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Abstract  

The understanding the role of asymptomatic carriers in disease transmission is critical for effective epidemic 

control. This study presents a compartmental SEIR-type model that explicitly incorporates carrier transmission 

through a dedicated exposed compartment and transmission coefficient β1. Using the Next Generation Matrix 

approach, the study derive an analytical expression for the basic reproduction number R0, evaluating its sensitivity 

to β1 and other key parameters. A parametric analysis was conducted by varying β1 while holding other parameters 

constant. The results reveal a nearly linear positive relationship between β1 and R0, confirmed through both linear 

and nonlinear regression models. The nonlinear model provided a slightly better fit, but the linear model remains 

interpretable and robust across the range of values analyzed. Sensitivity analysis further demonstrated that R0 is 

highly responsive to changes in carrier transmission compared to other parameters such as recovery rate (γ) and 

symptomatic transmission (β2). The findings in this study underscores the critical role of asymptomatic individuals 

in sustaining outbreaks and highlights the need for public health interventions which focused on early detection 

and isolation of carriers. This study contributes a mathematically grounded framework for evaluating carrier-

driven transmission dynamics and provides actionable insights for epidemic modeling and control strategies. 
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Introduction 

The spread of infectious diseases remains a major public health concern globally, particularly in the context of 

emerging and re-emerging pathogens. Mathematical modeling has proven to be an essential tool for understanding 

disease dynamics, forecasting outbreaks, and designing effective control strategies. One of the key metrics in 

infectious disease modeling is the basic reproduction number (R0), which represents the expected number of 

secondary infections caused by a single infected individual in a fully susceptible population. Accurately estimating 

R0 is critical for assessing the epidemic potential of a disease and evaluating the impact of various interventions. 

Traditional compartmental models such as the SIR and SEIR frameworks have been widely used to describe the 

progression of individuals through different stages of infection. However, many infectious diseases—such as 

COVID-19, tuberculosis, and hepatitis—exhibit significant asymptomatic or pre-symptomatic transmission, 

where individuals in an exposed or carrier state can transmit the disease before becoming symptomatic. These 

carriers are often undetected, making their role in transmission difficult to quantify and control. An infectious 

disease that produces long-term asymptotic carriers is the typhoid fever caused by bacteria salmonella Typhi. 

These individuals infected hundreds of people over the decades while they worked in the food production industry 

and private homes. Even today, typhoid fever infects 21 million people kills 200,000 worldwide every year. 

Asymptomatic carriers are believed to play an essential role in the evolution and global transmission of typhi, and 

their presence greatly hinders the eradication of typhoid fever using treatment and vaccination. For certain 

infectious diseases, there are individuals who are able to transmit their illness but do not exhibit any symptoms. 

These individuals are called “carriers” and they play an important role in the transmission of disease. There are 

two types of carriers. Genetic carriers carry the illness on their recessive genes. They can only pass on their disease 
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to their children and are not contagious. The focus of this study is on infectious disease carriers. These individuals 

are asymptomatic and are likely unaware of their conditions, and therefore are more likely to infect others. 

 

Statement of the Study 

Infectious diseases remain a significant public health challenge, particularly in regions with limited healthcare 

infrastructure and inadequate disease surveillance systems. Many diseases, including those with incubation 

periods or asymptomatic carriers, exhibit complex transmission dynamics that are often underestimated in 

classical models. Traditional compartmental models may fail to capture the dual pathways of disease spread—

through both exposed (pre-symptomatic or asymptomatic) and actively infectious individuals—thus limiting the 

effectiveness of policy interventions based on such models. Moreover, the influence of behavioral changes, public 

health interventions, and partial protection strategies—represented by parameters such as the control rate U and 

the protected proportion P—are not often fully integrated into transmission models. As a result, it becomes 

difficult to assess the true threshold conditions for disease elimination or the potential for endemic persistence. 

