Enhanced Biosorption of Heavy Metals from Aqueous Solution Using Chemically Modified Banana (Musa Sapientum)
Main Article Content
Abstract
Due to the growing concerns about heavy metal contamination and its devastating impact on the economy, human health and the environment, developing efficient approaches for removing such contaminants has become essential. Adsorption is a cost-effective technique for removing these pollutants. In this study, banana peel adsorbent was prepared and chemically activated with 0.3M HNO3. Carbonization was carried out at 290°C for 15 mins prior to activation. Physicochemical characterization of the adsorbent revealed that the pH, moisture content (%), ash content (%), volatile matter content (%), bulk density (g/mL) and iodine number mg/g) was 6.70 ± 0.15, 9.24 ± 1.15, 5.41 ± 1.22, 12.53 ± 1.71, 0.15 ± 0.02 and 654.10 ± 0.01 respectively. FTIR spectrum of the adsorbent showed peaks at 3205, 2922, 1565, 1371 and 1028 cm-1. The SEM characterization of adsorbent depicted a semi-regular and heterogeneous morphology, characterized by an abundance of pores with diverse forms and sizes. Metal solutions containing Pb2+, Cu2+, Fe2+ and Zn2+ ions were prepared and batch experiments conducted to evaluate the effect of pH, temperature, dosage, contact time and initial concentration of ions. The optimum conditions for the removal of the four metals were at pH of 6, temperature of 50°C, adsorbent dosage of 0.2 g, contact time of about 75 mins and concentration of 100 mg/L for adsorbent and residual metal concentration were determined using AAS. The physicochemical properties of these adsorbents as well as the initial and residual metal concentrations after treatment showed statistically significant differences at 95% confidence limit (p ≤ 0.05), demonstrating the effectiveness of the adsorbent and the treatment process. The results of the present work highlighted potential usage of agro-waste in removing heavy metal pollutants and as such be implemented in water purification processes as these wastes are not only effective and efficient but sustainable and cost-effective.
Article Details
References
Abdullah, N., Yusof, N., Lau, W. J., Jaafar, J., & Ismail, A. F. (2019). Recent trends of heavy metal removal from water/wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry, 76, 17-38. DOI: https://doi.org/10.1016/j.jiec.2019.03.029
Ahsan, H., Shahid, M., Imran, M., Mahmood, F., Siddique, M. H., Ali, H. M., Niazi, M. B., Hussain, S., Shahbaz, M., Ayyub, M., & Shahzad, T. (2022). Photocatalysis and adsorption kinetics of azo dyes by nanoparticles of nickel oxide and copper oxide and their nanocomposite in an aqueous medium. PeerJ, 10, e14358. DOI: https://doi.org/10.7717/peerj.14358
Akpomie, K. G., & Conradie, J. (2020). Banana peel as a biosorbent for the decontamination of water pollutants. A review. Environmental Chemistry Letters, 18(4), 1085-1112. DOI: https://doi.org/10.1007/s10311-020-00995-x
Akter, M., Rahman, F. B. A., Abedin, M. Z., & Kabir, S. F. (2021). Adsorption characteristics of banana peel in the removal of dyes from textile effluent. Textiles, 1(2), 361-375. DOI: https://doi.org/10.3390/textiles1020018
Ali, A., & Saeed, K. (2015). Decontamination of Cr (VI) and Mn (II) from aqueous media by untreated and chemically treated banana peel: a comparative study. Desalination and Water Treatment, 53(13), 3586-3591. DOI: https://doi.org/10.1080/19443994.2013.876669
Al-Sareji, O. J., Grmasha, R. A., Meiczinger, M., Al-Juboori, R. A., Somogyi, V., & Hashim, K. S. (2024). A sustainable banana peel activated carbon for removing pharmaceutical pollutants from different waters: Production, characterization, and application. Materials, 17(5), 1032. DOI: https://doi.org/10.3390/ma17051032
Annadurai, G., Juang, R. S., & Lee, D. J. (2003). Adsorption of heavy metals from water using banana and orange peels. Water Science and Technology, 47(1), 185-190. DOI: https://doi.org/10.2166/wst.2003.0049
