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Abstract 

This paper presents a structural analysis of stopping time in noncommutative probability theory within the context of 

Fermionic Fock Space. In particular, the construction of conditional expectation and the introduction and analysis of 

stopping times on an antisymmetric Fock space are undertaken using an increasing full right continuous filtered 

antisymmetric Fock Space. The conditional expectation on the filtered Fock space is demonstrated to be completely 

positive. 
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Introduction 

The theory of rings of operators on Hilbert space began in the 1930s with a series of papers by von Neuman 1936, 

Murray and von Neuman 1937. They analyzed in great detail the structure of a family of algebras of operators which 

are nowadays referred to as *-algebras (B*-, C*-, W*-algebra). Among these *-algebras, W*- algebra (von 

Neumann) has the distinctive property of being rich in projection and closed in the weak operator topology. The 

study of stochastic processes like conditional expectation and stopping times is of great importance in the quantum 

probability theory, operator theory and quantum physics. For example, the quantum statistical description of the 

dilation of the dynamic of a quantum open system. The notion of classical conditional expectation in probability 

theory was first extended to the noncommutative probability theory by Umegaki(1954), he showed the existence of 

conditional expectation when the von Neumann Algebra is finite. Later Umegaki (1956), Tomiyama (1957), 

Umegaki(1958), Umegaki Nakamura (1961) and Takesaki (1972) studied conditional expectation in this direction. 

Following the work of Evans (1979), Barnett, Streater and Wilde, (1983) constructed conditional expectation from a 

CAR C*-algebra to it CAR C*-subalgebra and showed it to be a composition map.  

 

Hudson (1979) introduced Quantum stopping time as a projection-valued process, and Parthasarathy and Sinha 

(1987) extended the work of Hudson(1979) to the case of Boson Fock space. Barnett and Lyons (1986) introduced 

stopping time in antisymmetric Fock Space. Other researchers like Barnett and Thakrar (1988), Barnett et al. (1996), 

Attal and Coquio (2004) and Coquio (2006) further studied stopping times in Quantum Probability theory. Most 

recently, Kang (2015) defined quantum stopping time in the Interacting Fock Space over 𝐿2(ℝ+) and developed a 

corresponding Quantum Stopping Time Stochastic Integral. In this research, we consider an increasing full right 

continuous filtration of Fermionic Fock space in constructing conditional expectation and defining quantum 

stopping time. This work tends to extend the work of Barnett and Lyons (1986) and that of Barnett et al. (1983) to 

the Antisymmetric Fock spaces. 

 

2.0   Preliminaries 

We give some basic definitions and theorems that are known in the literature, taken from Sakai (1971), Bing-Hen 

(1992) and Meyer (1993). 

 

Definition 2.1: Let 𝐵(𝐻) be the set of all bounded linear operators acting on a complex separable Hilbert Space 𝐻.  
A C*- algebra 𝑈 is a ∗-subalgebra of 𝐵(𝐻) which is uniformly closed and has the property, ‖𝑥∗𝑥‖ = ‖𝑥‖2 for all 

𝑥 ∈ 𝑈.  A von Neumann Algebra 𝑀 is an unital *-subalgebra of 𝐵(𝐻) that is self-adjoint and closed with respect to 

the weak operator topology. 

Let 𝜓 be a linear functional on 𝑀, then 𝜓 is said to be  
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Positive: If 𝜓(𝑎)  ≥  0 for any  ∈  𝑀+ , 

Faithful: if 𝜓 ≥  0 and 𝜓(𝑎)  =  0 implies 𝑎 =  0, for some 𝑎 ∈  𝑀+ , 

Normal: If 𝑎𝑖  →  𝑎 implies (sup 𝑎𝑖) = sup 𝜓(𝑎𝑖)  =  𝜓(𝑎) , 
State: if 𝜓 ≥  0 and ‖𝜓‖  =  1 , 

Trace: if 𝜓 ≥  0 and 𝜓(𝑎∗𝑎)  =  𝜓(𝑎𝑎∗ ), for all 𝑎 ∈  𝑀 , 

Weight: if 𝜓 ≥  0 and 𝜓(𝜆𝑎 +  𝑏)  =  𝜆𝜓(𝑎)  +  𝜓(𝑏), for all 𝜆 ≥  0, 𝑎, 𝑏 ∈  𝑀+ , 

where 𝑀+= {a ∈ M: a ≥ 0}. 

