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Abstract 

The power of Heptagonal Spherical two-factor second-order designs for a cubic model more than its quadratic 

counterpart based on the sum of square errors was presented. This study used spherical second-order designs such 

as; Equiradial designs of the radius or axial distance of 1.0 and 1.414 and Central Composite Designs of Face 

centred, Inscribed and Circumscribed designs. The Inscribed is a radius of 1.0  and Circumscribed CCD is of a 

radius of 1.414. These designs were studied with the addition of only one centre point. It was observed that all the 

designs studied recorded a minimum sum of square errors when the shape is a pentagon, and this occurred only 

for the quadratic model. The sum of the square error value of Face centred CCD of zero (0) is misleading, since 

nothing is done humanly that is free of error. The Face centred CCD was found to behave differently from the 

other designs, this could be because it is not a spherical design. As the shape of these designs increases the sum 

of square errors increases indiscriminately. The study revealed that all the designs except Face Centered CCD 

gave the minimum sum of square error for the cubic model, while Face Centered CCD gave a singular matrix for 

the cubic model in all the shapes. The axial distance affects the sum of square errors for the quadratic model, that 

is to say, the sum of square errors for an axial distance of 1.0 is minimum, while for an axial distance of 1.414, 

the sum of square errors is maximized. The study proposed the cubic model as a robust model for second-order 

designs when the shape is Heptagon (n=7) and the quadratic model as a robust model for second-order designs 

with a radius or axial distance of 1.0. 

Keywords: Spherical Design, Heptagonal Design, Hexagonal Design, Cubic Model. Second-Order Design. 

 

Introduction  

A Second-order Design arises when there is a lack of fit in the first-order design initially applied. That is to say, 

there is an indication that the current region has curvature and is near the optimum. At this point augmentation of 

the first-order design is carried out. The augmentation is by the addition of axial points and a centre point which 

yields the Second-order design. There are several types of second-order designs and they include; Equiradial 

Designs, Central Composite Designs (Circumscribed, Inscribed and Face Centered), 3𝐾 Factorial Designs (Full 

Factorial and Fractional Factorial Designs),  Doehlert Designs, Box Behnken Designs. The Central Composite 

Design, Doehlert Design and the Box Behnken Design can be modelled as two or three factors Designs, whereas 

Equiradial Design can only be modelled as a two-factor Design, while 3𝐾 Design can be modelled only as a three-

factor Design. Central Composite Design can be made to be Spherical according to Iwundu and Onu (2017), by 

taking the square root of the axial or the star point 𝛼 such as 𝛼 =√𝑘, where k is equal to the number of predictors 

in the model. (Chigbu et al., 2009). According to Onu et al. (2022), the Equiradial Design has its points found on 

a common spherical region, while Myer et al. (1989) said it is a special and interesting design that is always in 

two factors. Doehlert Design, according to Sergio et al. (2004) is a useful and alternative experimental design for 

second-order models. It is known as a uniform shell design proposed by Doehlert in 1970. This Design offer 

advantages relative to central composite and Box–Behnken designs. They need fewer experimental runs, which 

are more efficient and can move through the experimental domain. The Doehlert design defines a spherical 
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experimental field and it talks about uniformity in space filling. Though the matrix of Doehlert Design is neither 

orthogonal nor rotatable.  

 

Equiradial design is a second-order design that can be alternatively used in place of some other Second-Order 

Designs, such as the Central Composite Designs (Inscribed, Circumscribed and Face Centered) and the 

3𝑘complete factorial designs. (Iwundu & Onu, 2017; Iwundu 2016a). The Design is used as an alternative Second-

Order Design to the popular Central Composite Designs. It consists of sets of points arranged such that each point 

in a set has an equal distance from the Design Centre. (Khuri & Cornell, 1996; Iwundu 2016b, Iwundu & Onu, 

2017). Central Composite Design is a second-order design developed by Box and Wilson in 1951 which can also 

be called Box-Wilson design. This design is seen as an alternative to the complete 3𝑘 design. It was developed by 

the combinations of the 2𝑘factorial or fractional factorial design points having factor level of -1, 1 with axial 

points of {(±1, 0,   .  .  .  , 0), (0, ±1,   .  .  .  ,0),   .  .  .  , (0, 0,   .  .  .  , ±1)} and then the centre point(s) c given as (0, 

0,  .  .  .  , 0). This process is called the augmentation of first-order design. The factorial portion as stated above 

contains the 2𝑘factorial points or the fractions of it, while the axial portion contains the 2𝑘 design points properly 

arranged such that two points are selected on each axis of the explanatory variables with an axial distance of 𝛼 

taken from the design centre, (Khuri & Mukhopadhyay, 2010; Sankha, 2021). While fitting quadratic response 

models, the CCD is a better alternative to the full factorial three-level design because its performance is 

comparable at a lower cost. (Myer et al., 2009). 