Anwar, J., Shafique, U., Salman, M., Dar, A., & Anwar, S. (2010). Removal of Pb (II) and Cd (II) from water by adsorption on peels of banana. Bioresource Technology, 101(6), 1752-1755. DOI: https://doi.org/10.1016/j.biortech.2009.10.021
Ashfaq, A., Nadeem, R., Bibi, S., Rashid, U., Hanif, M. A., Jahan, N., Ashfaq, Z., Ahmed, Z., & Naz, M. (2021). Efficient adsorption of lead ions from synthetic wastewater using agrowaste-based mixed biomass (potato peels and banana peels). Water, 13(23), 3344. DOI: https://doi.org/10.3390/w13233344
Basirun, A. A., Othman, A. R., Yasid, N. A., Shukor, M. Y. A., & Khayat, M. E. (2023). A green approach of utilising banana peel (Musa paradisiaca) as adsorbent precursor for an anionic dye removal: kinetic, isotherm and thermodynamics analysis. Processes, 11(6), 1611. DOI: https://doi.org/10.3390/pr11061611
Bhaumik, R., & Mondal, N. K. (2016). Optimizing adsorption of fluoride from water by modified banana peel dust using response surface modelling approach. Applied Water Science, 6(2), 115-135. DOI: https://doi.org/10.1007/s13201-014-0211-9
Chafidz, A., Astuti, W., Hartanto, D., Mutia, A. S., & Sari, P. R. (2018). Preparation of activated carbon from banana peel waste for reducing air pollutant from motorcycle muffler. In MATEC Web of Conferences, 154, 01021. EDP Sciences. DOI: https://doi.org/10.1051/matecconf/201815401021
Chopra, A. K., & Pathak, C. (2010). Biosorption technology for removal of metallic pollutants-An overview. Journal of Applied and Natural Science, 2(2), 318–329. DOI: https://doi.org/10.31018/jans.v2i2.142
Dermawan, D., Satriavi, A. D., Nurhidayati, D. I., Mujiyanti, D. R., Novitrie, N. A., Mayangsari, N. E., & Setiawan, A. (2025). Effect of non-thermal plasma on biochar properties from sugarcane bagasse and banana peel. Jurnal Presipitasi: Media Komunikasi dan Pengembangan Teknik Lingkungan, 22(2), 349-359. DOI: https://doi.org/10.14710/presipitasi.v22i2.349-359
Deshmukh, P. D., Khadse, G. K., Shinde, V. M., & Labhasetwar, P. (2017). Cadmium removal from aqueous solutions using dried banana peels as an adsorbent: kinetics and equilibrium modeling. Journal of Bioremediation and Biodegradation, 8(3), 395. DOI: https://doi.org/10.4172/2155-6199.1000395
Egbosiuba, T. C., Tran, T. Q., Arole, K., Zhang, Y., Enyoh, C. E., Mustapha, S., Tijani, J. O., Yadav, V. K., Anadebe, V. C., & Abdulkareem, A. S. (2024). Biotreatment of clay-based adsorbent to eliminate arsenic (V) ions and malachite green from wastewater: Isotherm, kinetics, thermodynamics, reusability and mechanism. Results in Engineering, 22, 102073. DOI: https://doi.org/10.1016/j.rineng.2024.102073
Ekpete, O. A., Horsfall, M., & Tarawou, T. (2010b). Potential of fluted pumpkin and commercial activated carbons for phenol removal in aqueous systems. ARPN Journal of Engineering and Applied Sciences, 5(9), 39-47. DOI: https://doi.org/10.4314/ijbcs.v5i3.72243
Ekpete, O. A., Kpee, F., Amadi, J. C., & Rotimi, R. B. (2010a). Adsorption of chromium (VI) and zinc (II) ions on the skin of orange peels (Citrus sinensis). Journal of Nepal Chemical Society, 26, 31-39. DOI: https://doi.org/10.3126/jncs.v26i0.3628
Ekpete, O. A., Marcus, A. C., & Osi, V. (2017). Preparation and characterization of activated carbon obtained from plantain (Musa paradisiaca) fruit stem. Journal of Chemistry, 2017(1), 8635615. DOI: https://doi.org/10.1155/2017/8635615
Emaga, T. H., Andrianaivo, R. H., Wathelet, B., Tchango, J. T., & Paquot, M. (2007). Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chemistry, 103(2), 590-600. DOI: https://doi.org/10.1016/j.foodchem.2006.09.006
Harshala, K., & Wagh, N. D. (2022). Use of agricultural waste-based biosorbents for the removal of heavy metals from aqueous solution: A review. Nature Environment and Pollution Technology, 21(3), 1003–1014. DOI: https://doi.org/10.46488/NEPT.2022.v21i03.007
Hossain, M. A., Ngo, H. H., Guo, W. S., & Nguyen, T. V. (2012). Biosorption of Cu (II) from water by banana peel based biosorbent: experiments and models of adsorption and desorption. Journal of Water Sustainability, 2(1), 87-104.