 

Theorem (GNS Construction): Let 𝑈 be an unital C*- algebra and let 𝜓 ∶  𝑈 → ℝ be a state. Then there exists a 

triplet (𝐻𝜓 , 𝜋𝜓Ω𝜓) where  

• 𝜋𝜓 ∶  𝑈 →  𝐵(𝐻𝜓) is a *-representation of 𝑈, 𝐻𝜓 being a Hilbert Space; 

• Ω𝜓  ∈  𝐻𝜓 and 𝐻𝜓  =  𝜋𝜓𝜓(𝑀)Ω𝜓; and  

• 𝜓(𝑎) =  ⟨𝜋𝜓𝜓(𝑀)Ω𝜓, Ω𝜓⟩ for all 𝑎 ∈  𝑀. 

 

Definition 2.2: A fock space is the direct sum of the tensor product of Hilbert space, that is,  𝐹(𝐻) ∶= ⊕𝑛≥0 𝐻𝑛, 

where 𝐻𝑛  =  ℂ  and 𝐻𝑛  = ⊗𝑖≥1  𝐻𝑖  =  𝐻1  ⊗  𝐻2  ⊗  𝐻3 ⊗. . .⊗ 𝐻𝑛.  

A unit vector Ω ∈  𝐹(𝐻) is called the vacuum vector.  

 

Definition 2.3: Given f ∈ H, we define the creation operator 𝑎∗ (𝑓 ): 𝐻𝑛  →  𝐻𝑛+1 𝑏𝑦  

𝑎∗ (𝑓 )𝑓1  ⊗  𝑓2 ⊗ . . .⊗  𝑓𝑛  =  √𝑛 +  1 𝑓 ⊗  𝑓1  ⊗  𝑓2 ⊗ . . .⊗  𝑓𝑛 

and the annihilation operator 𝑎(𝑓 ): 𝐻𝑛  →  𝐻𝑛−1  , 𝑛 ≥  1 by  

𝑎(𝑓 )𝑓1  ⊗  𝑓2 ⊗ . . .⊗   𝑓𝑛  =  √𝑛  ⟨𝑓, 𝑓1 ⟩ 𝑓2 ⊗ . . .⊗  𝑓𝑛 , where 𝑎(𝑓 ) ∶  𝐻0  →  0  ∈  𝐹(𝐻) 

 

The Fermionic creation and annihilation operators satisfy the Canonical Anticommutation Relation (CAR)  
[𝑎(𝑓 ),   𝑎∗(𝑔)] =  ⟨𝑓, 𝑔⟩ 𝟏𝐹(𝐻)  , 

[𝑎(𝑓 ), 𝑎(𝑔)]  =  [ 𝑎∗(𝑓 ),   𝑎∗(𝑔)]  =  0 . 
Where [𝑎(𝑓 ),   𝑎∗ (𝑔)] =  𝑎(𝑓 )  𝑎∗ (𝑔)  +   𝑎∗(𝑔)𝑎(𝑓 )  

 

Definition 2.4: A CAR Algebra U over H is defined to be an unital C*- Algebra generated by elements 𝑎(𝑓 ) and 

  𝑎∗(𝑓), 𝑓 ∈  𝐻 which satisfy the canonical anticommutation relation. 