 

Doehlert Design is an alternative and very useful experimental design for second-order models. It is a uniform 

shell design proposed in the year 1970 for k=2 factors by Doehlert. This design begins from an equilateral triangle 

of lengths 1. To construct a regular hexagon (six-sided shape) with 1 centre point (0, 0), then N=n+1 centre point, 

where n= the radial point obtain from the shape of the design, hence, n=6, making N=7 sized design. The design 

points of a Doehlert design are; (1,0), (0.5,0.866), (0,0), (-0.5,0.866), (-1,0), (-0.5,-0.866) and (0.5,-0.866). The 

points on the hexagon, which is to say the 6 outer points lie on a circle of radius 1. A better application of the 

cubic model in scientific works, especially in Statistics has not been clearly stated in the literature. Emphasis has 

been on the quadratic model   

 

Statement of the Problem 

The importance of the shapes of second-order Designs to the estimation of parameters that is judged by the sum 

of square errors of the Designs has not been popular in the literature. Attention was drawn to this because, it was 

observed that second-order designs are of various shapes, ranging from Pentagon (n=5), Hexagon (n=6), Heptagon 

(n=7), Octagon (n=8), Nonagon (n=9) and Decagon (n=10), etc. it is important to understand how these Shapes 

affect Equiradial Design both of axial distance or radius of 1.0 and 1.414 and Central Composite Designs of 

Inscribed (1.0) and Circumscribed (1.414). The study will investigate the effects of these differences in shapes 

using both quadratic and cubic models. It will propose the most appropriate models for some designs.  It is also 

obvious that a better application of the cubic model in scientific works, especially in Statistics has not been clearly 

stated in the literature. Emphasis has been on the quadratic model, as a result, this work is designed to bring out 

the importance of the cubic model for particularized second-order design as regards the shape of the designs. 

Though, some notable Researchers have worked on these second-order designs (Chigbu et al. 2009; Verdooren, 

2017; Iwundu, 2016a & b; Onu et al., 2021). Just recently Onu et al. (2022) studied the Estimation of Parameters 

and Optimality of Second-Order Spherical Designs Using Quadratic Function Relative to Non-Spherical Face 

centred CCD. This study compared the parameters of Equiradial Designs of the radius of 1.0 and 1.414 and Central 

Composite Designs Inscribed and Circumscribed as spherical Designs with the Face Centered Central Composite 

Design as a non-spherical Design based on their model parameters and optimality, but the emphasis was not placed 

on the effect of the shapes of this designs on the sum of square errors of the studied designs. It was against this 

backdrop this work was presented. 

 

Materials and Method 
The design size is applied as seen 
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𝑝 ≤ 𝑁 ≤
1

2
𝑃(𝑃 + 1) + 1  

 

This was expressed in Iwundu and Onu (2017), Iwundu (2016a), Box and Wilson (1951) and Farombi et al. (2018). 

Where p represents the number of model parameters and N represents the design size.  

The quadratic model to be employed is given by Onu et al. (2021) and Onu et al. (2022) 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥12 + 𝛽11𝛽1
2 + 𝛽22𝑥2

2 + ԑ      (1) 

 

The design points of equiradial design are given as 

 

𝑥1 = 𝜌𝐶𝑂𝑆 (𝜃 +
2𝛱𝑈

𝑛
) and 𝑥2 = 𝜌𝑆𝑖𝑛 (𝜃 +

2𝛱𝑈

𝑛
); 𝑢 = 0, 1, 2,   .  .  . 𝑛 − 1    (2) 

 

is used in generating the Equiradial Design points, in which 𝑥1 represents the values in the first row of the design 

𝐷5 and the 𝑥2 represents the values in the second row of the design 𝐷5, as seen in Khuri and Cornel, (1996) and 

the cubic model is given as seen 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥12 + 𝛽11𝛽1
2 + 𝛽22𝑥2

2 + 𝛽111𝛽1
3 + 𝛽222𝑥2

3 + ԑ                  (3) 

 

which is a Cubic Model having all the variables represent.  