This study addresses the need for a more comprehensive modeling framework by incorporating dual transmission 

pathways and behavioral responses into a nonlinear SEIR-type model. By introducing distinct transmission 

coefficients (β1 and β2) for the exposed and infected compartments, along with public health controls and 

protective behavior, the model aims to better understand the conditions under which the disease can be controlled 

or eradicated. The central problem, therefore, lies in determining how these interacting factors influence the basic 

reproduction number R0, the stability of the disease-free and endemic equilibria, and the long-term behavior of 

the disease within a population. 

Review of Related Literature  

Infectious diseases are one of the major causes of morbidity and mortality for human kind. The prevalence imposes 

huge burden on health facilities and hence substantially affects the economy of a country. This has made studying 

the dynamics of infectious disease a significant area of research various mathematical models has been proposed 

and analyzed for the spread of infectious diseases [ Nwagor & Ekaka-a, 2017;  Nwagor, 2020; Nwagor & Lawson-

Jack, 2020]. In these models it is assumed that disease spreads due to the direct contact between susceptible and 

infective. However, beside direct contact, the disease transmission take place through some other modes such as 

carriers are the agents that carry bacteria of infectious diseases spread among human population by direct contact 

between susceptible and infective as well as carriers. A large fraction of people in the developing countries is 

affected by such diseases due to lack of education, unhygienic conditions, poor drainage system and abundance 

of carriers. 

Eshetu et al. (2019) carried out a study on optimal control strategy on human papilloma virus model with backward 

bifurcation analysis. The study proposed and analyses a compartmental nonlinear deterministic mathematical 

model in a varying control community. The model is studied qualitatively using stability theory of differential 

equations. The basic reproductive number that governs the disease transmission is obtained from the largest eigen 

value of the next generation matrix. Both local and global asymptotic stability conditions for disease free and 

endemic equilibria and determined. It is observed that the model exhibits a backward bifurcation. It was found 

that prevention, treatment and screening strategy is the most effective way to eradicate the disease from the 

community. 

Darja et al. (2011) investigated the modeling the effects of carriers on transmission dynamics of infectious 

diseases. The research found that infected individuals who are contagious do not show any disease symptoms. 

Mathematical analysis is carried out that completely determines the global dynamics of the model. Their model 

simulations demonstrate the challenges of chronic HBV infection, the disease existence of a large numbers of 

carriers who are infectious but show no symptoms will not be part of any treatment program. When their 

simulation result was compared, the result shows that in high HBV prevalence countries, testing and increasing 

awareness of carriers will have a greater impact on the disease burden than increasing vaccination rates. 

described the rate of the variables.  

To address this gap, this study develops a modified SEIR model that explicitly incorporates a carrier (exposed) 

compartment and distinguishes between the transmission contributions of asymptomatic carriers and symptomatic 

individuals. The model introduces a dedicated carrier transmission coefficient (β1) to assess the specific impact of 

these individuals on disease spread. Using the Next Generation Matrix method, we derive an analytic expression 

for R0 and conduct a sensitivity analysis to examine how changes in β1 influence epidemic dynamics. 
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Materials and Methods  

This section considered a more complicated and realistic SEIR model with vaccination. The model takes account 

of the infectiousness of disease in latency state which investigate effect of the infectivity of the latent population 

in addition to the transmission between the susceptible and infective populations. 

The model is stated as; 

N = S + E + I + R 

where, N= The population size, S represents the Susceptible class who are capable of latching the disease, E= 

Exposed or latent class comprising of individuals who are infected but not yet infectious. I= Infective comprising 

those who are infected and capable of transmitting the disease. R= The recovered class, comprising those 

individuals who are immune. The SEIR model for the spread of infectious diseases is written as set of four coupled 

non-linear ordinary differential equations. 