Hussain, O. A., Hathout, A. S., Abdel-Mobdy, Y. E., Rashed, M. M., Rahim, E. A., & Fouzy, A. S. M. (2023). Preparation and characterization of activated carbon from agricultural wastes and their ability to remove chlorpyrifos from water. Toxicology Reports, 10, 146-154. DOI: https://doi.org/10.1016/j.toxrep.2023.01.011
Ince, M., Ince, O. K., Yonten, V., & Karaaslan, N. M. (2016). Nickel, lead, and cadmium removal using a low-cost adsorbent-banana peel. Atomic Spectroscopy, 37(3), 125-130. DOI: https://doi.org/10.46770/AS.2016.03.007
Jolly, F. A., Abedin, M. Z., & Muyen, Z. (2022). Wastewater treatment using coconut fibre ash as an adsorbent for removal of heavy metals. Archives of Agriculture and Environmental Science, 7(2), 192-198. DOI: https://doi.org/10.26832/24566632.2022.070207
Kabenge, I., Omulo, G., Banadda, N., Seay, J., Zziwa, A., & Kiggundu, N. (2018). Characterization of banana peels wastes as potential slow pyrolysis feedstock. Journal of Sustainable Development, 11(2), 1-14. DOI: https://doi.org/10.5539/jsd.v11n2p14
Khairiah, K., Frida, E., Sebayang, K., Sinuhaji, P., & Humaidi, S. (2021). Data on characterization, model, and adsorption rate of banana peel activated carbon (Musa acuminata) for adsorbents of various heavy metals (Mn, Pb, Zn, Fe). Data in Brief, 39, 107611. DOI: https://doi.org/10.1016/j.dib.2021.107611
Khattari, A., Bensalah, J., Habsaoui, A., Safi, Z., Wazzan, N., Berisha, A., Hsini, A., Tahaikt, M., & Elmidaoui, A. (2024). Use of a novel low-cost adsorbent PANI@ Clay composite to effectively remove OG dye from wastewater: insights from isotherm kinetic and thermodynamic modeling, investigation using density functional theory DFT/MC/MD. Materials Science and Engineering: B, 302, 117201. DOI: https://doi.org/10.1016/j.mseb.2024.117201
Li, Y., Liu, J., Yuan, Q., Tang, H., Yu, F., & Lv, X. (2016). A green adsorbent derived from banana peel for highly effective removal of heavy metal ions from water. RSC Advances, 6(51), 45041-45048. DOI: https://doi.org/10.1039/C6RA07460J
Mohapatra, D., Mishra, S., & Sutar, N. (2010). Banana and its by-product utilisation: An overview. Journal of Scientific and Industrial Research, 69(5), 323-329.
Mondal, N. K., & Kar, S. (2018). Potentiality of banana peel for removal of Congo red dye from aqueous solution: isotherm, kinetics and thermodynamics studies. Applied Water Science, 8(6), 157. DOI: https://doi.org/10.1007/s13201-018-0811-x
Nadew, T. T., Keana, M., Sisay, T., Getye, B., & Habtu, N. G. (2023). Synthesis of activated carbon from banana peels for dye removal of an aqueous solution in textile industries: optimization, kinetics, and isotherm aspects. Water Practice and Technology, 18(4), 947-966. DOI: https://doi.org/10.2166/wpt.2023.042
Napitupulu, M., Al-Gifary, M., & Walanda, D. K. (2019). Adsorption of Cd (II) by carbon prepared from peels and stems of kepok banana (Musa paradisiaca formatypica). Cellulose Chemistry and Technology, 53(3-4), 387-394. DOI: https://doi.org/10.35812/CelluloseChemTechnol.2019.53.39
Nathan, R. J., Martin, C. E., Barr, D., & Rosengren, R. J. (2021). Simultaneous removal of heavy metals from drinking water by banana, orange and potato peel beads: a study of biosorption kinetics. Applied Water Science, 11(7), 116. DOI: https://doi.org/10.1007/s13201-021-01457-7
Pathak, P. D., Mandavgane, S. A., & Kulkarni, B. D. (2017). Fruit peel waste: Characterization and its potential uses. Current Science, 13(3),444-454. DOI: https://doi.org/10.18520/cs/v113/i03/444-454
Romello, F. D., Rani, A., & Manohar, R. S. (2016). Chemical composition of some selected fruit peels. European Journal of Food Science and Technology, 4(4), 12-21.
Rosenkranz, M., & Schnitzler, J. P. (2016). Plant volatiles. eLS, 1-9. DOI: https://doi.org/10.1002/9780470015902.a0000910.pub3
Sugumaran, P., Susan, V. P., Ravichandran, P., & Seshadri, S. (2012). Production and characterization of activated carbon from banana empty fruit bunch and Delonix regia fruit pod. Journal of Sustainable Energy & Environment, 3(3), 125-132
Shrestha, S. (2016). Chemical, structural and elemental characterization of biosorbents using FE-SEM, SEM-EDX, XRD/XRPD and ATR-FTIR techniques. Journal of Chemical Engineering and Process Technology, 7(3), 1-11. DOI: https://doi.org/10.4172/2157-7048.1000295
Vieira, M. E., de Almeida Neto, A. F., Da Silva, M. G. C., Carneiro, C. N., & Melo Filho, A. A. (2014). Adsorption of lead and copper ions from aqueous effluents on rice husk ash in a dynamic system. Brazilian Journal of Chemical Engineering, 31, 519-529. DOI: https://doi.org/10.1590/0104-6632.20140312s00002103
Yunus, Z. M., Asman, S., & Mohd Ali, N. A. (2020). Investigation of absorbent, antioxidant and thickening agent properties of tropical fruit peels. Journal of Sustainability Science and Management, 15(8), 63-79. DOI: https://doi.org/10.46754/jssm.2020.12.006
Zamri, M. Z. A., Yahya, N. Y., Ramli, R. S., Ngadi, N., & Widia, M. (2019). Characterization of banana peels waste adsorbent for preliminary study of methylene blue removal from aqueous solution. In IOP Conference Series: Materials Science and Engineering, 697(1), 012033. IOP Publishing. DOI: https://doi.org/10.1088/1757-899X/697/1/012033