 

Obtaining the parameters of the second-order designs with 𝒄 = 𝟏 − 𝟏𝟎 centre points for Quadratic and Cubic 

Models. 

According to Khuri and Mukhopadyay (2010), Response Surface Methodology is mathematically defined as 

 

𝑦 = 𝜙(𝑥1, 𝑥2,   .  .  .  , 𝑥𝑛 , 𝜷)                           (4) 

 

 

It is a general form of a statistical model. The Quadratic and Cubic Models having all the parameters represented 

will be applied in this study and the Quadratic Model in (3.1) is given as seen in Iwundu (2016a), and Iwundu and 

Onu (2017) generally as seen 

 

𝑦 = 𝛽0 + (∑ 𝛽𝑖𝑋𝑖) + (∑ 𝛽𝑗𝑋𝑗) + (∑ ∑ 𝛽𝑖𝑗
𝑘
𝑖<𝑗

𝑘
𝑖=1 𝑋𝑖𝑋𝑗) + (∑ 𝛽𝑖𝑖𝑋𝑖

2) + (∑ 𝛽𝑗𝑗
𝑘
𝑗=1 𝑋𝑖

2) + 𝜀𝑘
𝑖=1

𝑘
𝑗=1

𝑘
𝑖=1  (5) 

and the Cubic Model in general form is given as 

 

𝑦 = 𝛽0 + (∑ 𝛽𝑖𝑋𝑖) + (∑ 𝛽𝑗𝑋𝑗) + (∑ ∑ 𝛽𝑖𝑗
𝑘
𝑖𝑗 𝑋𝑖

𝑘
𝑖<𝑗 𝑋𝑗) + (∑ 𝛽𝑖𝑖𝑋𝑖

2) + (∑ 𝛽𝑗𝑗
𝑘
𝑗=1 𝑋𝑖

2) + ∑ 𝛽𝑖𝑖𝑖𝑋𝑖
3𝑘

𝑖=1 +𝑘
𝑖=1

𝑘
𝑗=1

𝑘
𝑖=1

∑ 𝛽𝑗𝑗𝑗𝑋𝑗
3𝑘

𝑗=1 𝜀                                       (6) 

 

which is written in a reduced form to suit the study and it can be presented in matrix form as 

𝑦 = 𝑋𝛽 + 𝜀           (7) 

 

where 𝑋 is an 𝑁 × 𝑃 matrix, 𝑦 is an 𝑁 × 1 vector of observed responses, 𝛃 is the 𝑃 × 1vector of unknown 

parameters and 𝛆~𝑁(0, 𝛿2) is the error term which is randomly distributed. From (1) 𝜙 is not known and 

represents a real functional relationship between the response y and the explanatory variables (𝑥1, 𝑥2,   .  .  .  ,  𝑥𝑛).  

(Oyejola & Nwanya (2015). 

 

The models in (1) and (3) will be applied throughout this study in obtaining Design Matrices for both Equiradial 

Designs for radius ρ=1.0 and 1.414 and Central Composite Designs, Face Centered, Inscribed, Circumscribed and 

Doehlert Design for two variables. The parameters of these models will be estimated alongside their Alphabetic 

Optimality Criteria.  The least-square equation which will be used in the estimation of the parameters for both 

models is given (Kutner et al., 2004; Onu et al., 2021; 2022; Verdooren, 2017; Ukaegbu & Chigbu, 2015). 
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�̂� = (
𝑋′𝑋

𝑁
)−1𝑋′𝑌                          (8) 

 

Where �̂� is an N× 1 vector, given as (𝛽0, 𝛽1,   𝛽2,   𝛽12,   𝛽11,   𝛽22)′ and (
𝑋′𝑋

𝑁
)−1 is the inverse of the normalized 

information matrix and N is the number of Design size. 