𝑑𝑠

𝑑𝑡
    = 𝑈 (𝐼 − 𝑃)  − 𝑈𝑆 − 𝛽1 𝑆𝐸 − 𝛽2  𝑆𝐼                       (1) 

𝑑𝐸

𝑑𝑡
    = 𝛽1 𝑆𝐸 + 𝛽2 𝑆𝐼 −  (𝑈 + 𝑆) 𝐸                            (2) 

𝑑𝐼

𝑑𝑡
    = 𝑆𝐸 −  (𝑈 + 𝛾)𝐼                                      (3) 

𝑑𝑅

𝑑𝑡
    = 𝑃 𝑈 𝑁 + 𝛾𝐼 − 𝑈𝑅                                      (4) 

Where U = per capital birth rate β1 and β2 is defined as the total rates which potentially infectious contacts occur 

between two individuals. S is the infective class constant rate. 
1

𝑆
   is the average latent period. Γ is the infective 

move from the infective class to the recovered class of constant rate. 
1

𝛾
   is the average infectious period conditional 

on survival to the end of it. 

Mathematical Formation 

For the purpose of this study, the following dynamical system of a non-linear differential equations are considered: 

𝑑𝑠

𝑑𝑡
    = 𝑈 (𝐼 − 𝑃)  − 𝑈𝑆 − 𝛽1 𝑆𝐸 − 𝛽2  𝑆𝐼                        (1) 

𝑑𝐸

𝑑𝑡
    = 𝛽1 𝑆𝐸 + 𝛽2  𝑆𝐼 − (𝑈 + 𝑆) 𝐸                            (2) 

𝑑𝐼

𝑑𝑡
    = 𝑆𝐸 −  (𝑈 + 𝛾)𝐼                                      (3) 

𝑑𝑅

𝑑𝑡
    = 𝑃 𝑈 𝑁 + 𝛾𝐼 − 𝑈𝑅                                      (4) 

 

Method of Analysis 

Derivation of the Basic Reproduction Number and Sensitivity Analysis 

To quantify the epidemic potential of the model, we derive the basic reproduction number R0 — the expected 

number of secondary infections produced by a single infected individual in a completely susceptible population. 

The Next Generation Matrix (NGM) method was used as described by van den Driessche & Watmough (2002). 

Next Generation Matrix Approach 

Let x = (E, I) represent the vector of infected compartments. The model’s infection subsystem can be expressed 

as 
𝑑𝑥

𝑑𝑡
    = 𝐹(𝑥) − 𝑉 (𝑥) 

https://doi.org/10.63561/jmsc.v2i3.857
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where: 

F(x)= rate of new infections, 

V(x)= rate of transfer between compartments due to progression, recovery, or death. 

From the model equations, the new infection terms and transition terms are: 

             𝐹 = [𝛽1𝑆𝐸 +  𝛽2𝑆𝐼 0 ], and    𝑉 = [ (𝑈 + 𝑆) 𝐸  − 𝑆𝐸 +  (𝑈 + 𝛾)𝐼  ] 

Evaluating the Jacobian matrices of F and V at the disease-free equilibrium (DFE), 

 where S≈1, E = I = 0, we obtain: 

                     𝐹 = [  𝛽1 𝛽2 0 0 ] ,    and  𝑉 = [    (𝑈 + 𝐼) 0 − 1 (𝑈 + 𝛾) ]   

   And New Generation Matrix = 𝐾 = 𝐹𝑉−1 

The basic reproduction number R0 is a spectral radius (dominant eigenvalue) of matrix K. after computation, the 

closed form solution is                                           

                                      𝑅0 =
𝛽1

𝑈+𝐼
 +

𝛽2

(𝑈+𝛾)(𝑈+𝐼)
 

This expression shows that R0 increases with either transmission coefficient and decreases with removal rates U 

and recovery rate γ. 

Sensitivity Analysis 

To assess the relative impact of each parameter on R0, we compute the normalized forward sensitivity index of 

R0 with respect to a parameter θ, defined as: 

                                                              𝛾𝑅0
𝜃 =

𝜕𝑅0

𝜕𝜃
.

