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Abstract 

The stiff differential equation occurs in almost every field of science. These systems are encountered in electric 

circuits, mathematical biology, chemical reaction process, meteorology, mechanics and vibrations. The use of 

normal numerical approaches to analyse and predict such systems requires more time and memory, and getting 

an exact solution is utterly uneconomical and unreliable. When dealing with a stiff system using numerical 

approaches, stability problem emerges. In getting over this restriction, the Aboodh transform is suggested as one 

of the convenient tools to obtain closed-form solutions for linear and nonlinear stiff ordinary differential equations 

due to it mathematical simplicity. In this paper, we considered some examples to demonstrate the simplicity and 

potency of the Aboodh transform method in providing an exact solution to the linear stiff ordinary differential 

equation and comparing the answer with the Laplace transform method.                                                                                                                                
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Introduction 

The stiff differential equation occurs in almost every field and in real–world problems.  These systems are 

encountered in electric circuits, mathematical biology, chemical reaction process, meteorology, mechanics and 

vibrations. Stiff initial value problems for ordinary differential equations arise in Fluid mechanics elasticity, 

electrical networks, chemical reactions and many other areas of physical importance (Joseph & Marley, 1977). A 

Stiff equation is a differential equation for which certain numerical methods for solving the equation are 

numerically unstable unless the step size is taken to be extremely small. It has proven difficult to formulate a 

precise definition of Stiffness, but the main idea is that the equation includes some terms that can lead to rapid 

variation in the solution ( Ghassan, 2019). Many numerical and analytical methods have been developed, modified 

and applied to Stiff ordinary differential equations. These techniques include Variational Iteration Method 

(Olayiwola , 2018), the decomposition method (Mahood et al., 2005), the Modified Homotopy perturbation 

method (Aminikhah, 2011 ), A-stable Block Method (ASBM) (Muhammed Izzat et al.,  2014),  Backward Euler 

method (BEM) ( Sumithra & Tamilselvan, 2015), Additive Runge Kutta (Cooper & Ali, 1983), Patches Method 

(Brydon & Marder , 1998), Implicit Trapezoidal Method (Sumithra & Tamilselvan, 2015), Laplace homotopy 

analysis method (Chong , Lem & Wong, 2015)  and many more modified methods. Analyzing and solving the 

stiff ODE with conventional numerical techniques require more time and memory combined with an 

uneconomical and uncertain accurate solution, hence the need for methods to take care of the setbacks of the 

conventional methods. Therefore, the motivation of this paper is to present the Aboodh transform as an effective 

and efficient method for solving linear stiff ordinary differential equations in no time. 

 

Materials and Methods 

Some important functions in the Aboodh and Laplace transform 
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Table 1: The Aboodh and Laplace Transform of Functions. 
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Application of Aboodh Transform 

Test 1: Let us consider the first-order differential equation of the form 

,mbxayy p      ,0 cy    .0 nx   

where n  is an integer (i.e. positive integer) and pmcba ,,,,  are constants. 

Taking the Aboodh transform, we have 
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By taking the inverse Aboodh transform, we arrived at the desired result 

Test 2: Let us consider the first-order differential equation of the form 

,cossin qxdkxbayy      ,0 cy    .0 nx   

where n  is an integer (i.e. positive integer) and qdcba ,,,, are constants. 

Taking the Aboodh transform, we have 

       qxdAkxbAayAyA cossin   
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Application of Laplace Transform 

Test 1: Let us consider the first-order differential equation of the form 

,mbxayy p      ,0 cy    .0 nx   

where is n an integer (i.e. positive integer) and pmcba ,,,,  are constants. 

Taking the Laplace transform we have 
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Test 2: Let us consider the first-order differential equation of the form 

,cossin qxdkxbayy      ,0 cy    .0 nx   

where is n an integer (i.e. positive integer) and qdcba ,,,,  are constants. 

Taking the Laplace transform, we have 
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Result 

Example 1 

Solve   23 3100 xxyy       00 y  

(I) Using Aboodh transform 

Recall equation (1) 
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   by taking inverse Aboodh transform of A(y), the solution gives 
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(II) Using Laplace transform 

 Recall equation (3)    
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Taking the inverse Laplace transform of L(y), the result gives 
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Example 2 

Solve   1100  xyy      10 y  

1100100  xyy     

(I) Using Aboodh transform 
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Substituting the above values, we have  
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By taking the inverse Aboodh transform of A(y), the result gives 

  xexxy 100  

(II) Using Laplace transform 
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Substituting the above values, we have  
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Taking the inverse Laplace transform of L(y), we have  

  xexxy 100  

Example 3 

Solve xxyy cossin2020       10 y  

(I) Using Aboodh transform 

 Recall equation (2) 
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 
vvvvvvvv

vv
yA

20

11

2020

21
22234

2










  

By taking inverse Aboodh transform 

  xexxy 20sin   

(II) Using Laplace transform 

Recall equation (4) 
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Substituting the above values, we have  
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Taking the inverse Laplace transform of L(y), we have  

  xexxy 20sin   

Conclusion 

In this paper, we made use of the Aboodh transform method in a convenient way similar to the Laplace transform 

to solve stiff differential equations with constant coefficients. Aboodh transform is effective in providing exact 

solutions to boundary value problems for stiff ordinary differential equations. The method has proven to be 

effective in providing exact solutions to stiff ordinary differential equations. 
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