The total number of design sizes varies from one design to the other, for instance, the total number of design sizes 

(points) for a Central Composite Design is determined by the formula 

 

2𝑘 + 2𝑘 + 𝑐           (9) 

where k is the number of variables and c is the number of centre points. The total number of design size points for 

Doehlert Design is given as  

 

2𝑘 + 𝑘 + 𝑐           (10) 

 

The Design size or point for Equiradial Design is determined by the formula 

 

𝑁 = 𝑛 + 𝑐                                  (11) 

 

Where n is the number of points in the design and c is the centre point. The design sets of points are obtained for 

Equiradial Design as 

𝐷5 =   

1 0 

0.309 0.951 

-0.81 0.587 

-0.808 -0.589 

0.311 -0.95 

 

This was obtained from (2) as seen in Khuri and Cornel (1996) and Iwundu and Onu (2017). With the addition of 

one central point, gives the Design measure given as 

𝜉6 =  
1 0 

0.309 0.951 

-0.81 0.587 

-0.808 -0.589 

0.311 -0.95 

0 0 

 

 

The Doehlert Design is given as 

D= 

1 0 

0.5 0.866 

-0.5 0.866 

-1 0 

-0.5 -0.866 

0.5 -0.866 
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The Design measure is 

𝜉7 =  
1 0 

0.5 0.866 

-0.5 0.866 

-1 0 

-0.5 -0.866 

0.5 -0.866 

0 0 

 

These points were obtained as follows 

𝑥1 𝑥2 𝑥1 𝑥2 
Cos(0) Sin(0)       1        0 

Cos(
𝜋

3
) Sin(

𝜋

3
)        0.5    0.866 

Cos(
2𝜋

3
) Sin(

2𝜋

3
)    - 0.5   0.866 

Cos(𝜋) Sin(𝜋)     -1      0 

Cos(
4𝜋

3
) Sin(

4𝜋

3
)     -0.5   -0.866 

Cos(
5𝜋

3
) Sin(

5𝜋

3
)     0.5  -0.866 

       0       0      0      0 

The above are put in matrix form from equations 1 and 3. 

 

Results  

Variance-Covariance Matrix for Equiradial Design and Central Composite Design Face Centered, Inscribed and 

Circumscribed for n=5 for Quadratic response function 

Variance-Covariance Matrix for Equiradial Design for ρ=1.0 and centre point ϲ=1  

 

 

The variance-covariance matrix is as shown;  

          Ꞃ−1 =  

     6   6     -0.003      -0.001     -0.007      -5.997     -6.003 

-   0.003      2 .399      0.001     0.003      0.002     0.003 

-   0.001      0.001      2.402     -0.003      0.003      0 

-   0.007      0.003     -0.003      9.590      0.017     0.001 

-   5.997      0.002     0.003      0.017      9.597     4.795 

-   6.003      0.003       0         0.001     4.795      9.614 

      

  

Using the above Variance- Covariance Matrix  Ꞃ−1 obtained from Equiradial Designs with ρ=1.0 and ϲ=1 centre 

point from a Second-Order Model given as 

 

𝑦(𝑥1 , 𝑥2) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + ᶓ   

           

We proceed to obtain the estimates of the model parameters, 𝛽0, 𝛽1, 𝛽2, 𝛽12, 𝛽11,  𝛽22 respectively using the formula 

 

β =  Ꞃ−1𝑋′𝑦  
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where 𝑦 is the response or the output variable and 𝑋 is the Design Matrix generated from the Design points of the 

Equiradial Designs, the Central Composite Designs or the Doehlert Design the application of equation (1) gives 

 

 

 𝑦6𝑋1 = 

    

 

 

    20 

    50 

    40 

    80 

   30 

   70 

    

   

and  

 

 

 

𝑋′ is the transpose of the design matrix 𝑥 given as; 

𝑋′ = 

        1       1        1        1           1      1 

        1                                                     0.309     -0.81     -0.808     0.311      0 

        0     0.951     0.587     -0.589     -0.95      0 

        0     0.294     -0.475     0.476     -0.295      0 

        1     0.095     0.656     0.653     0.097      0 

        0     0.904     0.345     0.347     0.903      0 

 

 

To obtain  𝑋′𝑦 we multiply 𝑋′ by 𝑦 as shown; 

𝑋′𝑦 = 

      1        1        1      1        1       1     20 

      1                  0.309      -0.81     -0.808      0.311       0         50 

      0      0.951      0.587     -0.589      -0.95       0     40 

      0      0.294     -0.475      0.476     -0.295       0        80 

      1     0.095      0.656      0.653      0.097       0         30 

      0     0.904      0.345      0.347      0.903       0       70 

 

 

 

 

= 

 

 

 

 

 

 

 

 