𝜃

𝑅0
 

the key parameter, the sensitivity index are  

𝛾𝑅0

𝛽1 =
𝛽1

𝑅0(𝑈 + 𝐼)
 

𝛾𝑅0

𝛽2 =
𝛽2

𝑅0(𝑈 + 𝛾)(𝑈 + 𝐼)
 

𝛾𝑅0

𝛾
=

𝛽2

𝑅0(𝑈 + 𝛾)2(𝑈 + 𝐼)
 

𝛾𝑅0
𝑈 = − (

𝛽1

(𝑈 + 𝐼)2
+

𝛽2(2𝑈 + 𝛾 + 1)

(𝑈 + 𝛾)(𝑈 + 𝐼)2
) .

1

𝑅0

 

These indices show that R0 is most sensitive to β₁ when its value is small, meaning that even slight increases in 

carrier transmission can substantially impact epidemic potential. The sensitivity to γ and β2 is comparatively lower 

across typical epidemiological parameter ranges. 
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Epidemiological scenarios  

Parameter Value  Description  

𝜇 0.08399 Natural death rate 

𝛽2 0.020 Transition rate from symptomatic individuals 

𝜌 0.030 Proportion of recovery individuals  

𝛾 1.020 Recovery rate from infection  

 

The transmission coefficient for the carriers 𝛽1 varies from 0.002 to 0.018. the corresponding values of R0 were 

calculated using the derived expression  

                                             𝑅0 =
𝛽1

𝑈+𝐼
 +

𝛽2

(𝑈+𝛾)(𝑈+𝐼)
 

 Regression analysis  

To analyze the quantitative relationship between  𝛽1and 𝛽2, the two models were fitted to the data: 

Linear model:  𝑅0 = 𝑎. 𝛽1 + 𝑏 

Estimated:  𝑅0 = 0.9085. 𝛽1 + 0.0005 

Nonlinear (Quadratic) model:  𝑅0 = 𝑎. 𝛽1
2 + 𝑏. 𝛽1 + 𝑐 

Estimated;  𝑅0 = −0.3922. 𝛽1
2 + 0.9163. 𝛽1 + 0.0004 

Both models showed that goodness of fit, with the nonlinear model offering the slightly better predictive accuracy 

based on mean square error (MSE). 

Model Equation MSE 

Linear 𝑅0 = 0.9085. 𝛽1 + 0.0005 6.72𝑥10−10 

Nonlinear  𝑅0 = −0.3922. 𝛽1
2 + 0.9163. 𝛽1 + 0.0004 5.88𝑥10−10 

 

The analysis here confirms a strong, nearly linear relationship between β1 and R0 in the chosen parameter range. 

The linear model offers simplicity and interpretability, while the quadratic model captures a minor curvature at 

higher β1 values. Given the closeness of both fits, either model can be selected depending on the precision required. 

The table and graphs below visually confirm that even small increases in β1 can substantially increase R0, 

reinforcing the importance of controlling carrier transmission to reduce outbreak risk. 

Nonlinear Model Analysis: 

We fitted a quadratic model to the data: R0 = a⋅β1
2 + b⋅β1 + c 

Model Comparison (Goodness of Fit): 

Model Mean Squared Error (MSE) 

Linear 6.72 × 10⁻¹⁰ 

Nonlinear 5.88 × 10⁻¹⁰ 

https://doi.org/10.63561/jmsc.v2i3.857
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with the parameters: 

a = 0.3922,    b= 0.9163,       c = 0.0004 

Final equation R0 = -0.3922. β1
2 +0.9163. β1 + 0.0004 

Results and discussions  

The result of the numerical analysis on the modeling of impact of transmission coefficient for the carrier 

compartment (𝛽1) on the basic reproduction number are presented. 

