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Abstract 

Many common multivariate statistical techniques rely on the assumption of multivariate normality (MVN), but this 

assumption can often be violated in real-world data. To assess whether data deviate from MVN, various tests have 

been developed, including ones that use multivariate concepts like the "standardized distance method," "Mardia 

skewness," and "Mardia kurtosis." In this study, Monte Carlo simulations were employed to generate synthetic data 

to compare these three methods. Test statistics were computed for each method and then compared to the 

appropriate asymptotic critical values. The outcomes, indicating whether the null hypothesis was accepted or 

rejected in each case, were recorded and analyzed.  From the result of analysis, multivariate normality was accepted 

at  𝛼 = 0.05 level using Standardized Distance Test and Mardia Skewness, on the other hand, Mardia Kurtosis 

rejected MVN at 𝛼 = 0.05 for the simulated data which is the most effective method out of the three procedures 

used in this work. 

 

Keywords: Test for Normality, Multivariate Normal, Mardia Skewness, Mardia Kurtosis, Standardized Distance 

Method. 

Introduction 

Statistics is a branch of science that is needed to make decisions, and multivariate analysis plays a key role in 

understanding various relationships between dependent and independent events that occur in nature. Hence, the 

importance of statistics in predicting future events and ensuring data are used for the benefit of man.  The term 

"multivariate" has two distinct meanings. In everyday language, it simply refers to having many things that are 

distinct from one another within a group, as per the Oxford Dictionary. In the realm of statistics, "multivariate" 

takes on a more specific definition. It pertains to a set of techniques used for analyzing multiple statistical variables 

simultaneously. This includes methods that go beyond the traditional two-variable analysis, like simple linear 

regression and correlation. Multivariate analysis is a collection of statistical methods used to examine relationships 

among more than two variables simultaneously. Its primary objective is to uncover intricate patterns and 

correlations among these variables, providing a deeper and more nuanced understanding of a particular situation 

compared to the limited insights gained from bivariate analysis. Multivariate analysis serves as a valuable tool for 

statisticians and researchers by shedding light on the reasons behind specific outcomes, ultimately enabling 

informed predictions and decision-making for the future. It is worth noting that the foundation of many classical or 

parametric multivariate analysis techniques relies on the assumption of multivariate normality (MVN). Therefore, 

as suggested by Andrew et al. (1973) in Mecklin and Mundform's (2004) review of methods for assessing 

multivariate normality, having procedures to confirm the validity of assuming normality for a given set of 

multivariate observations would be highly beneficial. Lynn and Alan (2018) identified that the discussion of 

skewness and kurtosis in textbooks is inconsistent and scant, and applications are hardly ever covered. To remedy 

this, they presented a clear description of kurtosis and illustrated its significant applications. 

 

Multivariate statistics is a broad field that encompasses various forms of analysis, each with its unique goals and 

applications. Understanding these different approaches and how they interrelate is a key aspect of multivariate 

statistics. In practical terms, applying multivariate statistics to a real-world problem often involves a combination 

of both single-variable (univariate) and multi-variable (multivariate) analyses to gain insights into the relationships 

between variables and their relevance to the specific problem at hand. One of the key statistical assumptions of 

most multivariate procedures is that a given data is normally distributed; as such, testing the variable for normality 
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is a key in the analytical process and the most effective method among standardized distance method, Mardia 

skewness, and Mardia kurtosis for the multivariate normality test. 

 

In essence, normality refers to assessing whether a variable follows a pattern resembling the normal distribution. 

Consequently, when we talk about multivariate normality, we're examining whether multivariate data aligns with 

the characteristics of a multivariate normal distribution. This concept, first introduced by Abraham de Moivre in 

1734, visualizes the multivariate normal distribution as symmetrical, three-dimensional bell-shaped curves. In this 

representation, the x-axis corresponds to the values of one variable, the y-axis represents the frequency or count 

associated with each x-value, and the z-axis signifies the values of another variable being considered. 