 

Definition 2.5(Evans & Lewis, 1977): Let 𝑇 be a linear map from a ∗-Algebra 𝐴 to ∗-Algebra 𝐵, let 𝑇𝑛 denote the 

product mapping 𝑇 ⊗  1𝑛 from 𝕄𝑛(𝐴)  into 𝕄𝑛(𝐵), where 1𝑛 denotes the identity mapping on 𝕄𝑛(ℂ)  , that is 

𝑇𝑛 ∶  [𝑎𝑖𝑗]  ⟼  [𝑇(𝑎𝑖𝑗)]. 𝑇 is said to be positive if it maps positive elements of 𝐴 to positive elements of 𝐵 and 𝑇 is 

completely positive if every 𝑇𝑛 is a positive map. 

 

Definition 2.6 (Barnett et al., 1983): Let 𝑈 be a CAR algebra over H and 𝑉 be its CAR subalgebra. A conditional 

expectation is a bounded linear map 𝐸𝑡: 𝑈 → 𝑉 satisfying: 

E1 𝐸𝑡(𝑥) = 𝑥 for all 𝑥 ∈ 𝑉, 

E2 𝐸𝑡(𝑥𝑦𝑧) = 𝑥𝐸𝑡(𝑦)𝑧, for 𝑥, 𝑧 ∈ 𝑉, 𝑦 ∈ U , 

E3 𝐸𝑡: U+ ⟶ 𝑉+, 

E4 𝐸𝑡(𝑥)∗𝐸𝑡(𝑥) ≤ 𝐸𝑡(𝑥∗x), x ∈ U , ‖𝐸𝑡‖ = 1. 

 

Remark: Conditional expectation 𝐸𝑡 is a positive contractive bounded linear map which leaves the elements of the 

subalgebra fixed and whose norm is one. 

 

Definition 2.7(Barnett & Thakrar, 1990): Let 𝑀 be a von Neumann Algebra acting on 𝐻, a stopping time 𝜏, is an 

increasing family (𝑞𝑡)𝑡∈ℝ+ of projections in (𝑀𝑡). 

𝜏 ∶  ℝ+  → (𝑀𝑡)𝑝𝑟𝑜𝑗  such that: 𝜏 (𝑡) =  (𝑞𝑡) ∈  (𝑀𝑡)𝑝𝑟𝑜𝑗 , 𝑓𝑜𝑟 𝑡 ∈ (0, ∞) 

𝜏 (0)  =  0, 𝜏 (∞)  =  𝐼. 
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3.0 Results  

 

In this section, we construct conditional expectations in filtered antisymmetric fock space and analyze stopping time 

in the aforementioned space. We begin with the following definition. 

 

Definition 3.1: Let 𝑈 be a CAR algebra acting on separable Hilbert Space 𝐻 and 𝑈𝑡  be a CAR subalgebra of 

𝑈 acting on separable Hilbert Space 𝐻𝑡  ⊂  𝐻. Then a filtration is a family {𝑈𝑡 ∶  𝑡 ∈  ℝ+} satisfying: 

i. if 𝑡, 𝑠 ∈  ℝ+ and 0 ≤  𝑡 ≤  𝑠  then  𝑈𝑡 ⊆  𝑈𝑠 (Increasing), 

ii. ∪𝑡≥0 𝑈𝑡

‖.‖
= 𝑈 (Full), 

iii. ∩𝑠>𝑡 𝑈𝑠 = 𝑈𝑡 (Right continuous) 

and the family {𝐻𝑡 ∶  𝑡 ∈  ℝ+}  satisfies the following conditions: 

i. if 𝑡, 𝑠 ∈  ℝ+ and 0 ≤  𝑡 ≤  𝑠  then  𝐻𝑡 ⊆  𝐻𝑠 , 

ii. ∪𝑡≥0 𝐻𝑡

‖.‖
= 𝐻, 

iii. ∩𝑠>𝑡 𝐻𝑠 = 𝐻𝑡 . 

