time gives 

𝛻′ = (1 −
𝑆

𝑆0
)𝑆′ + 𝐸1

′ + 𝐸2
′ + 𝐼′ + 𝑇′ + 𝑅′                                                                (26) 

Substituting equation (1-6) into (33) and 𝑆0 =
𝜇

𝛼
  to give 

= (1 −
S

S0
)(μ − (β + ρ)IS − αS + τE1 + σE2 + ζR) + βIS − (γ + τ + α)E1 + ρIS − (η + σ + α)E2 + γE1 +

ηE2 − (α + ω + δ)I + δI − (α + θ)T + θT − (α + ζ)R    (27) 

= (μ − (β + ρ)IS − αS + τE1 + σE2 + ζR) − μ
S0

S
+ (β + ρ)IS

S0

S
+ αS

S0

S
− τE1

S0

S
− σE2

S0

S
− ζR

S0

S
−

α(𝑆, 𝐸1, 𝐸2, 𝐼, 𝑇, 𝑅)                                                                        (28) 

Simplifying 

μ − μ
S

S0
−

μS0

S
+ (β + ρ)IS0 + μ − (τE1 + σE2 + ζR)

S0

S
− α(𝑆, 𝐸1, 𝐸2, 𝐼, 𝑇, 𝑅)       (29) 

= 𝜇(2 −
𝑆

𝑆0
−

𝑆0

𝑆
) + (𝛽 + 𝜌)𝐼𝑆0 − α(𝑆, 𝐸1, 𝐸2, 𝐼, 𝑇, 𝑅)                                             (30) 

From equation (1) (𝛽 + 𝜌)𝐼𝑆 and 𝑆0 =
𝜇

𝛼
  are  non-negatives hence 

𝛻′ ≤ 𝜇(2 −
𝑆

𝑆0
−

𝑆0

𝑆
) + (𝛽 + 𝜌)𝐼𝑆0 − α(𝑆, 𝐸1, 𝐸2, 𝐼, 𝑇, 𝑅)                                         (31) 

By the  inequality of arithmetic and geometric means  

𝜇(2𝑆𝑆0−(𝑆0
2+𝑆2))

𝑆𝑆0
− α(𝑆, 𝐸1, 𝐸2, 𝐼, 𝑇, 𝑅) ≤ 0                                                                   (32) 

This proved that ∇ is the lyapunov function of 𝛻′ = 0 which implies that 𝐸1 = 𝐸2 = 𝐼 = 𝑇 = 𝑅 = 0. Therefore, 

it follows that the larges invariant set in 

(𝑆 +  𝐸1 +  𝐸2 +  𝐼 +  𝑇 + 𝑅) ∈ Ψ: 𝛻′ = 0 is  

𝐾0 = (
𝜇

𝛼
, 0,0,0,0,0)                                                                                                     (33)    

Hence, by Lasalle’s invariance principle the  disease free equilibrium is globally asymptotically stable.  

Numerical simulation 

This section will quantitatively illustrate the global stability of the  disease free equilibrium. The simulations were 

conducted utilising the relevant commands and packages in R programming. Table2 shows the parameters value 

and source utilise and setting the initial condition of (𝑆, 𝐸1, 𝐸2, 𝐼, 𝑇, 𝑅) = (1000, 200,100,40,28,16).  

Table2:  Value of the model parameters corresponding to heart disease case 
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𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫  𝐕𝐚𝐥𝐮𝐞/day  Sources 
𝜇  0.02    numerical estimate 
𝛼  0.3  numerical estimate 
𝛽   0.003  (Yang et al., 2016) 
𝜌  0.002  (Yang et al., 2016) 
𝛾  0.003  (Jibril & Odetunde 2020) 
τ  0.02  numerical estimate 
σ  0.009  numerical estimate 
𝜂  0.001  numerical estimate 
𝜔  0.55 numerical estimate 
𝛿  0.95  (McBryde et al., 2017) 

 𝜃   0.2  numerical estimate 
                    Ζ 0.3  (Jibril & Odetunde 2020) 

   

 

Discussion  

The formulated compartmental model for heart disease transmission and prevention dynamics was analyzed to 

determine its key epidemiological properties. The positivity and boundedness of solutions were first established, 

confirming that all state variables remain non-negative and bounded for all non-negative initial conditions, thus 

ensuring the model’s biological feasibility. The disease-free equilibrium (DFE) was derived by setting all 

infected and exposed compartments to zero, yielding the steady-state values for the susceptible population in the 

absence of disease. The basic reproduction number (𝑅0) was computed using the next-generation matrix 

approach. This threshold parameter quantifies the expected number of secondary cases generated by one infected 

individual in a fully susceptible population. A global stability analysis of the DFE was performed using LaSalle’s 

Invariance Principle, supported by the construction of an appropriate Lyapunov function. The results show that 

if  𝑅0 < 1 the DFE is globally asymptotically stable; that is, the system will return to a disease-free state 

regardless of the initial distribution of the population across compartments. Conversely, if  𝑅0 > 1, the disease 

persists and the system may approach an endemic equilibrium. 

Numerical simulations were carried out in R using the parameter values provided in Table 2, with initial conditions 

designed to reflect a population containing a mix of susceptible, exposed1 and 2, infected, treated, and recovered 

individuals. The simulations aimed to validate the theoretical prediction of global stability for the DFE when 𝑅0 <
1 shown in figure2. 
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Fig2: Simulation of the Heart Disease model at disease free equilibruim 

The trajectories of the model variables, illustrated in Figure 2, reveal a consistent decline of the exposed and 

infected compartments toward zero, alongside stabilization of the susceptible population at its disease-free value. 

The approach to equilibrium is smooth and monotonic, without oscillations, confirming the absence of complex 

dynamics such as sustained periodicity or chaos under the tested parameter regime. The numerical outcomes are 

in strong agreement with the analytical findings, thereby providing mutual validation between theory and 

simulation specifically in the Role of Risk Factors and Public Health Relevance since 𝑅0 encapsulates parameters 

representing lifestyle-related and genetic transmission pathways, targeted interventions such as promoting 

healthier diets, increasing physical activity, controlling genetic predisposition through early screening, and 

enhancing treatment efficacy are pivotal for disease control. The model’s behavior underscores the primacy of 

primary prevention measures. Reducing lifestyle-related risk transmission rates has a disproportionately large 

impact on 𝑅0 compared to reactive measures alone. This aligns with real-world epidemiological evidence favoring 

preventive health strategies over purely treatment-based approaches. 

Conclusion 

This paper offers a comprehensive mathematical framework for analyzing the transmission and prevention 

dynamics of heart disease, incorporating both lifestyle-related and genetic risk factors. Analytical investigations 

established the positivity and boundedness of solutions, determined the disease-free equilibrium, and derived the 

basic reproduction number R0 using the next-generation matrix method. Global stability analysis, grounded in 

LaSalle’s Invariance Principle and Lyapunov function construction, demonstrated that the disease-free 

equilibrium is globally asymptotically stable when R0<1. Numerical simulations in R confirmed the theoretical 

predictions, showing that, under suitable intervention strategies, disease prevalence declines monotonically to 
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zero across a broad range of initial conditions. The findings highlight the critical importance of reducing R0 

through sustained primary prevention measures, such as promoting healthy lifestyles, early diagnosis, and 

effective treatment interventions. By providing both a robust theoretical foundation and empirical validation, this 

work offers valuable guidance for public health decision-making. Future research could enhance the model’s 

applicability by incorporating demographic heterogeneity, spatial effects, and stochastic influences, thereby 

improving predictive accuracy and policy relevance in real-world settings. 
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