      290 

    -52.26 

    -4.59 

    24.93 

    104.3 

   113.85 
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Applying equation (1) to get the parameters of the second-order model, gives; 

        𝛽 =    Ꞃ−1𝑋′𝑦 =     

        6      -0.003      -0.001      -0.007     -5.997     -6.003      290 

    -0.003       2.399       0.001      0.003      0.002      0.003     -52.26 

     -0.001       0.001      2.402      -0.003      0.003        0          4.59 

     -0.007       0.003     -0.003       9.590      0.017      0.001      24.93 

     -5.997       0.002      0.003       0.017      9.597      4.795     104.3 

     -6.003       0.003        0      0.001      4.795       9.614     113.85 

 

𝛽0      420.024 

𝛽1        -125.618 

𝛽2 =     -11.124 

𝛽12         238.824 

𝛽11        -174.288 

𝛽22      -137.507 

 

�̂� = 420.024 − 125.618𝑥1 − 11.124𝑥2 + 238.824𝑥1𝑥2 − 174.288𝑥1
2 − 137.507 +  ᶓ 

Continuing in this process, for both quadratic and cubic models for 1 centre point, we obtained the summarized 

results in the table below. 

 

Table 1: Comparison of the Sum of Square Errors and Variance Estimates for Quadratic and Cubic Models 

with 1 Centre point 

Discussion of Results 

Equiradial Design with axial distance or radius of 1.0. It was observed from the summarized table 1 that for an 

equiradial design with a pentagon shape, (n=5) with 1 centre point for the quadratic model, the sum of square 

Quadratic model Cubic model 

Shapes 

+1 nc 
∑ ԑ𝟐 Det(M) VAR DESIGN ∑ ԑ𝟐 Det(M) VAR 

5+1 

6+1 

7+1 

8+1 

0.0031 

2011.90 

1959.87 

1548.93 

0.00026 

0.00019 

0.00025 

0.00024 

0.00052 

287.41 

244.98 

172.10 

Equi, 1.0 

Equi, 1.0 

Equi, 1.0 

Equi, 1.0 

602.32 

117.48 

0.0059 

1178.77 

1.25e-37 

1.38e-22 

1.87e-7 

1.86e-7 

100.39 

19.58 

0.00084 

130.97 

5+1 

6+1 

7+1 

8+1 

0.069 

161.63 

813.19 

1894.72 

0.00012 

0.00014 

0.00017 

0.00022 

0.012 

23.09 

101.65 

210.52 

Ccd Insc  

Ccd Insc  

Ccd Insc  

Ccd Insc  

16191.27 

5165.25 

3.8e-11 

2537.95 

3.93e-38 

1.52e-22 

1.87e-7 

1.82e-7 

2698.55 

737.89 

4.8e-12 

281.99 

5+1 

6+1 

7+1 

8+1 

0 

481.67 

438 

987 

0.0055 

0.0082 

0.0088 

0.0098 

0 

68.81 

54.8 

109.7 

Ccd Fac 

Ccd Fac 

Ccd Fac 

Ccd Fac 

Singular 

Singular 

Singular 

singular 

Singular 

Singular 

Singular 

Singular 

 

5+1 

6+1 

7+1 

8+1 

2250.79 

2073.47 

1965.95 

3541.97 

0.067 

0.066 

0.065 

0.062 

375 

296.21 

245.74 

393.55 

Equi, 1.414 

Equi, 1.414 

Equi, 1.414 

Equi, 1.414 

996.57 

60.36 

2.37 

2562.99 

-9.07e-33 

1.38e-22 

0.0031 

0.0030 

166.10 

8.62 

0.30 

284.78 

5+1 

6+1 

7+1 

8+1 

1275.26 

4096.63 

1626.44 

1722.68 

0.032 

0.038 

0.047 

0.062 

212.54 

585.23 

203.31 

191.41 

Ccd Cir 

Ccd Cir 

Ccd Cir 

Ccd Cir 

1747.18 

419.71 

0.000058 

740.87 

2.44e-33 

-1.73e-18 

9.72e-4 

0.0030 

291.20 

59.96 

0.0000073 

82.32 
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error is minimized with the value of 0.0031 and the variance of 0.0052, while for the cubic model for same 

orientation, the sum of square error was found to be 602.32 with the variance of 100.39. The sum of square error 

for a quadratic model for equiradial design with hexagonal shape (n=6) with 1 centre point is maximized with the 

value of 2011.90 and variance of 287.41, while for the cubic model for the same shape, the sum of square error 

decreased from what was obtained in the pentagonal design with a percentage difference of 80.50. For a 

heptagonal equiradial design (n=7) for the quadratic model, the sum of square error decreased from what was 

obtained for the hexagonal design with the difference of 2.59%, while the heptagonal design for the cubic model 

gave the sum of square error of 0.0059 with the variance of 0.00084. 