 

Lemma 3.1: The identity mapping 𝐼: U𝑡 ⟶ U𝑡 is completely positive 

 

Proof 

The identity map 𝐼 is positive since it maps positive operators in U𝑡 to positive operators in U𝑡. To show that 𝐼 is 

completely positive, we let 𝕄𝑛(U𝑡) = U𝑡 ⨂𝕄𝑛  be an 𝑛 × 𝑛 matrix with entries from U𝑡.  Then, 

𝐼𝑛 = 𝐼 ⊗ 1𝑛:     𝕄𝑛(U𝑡)    ⟶    𝕄𝑛(U𝑡) 

       [𝑎(𝑓)𝑖𝑗] ⟼  [𝐼(𝑎(𝑓)𝑖𝑗)]. 

Since 𝐼(𝑎(𝑓))  ≥  0, then  𝐼(𝑎(𝑓)𝑖𝑗) is also positive for all ≥  1 . Therefore 𝐼 is completely positive. 

We now construct a mapping 𝐸𝑡: 𝑈 → 𝑈𝑡 with range in the filtered CAR algebra. 

Let {𝑈𝑡 : 𝑡 ∈ ℝ+} be a Filtered CAR C*- Algebra over 𝐻, then 𝑈𝑡 is an associative, unital *-Algebra generated by 

𝑎(𝑓) and  𝑎∗ (𝑓), for 𝑓 ∈  𝐻 with a C* - norm ‖𝑎(𝑓)‖ = ‖𝑎∗(𝑓)‖ = ‖𝑓‖, for 𝑓 ∈  𝐻.  Suppose 𝜑 is n invariant 

quasi-free state on 𝑈𝑡, since 𝜑  is faithful, without loss of generality, the triplet (𝐻𝑡  , π, Ω) is the associated cyclic 

representation of 𝑈𝑡 . Let 𝛽 be an automorphism of 𝑈𝑡 defined as (𝑎∗(𝑓)) = 𝑎∗(𝑓), 𝑓 ∈  𝐻. Then 𝜑 is invariant 

under 𝛽 and so in the ∗-representation π, 𝛽 is a unitary operator, denoted by ϒ, with ϒΩ =  Ω. 

Suppose 𝐻𝑛 = 𝐻1 ⊕  𝐻2 ⊕ … ⊕ 𝐻𝑛 and 𝑈𝑡 be a filtration of 𝑈, then for any 𝑓 = 𝑓1 ⊕ 𝑓2 ⊕ … ⊕ 𝑓𝑛.  

We now define 𝜋 ∶  𝑈 →  𝑈𝑡 ⊗ 𝐵(𝐻) as  𝜋(𝑎(𝑓1 ⨁𝑓2)) = 𝑎(𝑓1)⨂Υ + 1 ⨂ 𝜋(𝑎(𝑓2)).  

Since 𝑎∗(𝑓 )  =  𝑎(𝑓 )∗, set 𝜋(𝑎∗(𝑓 ))  =  𝜋( 𝑎(𝑓 ))∗, then for 𝑓 ∈  𝐻,  𝜋(𝑎(𝑓 )) and 𝜋(𝑎∗(𝑓 ))  satisfies the 

canonical anticommutation relation. And so, it follows that 𝜋 extends to an injective ∗-homomorphism of 𝑈 into 

𝑈𝑡 ⊗ 𝐵(𝐻𝑛) which we also denote by 𝜋. By Lemma 3.1 above 𝐼 is completely positive and the map from 

𝔖: 𝐵(𝐻) ⟶ ℂ is completely positive and so the map 𝐼 ⊗ 𝔖 extends to an algebraic tensor product 𝑈𝑡 ⊗ 𝐵(𝐻𝑛)  to 

define a completely positive map 

𝜃 ∶ 𝑈𝑡 ⊗ 𝐵(𝐻𝑛)   →  𝑈𝑡 

𝜋(𝑎(𝑓 ))  ⟼  𝜃(𝜋(𝑎(𝑓 )))  ∈  𝑈𝑡   
that is  𝜃𝑜𝜋 =  𝐸𝑡 ∶  𝑈 →  𝑈𝑡   is the composition of 𝜋 with 𝜃. 