Table 1. Impact of transmission coefficient for the carrier compartment (𝛽1) on the basic reproduction 

number 

𝜇 𝛽1 𝛽2 P 𝛾 𝑅0 

0.08399 0.010 0.02 0.03 1.02 0.0960 

0.08399 0.002 0.02 0.03 1.02 0.0023 

0.08399 0.004 0.02 0.03 1.02 0.0041 

0.08399 0.006 0.02 0.03 1.02 0.0059 

0.08399 0.008 0.02 0.03 1.02 0.0077 

0.08399 0.011 0.02 0.03 1.02 0.0105 

0.08399 0.012 0.02 0.03 1.02 0.0114 

0.08399 0.014 0.02 0.03 1.02 0.0132 

0.08399 0.016 0.02 0.03 1.02 0.0150 

0.08399 0.018 0.02 0.03 1.02 0.0168 

Table 2. Impact of rate of recovery (𝛾) on the basic reproduction number 

𝜇 𝛽1 𝛽2 p 𝛾 𝑅0 

0.08399 0.01 0.02 0.03 1.020 0.0960 

0.08399 0.01 0.02 0.03 0.204 0.0087 

0.08399 0.01 0.02 0.03 0.408 0.0091 

0.08399 0.01 0.02 0.03 0.612 0.0093 

0.08399 0.01 0.02 0.03 0.816 0.0095 

0.08399 0.01 0.02 0.03 1.122 0.0096 

0.08399 0.01 0.02 0.03 1.320 0.0096 

0.08399 0.01 0.02 0.03 1.428 0.0097 

0.08399 0.01 0.02 0.03 1.632 0.0097 

0.08399 0.01 0.02 0.03 1.836 0.0097 
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Table 3: Impact of transmission coefficient for the infected compartment (𝛽2) on the basic reproduction 

number 

𝜇 𝛽1 𝛽2 p 𝛾 𝑅0 

0.08399 0.01 0.020 0.03 1.02 0.0960 

0.08399 0.01 0.004 0.03 1.02 0.0092 

0.08399 0.01 0.008 0.03 1.02 0.0093 

0.08399 0.01 0.012 0.03 1.02 0.0094 

0.08399 0.01 0.016 0.03 1.02 0.0095 

0.08399 0.01 0.022 0.03 1.02 0.0096 

0.08399 0.01 0.024 0.03 1.02 0.0097 

0.08399 0.01 0.028 0.03 1.02 0.0098 

0.08399 0.01 0.032 0.03 1.02 0.0099 

0.08399 0.01 0.036 0.03 1.02 0.0100 

 

Table 4: Impact of probability that a newly infected individual is asymptomatic (p) on the basic 

reproduction number 

𝜇 𝛽1 𝛽2 p 𝛾 𝑅0 

0.08399 0.01 0.02 0.030 1.02 0.0960 

0.08399 0.01 0.02 0.006 1.02 0.0093 

0.08399 0.01 0.02 0.012 1.02 0.0094 

0.08399 0.01 0.02 0.018 1.02 0.0095 

0.08399 0.01 0.02 0.024 1.02 0.0095 

0.08399 0.01 0.02 0.033 1.02 0.0096 

0.08399 0.01 0.02 0.036 1.02 0.0096 

0.08399 0.01 0.02 0.042 1.02 0.0097 

0.08399 0.01 0.02 0.048 1.02 0.0097 

0.08399 0.01 0.02 0.054 1.02 0.0098 
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β₁ R₀  

0.002 0.0023  

0.004 0.0041  

0.006 0.0059  

0.008 0.0077  

0.010 0.0096  

0.011 0.0105  

0.012 0.0114  

0.014 0.0132  

0.016 0.0150  

0.018 0.0168  

The nearly linear growth suggests that each incremental rise in β₁ yields a proportional increase in R₀, all else held 

constant. Carrier infectivity matters: Even small changes in how infectious carriers are (β₁) can noticeably affect 

disease transmission. Control implication: Targeting carriers (through testing, isolation, or treatment) could be an 

effective intervention strategy to reduce R₀ and contain outbreaks. 