 

Inscribed Central Composite Design with axial distance or radius of 1.0. The Inscribed CCD for pentagon has a 

sum of square error of 0.069 with 1 centre point for the quadratic model, while that of the cubic model was found 

to be 16191.27.  As the shape of this Inscribed CCD for the quadratic model increases for 1 centre point, the sum 

of square error also increases, likewise their variances. The sum of square error for Inscribed CCD for the cubic 

model decreases as the shape of the design increases, but it decreases to the minimum value for the heptagonal 

shape (n=7) with the value of 3.8e-11. 

 

Face Centered Central Composite Design with axial distance or radius of 1.0.  The face-centred CCD gave the 

sum of square error equal to zero (0) for a quadratic model for 1 centre point and the value of the sum of square 

error increased for a hexagon with 1 centre point, decreased for a heptagon and increased for an octagon (n=8) 

with 1 centre point, while for the cubic model, all the shapes of the designs gave singular matrix. 

 

Equiradial Design with axial distance or radius of 1.414. The equiradial design for the radius of 1.414 for the 

quadratic model with a pentagon for 1 centre point had the second highest value of the sum of square error. All 

the other shapes produced the sum of square errors above 1900, while for the cubic model, the sum of square 

errors was found to be reasonable values relatively for pentagon and hexagon, while the best sum of square error 

was recorded for heptagon (n=7) with 1 centre point with the value of 2.37 and the variance of 0.30. 

 

Circumscribed Centered Central Composite Design with axial distance or radius of 1.414. The circumscribed 

CCD with a radius of 1.414 for the quadratic model had similar behaviour with the equiradial design for a radius 

of 1.414. Their SSE values were so high, while for the cubic model, the heptagon gave the best sum of square 

error with a value of 5.8e-5 and a variance of 7.3e-6. 

 

Conclusion  

The sum of the square error value of Face-centred CCD of zero (0) is misleading since nothing is done humanly 

that is free of error. The Face centred CCD was found to behave differently from the other designs, this could be 

because it is not a spherical design. As the shape of these designs increases the sum of square errors increases 

indiscriminately. The axial distance affects the sum of square errors for the quadratic model, that is to say, the 

sum of square errors for an axial distance of 1.0 is minimum, while for an axial distance of 1.414, the sum of 

square errors is maximized. The study proposed the cubic model as a robust model for second-order designs when 

the shape is Heptagon (n=7) and the quadratic model for second-order with a radius or axial distance of 1.0. 

 

Recommendations  

The following recommendations were made: 

1. The equiradial design for a pentagonal shape (n=5) for a quadratic model with 1 centre point is better 

than all the designs studied.  

2. The equiradial design for a heptagonal shape with the cubic model was found to be slightly less efficient 

as compared to the equiradial design of a radius of 1.0 for the pentagon with a difference of 47.46%. 

3. The axial distance or radius of these designs affects the designs. This is because, the designs with an 

axial distance of 1.0 (equiradial of 1.0 and inscribed CCD of 1.0) had their pentagon (n=5) with 1 centre 

point produce the minimal sum of square error values for quadratic model, while this was not the case 

for the designs with an axial distance of 1.414 (equiradial of 1.414 and circumscribed CCD of 1.414). 



A comparative study of the performance of cubic and quadratic models for heptagonal spherical two-factor 

second-order designs based on the sum of square errors 

 

148 Cite this article as:   

Onu, O.H., & Ejukwa, J.O. (2023). A comparative study of the performance of cubic and quadratic models for heptagonal 

spherical two-factor second-order designs based on the sum of square errors. FNAS Journal of Scientific 
Innovations,4(1), 140-148.   

 

 

The designs with a radius of 1.0 had a better sum of square error than those with a radius of 1.414. This 

means that they also have high estimating power than the designs with a radius of 1.414. 

4. For the cubic model, across all the designs studied, the heptagon gave the consistently smaller sum of 

square errors for 1 centre point.   
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