 

Theorem 1: The map 𝐸𝑡 = 𝜃𝑜𝜋 ∶  𝑈 →  𝑈𝑡  is a conditional expectation in the filtered CAR 𝐶∗-algebra. 

 

Proof 

Since both 𝜗 and 𝜋 are bounded and positive maps, the 𝐸𝑡 is also positive and bounded which gives (E3). 

Let 𝑥 = 𝑎∗(𝑓1)𝑎∗(𝑓2) … 𝑎∗(𝑓𝑛)𝑎(𝑔1)𝑎(𝑔2) … 𝑎(𝑔𝑛) for 𝑓1, 𝑓2, … 𝑓𝑛, 𝑔1, … 𝑔𝑛 ∈ 𝐻𝑡 , from the fact that ϒΩ =  Ω,  

𝐸𝑡(𝑥) = 𝑥, but such 𝑥 generate 𝑈𝑡, and so by linearity and continuity, we have 𝐸𝑡(𝑥) = 𝑥 for 𝑥 ∈ U𝑡 proving (E1). 

Now for 𝑥, 𝑧 ∈ U𝑡 and 𝑦 ∈ U,  𝐸𝑡(𝑥𝑦𝑧) = 𝐸𝑡(𝑥)𝐸𝑡(𝑦)𝐸𝑡(𝑧) = 𝑥𝐸𝑡(𝑦)𝑧 which gives (E2) 

Similarly, for 𝑦 ∈  𝑈, we have ‖𝐸𝑡(𝑦)‖2 ≤ ‖𝑦‖2 ⇒ ‖𝐸𝑡(𝑦)‖ ≤ ‖𝑦‖ 

⟹  ‖𝐸𝑡‖ ≤ 1. 
 

Hence, 𝐸𝑡 is structure-preserving and ‖𝐸𝑡‖ = 1 proving (E4). 
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Theorem 2: The conditional expectation 𝐸𝑡 ∶  𝑈 →  𝑈𝑡 is completely positive. 

 

Proof 

From Theorem 1 above,  𝐸𝑡: 𝑈+ → 𝑈𝑡
+ which implies 𝐸𝑡  ≥  0.  

Let 𝕄𝑛(𝑈) = 𝑈 ⨂𝕄𝑛 and 𝕄𝑛(𝑈𝑡) = 𝑈𝑡  ⨂𝕄𝑛  .  

Defining 𝐸𝑡
𝑛 = 𝐸𝑡 ⨂1𝑛: 𝕄𝑛(𝑈) ⟶ 𝕄𝑛(𝑈𝑡) as 𝐸𝑡

𝑛([𝑢𝑖𝑗]) = [𝐸𝑡
𝑛(𝑢𝑖𝑗)],  

since 𝐸𝑡 ≥  0, then [𝐸𝑡
𝑛(𝑢𝑖𝑗)]  ≥  0 which implies ∑ [𝐸𝑡

𝑛(𝑢𝑖𝑗)]𝑛 ≥  0, that is, 𝐸𝑡
𝑛 is positive for every 𝑛 and hence, 

𝐸𝑡 is completely positive.  

Let 𝑃𝑡: 𝐻 = 𝑈Ω
‖ .  ‖

⟶ 𝑈𝑡Ω
‖ .  ‖

=  𝐻𝑡   be the extension of 𝐸𝑡 onto 𝐻 such that  

𝑃𝑡(𝑢Ω) = 𝐸𝑡 (u)Ω. 

 Then, 𝑃𝑡 is an orthogonal projection on 𝐻. 

 

Proposition 3.1: 𝑃𝑡  lies in the commutant of  𝑈𝑡. 

 

Proof. Let 𝑣 ∈ 𝑈𝑡 , u ∈ U, then 

𝑃𝑡(𝑣𝑢)Ω = 𝐸𝑡(𝑣𝑢)Ω = 𝐸𝑡(𝑢)vΩ 

= 𝑣𝐸𝑡(𝑢)Ω = 𝑣𝑃𝑡(𝑢)Ω . 
Since 𝑢Ω is dense in 𝐻𝑡 , the result follows. 