 

 

The graph shows the transmission coefficient for the carrier compartment (β₁) affects on the basic reproduction 

number (R₀). Clearly showing linear increase in R₀ as β₁ increases — highlighting the direct and proportional 

relationship. 
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Equation of the Best-Fit Line: 

R₀ =0.9085⋅β1+0.0005  

This confirms a strong linear for every unit increase in β₁, R₀ increases by approximately 0.9085. relationship 
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Discussion 

 

This study highlights the significant impact of carrier transmission on disease dynamics, specifically through its 

influence on the basic reproduction number R0. By incorporating a dedicated transmission coefficient for carriers 

(β1) into a compartmental SEIR-type model, we have captured a key transmission pathway often underrepresented 

in classical models. Our findings emphasize that asymptomatic and pre-symptomatic individuals can be major 

contributors to outbreak potential, even when symptomatic transmission is well-managed. 

Carrier Transmission and R0 

The derived analytical expression for R0 reveals a direct dependency on both β1 and β2, with each contributing 

additively to the overall reproductive potential of the disease. The parametric analysis shows that increasing β1 

leads to a nearly proportional increase in R0, a trend confirmed by both linear and nonlinear regression fits. 

The linear model R0 = 0.9085β1 + 0.0005 provides a straightforward estimation tool, while the nonlinear model 

captures subtle curvature that may emerge at higher transmission rates. These findings underscore the predictive 

power of simple models when guided by mechanistic understanding and data (Ogbuagu et al. 2023). 

Sensitivity of R0 to Epidemiological Parameters 

Sensitivity analysis further reveals that R0 is more responsive to variations in β1 than in other parameters such as 

β2, γ, or the natural removal rate μ. This has profound implications for public health planning: even modest 

reductions in asymptomatic transmission could result in significant epidemic suppression, particularly in early 

outbreak stages or settings with limited healthcare capacity. 
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These results align with real-world experiences during the COVID-19 pandemic, where silent spreaders played a 

dominant role [Okeke et al 2019]. The findings also reinforce the need to move beyond symptom-based 

surveillance and adopt strategies that target transmission across the full clinical spectrum of the disease. 

Conclusion  

A system of nonlinear first order differential equation model was adopted to investigate the Nonlinear Dynamics 

and Sensitivity of R₀ to Epidemiological Parameters in a Structured Disease Model. On the variation of Impact of 

transmission coefficient for the carrier compartment (𝛽1) on the basic reproduction number. It was observed that 

at 𝜇 = 0.08399, 𝛽1 =0.10 to 0.018, 𝛽2=0.02, p=0.03, 𝛾=1.02 the basic reproductive number, 𝑅0 < 1 which is an 

indication that the disease will not spread. on the variation of Impact of rate of recovery (𝛾) on the basic 

reproduction number predicted 𝑅0 ranging from 0.0091 to 0.0960 which indicates that  𝑅0 < 1  when 𝜇 =
0.08399, 𝛽1 =0.10 𝛽2=0.02, p=0.03, 𝛾=1.02 the basic reproductive number, 𝑅0 < 1wwhich is an positive 

indication that the disease  not spread. On the variation of the Impact of transmission coefficient for the infected 

compartment (𝛽2) on the basic reproduction number, it was observed that at 𝜇 = 0.08399, 𝛽1 =0.10,  𝛽2=0.02, 

p=0.03, 𝛾=1.02 the basic reproductive number, 𝑅0 < 1 which is an indication that the disease will not spread. 

Furthermore, the study compared linear and nonlinear models of the relationship between β1 and R0, and hence, 

evaluating the predictive performance of each and identifying the best fit. Our findings provide critical insights 

into the extent to which carrier transmission drives epidemic potential, offering practical implications for public 

health surveillance, testing strategies, and intervention design. 

 

Recommendations 

Based on the analysis and findings, the following recommendations are made: 

1. Public health programs should allocate resources toward identifying and isolating asymptomatic 

carriers through widespread testing, especially in early-stage outbreaks. 

2. Epidemiological models used for planning, surveillance, and control should be expanded to explicitly 

account for carrier transmission via parameters like β1. 

3. Awareness efforts should educate communities about the possibility and danger of asymptomatic 

spread, reinforcing the need for non-symptom-based precautions (e.g., masks, distancing). 

4. Future disease monitoring systems should be coupled with models like the one presented to provide 

real-time estimates of R0, including the impact of silent transmission. 
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