 

Definition 3.2: Let (𝑈𝑡)𝑃𝑟𝑜𝑗 denote the set of all projections in 𝑈𝑡 . A stopping time,  , is an increasing family 

(𝑞𝑡)𝑡∈ℝ+ of projections in (𝑈𝑡)𝑃𝑟𝑜𝑗. 

 𝜏 ∶  ℝ+  →  (𝑈𝑡)𝑃𝑟𝑜𝑗 

       𝑡 ⟼  𝜏 (𝑡)  =  𝑞𝑡 

such that: i 𝜏 (𝑡)  = (𝑞𝑡) ∈ (𝑈𝑡)𝑃𝑟𝑜𝑗 , for  𝑡 ∈ (0, ∞)  

ii 𝜏 (0)  =  0  

iii  (∞)  =  𝐼 . 

Definition 3.3: Let 𝜏 =  (𝑞𝑡)𝑡∈ℝ+  and 𝜎 = (𝑟𝑡)𝑡∈ℝ+  be two stopping times, then we define an order 𝜏 ≤  𝜎 if and 

only if 𝑟𝑡 ≤ 𝑞𝑡 for each t. 

Let ℘ denote the set of all finite partitions of [0, ∞]. Then for 𝑇 ∈  ℘ say 𝑇 =  {𝑡0, . . . , 𝑡𝑛}, we define an operator 

𝑃𝜏(𝑇) on 𝐻 as𝑃𝜏(𝑇) = ∑ (𝑞𝑡𝑖
− 𝑞𝑡𝑖−1)𝑃𝑡𝑖

𝑛
𝑖=1 = ∑ ∆𝑞𝑡𝑖

𝑃𝑡𝑖
.𝑛

𝑖=1  

 

Theorem 3: Let 𝜏 (𝑡)  = (𝑞𝑡) ∈ (𝑈𝑡)𝑃𝑟𝑜𝑗 be a stopping time. Then  

(i) 𝑃𝜏(𝑇) is an orthogonal projection, 

(ii) if 𝑇1, 𝑇2  ∈  ℘ with 𝑇2 a refinement of 𝑇2 then 𝑃𝜏(𝑇2) ≤  𝑃𝜏(𝑇1), 

(iii) if 𝜎 = (𝑟𝑡)𝑡∈ℝ+ is another stopping time with 𝜏 ≤  𝜎 then 𝑃𝜏(𝑇) ≤  𝑃 𝜎(𝑇) for 𝑇 ∈  ℘.  

 

Proof: See Theorem 2.3 of Barnett and Thakrar (1990). 

 

Remark: From the above theorem, 𝑃𝜏(𝑇) is a decreasing family of projections, so we take the infimum and we have 

the following definition. 

 

Definition 3.4:  Let  𝜏 (𝑡)  = (𝑞𝑡) ∈ (𝑈𝑡)𝑃𝑟𝑜𝑗 be a stopping time, we define the time projection at 𝜏 denoted by 𝑃𝜏, as  

𝑃𝜏 = inf ∑ ∆𝑞𝑡𝑖
𝑃𝑡𝑖

𝑛

𝑖=1
= inf 𝑃𝜏(𝑇)   

Theorem 4: For two stopping times 𝜏 , 𝜎 with 𝜏 ≤  𝜎, we have 𝑃𝜏 ≤  𝑃 𝜎 . 

 

Proof: we just take the limit in theorem 3(iii). 

 

4.0 Conclusion 

In this study of noncommutative probability theory, conditional expectation and quantum stopping times were 

studied in antisymmetric Fock space. The basic difference between this work and the existing one (Barnett et al., 

1993) is the use of Filtration of CAR Algebra. The study proved that the conditional expectation is a completely 
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positive composition mapping, also using the filtered CAR Algebra the manuscript introduces stopping time as a 

family of projections. The concept of time projection is also defined in the filtered CAR Algebra setting. 
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