 

The assumption of multivariate normality is valid when a dataset's variables exhibit a normal distribution and 

collectively conform to a multivariate distribution. It is important to emphasize that these tools presuppose a shared 

multivariate normal distribution for the data, meaning they assume the same mean (μ) and covariance (Σ) across 

the variables. Consequently, in many cases, assessing multivariate normality involves examining the residuals 

rather than the original raw data. Here are some key points to consider: First, for a dataset to meet the criteria of 

multivariate normality, it is essential that each variable within it follows a normal distribution. In simpler terms, if 

any variable doesn't adhere to a normal distribution, then the entire set of variables cannot be considered 

multivariate normal. Next, to assess multivariate normality, every pair of variables within the dataset must exhibit 

bivariate normality. This requirement entails generating scatter plots for all possible pairs of variables to examine 

their joint distribution. Lastly, all linear combinations are normally distributed. 

 

There are numerous methods and visual tools available to assess whether a dataset likely comes from a normal 

population. One approach is to individually examine each variable for univariate normality. However, it  is 

important to note that even if each variable appears normally distributed on its own, it does not necessarily mean 

that the set of variables as a whole is normally distributed. On the other hand, when a set of variables collectively 

conforms to multivariate normality, it implies that each variable within that set must also follow a normal 

distribution pattern. Thus, testing each variable for multivariate normality would be needed. Researchers have 

shown that data that are carefully and effectively analyzed to elicit the vital information contained in them (such as 

checking if the data came from the normal population) are meaningful and helpful in enabling the researcher to 

choose the right method of analysis, state appropriate hypotheses, select the right statistical tools, and make the 

right decision. Despite these numerous gains inherent in checking data for normality, many students of statistics 

and researchers pay little or no attention to ascertaining the normality of their data; rather, they engage in the use of 

statistical procedures of analysis that do not involve a normality check or their available procedures for 

investigating normality, or they are ignorant of the computational procedures of these methods. This research aims 

to address the existing gap in the investigation of normality by presenting methods carefully chosen for their ability 

to strike a balance between acceptable type 1 error rates and robust statistical power, outperforming other 

procedures across the entire distribution spectrum. It is worth noting that many tests were excluded from 

consideration as they rely on empirical critical values that are not easily accessible to most users. Additionally, 

some tests are only applicable to bivariate cases. In contrast, a newer generation of tests has emerged, designed to 

excel at detecting deviations from normality within specific alternative distribution scenarios. A subset of these 

tests caters to particular data types, such as time series data, while others are tailored to address a limited range of 

alternative distributions. The goal of this study was to compare the analyses of three approaches to multivariate 

normality tests. 

 

This work is limited to these methods: the standardized distance (Di2) method, the Mardia Skewness test, and 

Mardia Kurtosis. It will determine if the data is normally distributed and check and compare the most effective 

method from the three multivariate normality tests using simulated data.  

 

For nearly two decades, there was a noticeable scarcity of methods for evaluating multivariate normality 

(MVN). Fortunately, this landscape has evolved significantly, and the statistical literature now offers a wealth of 

MVN assessment techniques. Notable among these methods are Looney (1995), Andrew et al. (1973) as cited in 

Mecklin and Mundform (2004), Ebner and Henze (2020), Koziol (1986) and Koziol (1993), each providing 

fairly comprehensive approaches to assessing multivariate normality. Most of these approaches either combine 

tests for univariate normality or extend traditional univariate normality tests into the multivariate realm. 

Furthermore, evaluating the normality of individual variables within a P-variate distribution is one way to assess 
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multivariate normality, and this is crucial as the assumption of normality underpins many parametric statistical 

tests. Looney (1995) discovered that deviations from normality can impact the performance of statistical 

procedures like multivariate analysis of variance (MANOVA), discriminant analysis, and canonical correlation 

to varying degrees. However, it is worth noting that despite its importance, the assessment of multivariate 

normality is often overlooked, with some considering it more of an academic curiosi ty than a practical tool, as 

suggested by Horsewell (1990). 

 

Multivariate analysis encompasses a wide range of statistical techniques designed to examine more than two 

variables simultaneously. These variables can be of various types, including numerical, categorical, or a mix of 

both. The primary objective is to uncover intricate patterns and correlations among these variables, offering a 

deeper and more nuanced understanding of a given situation compared to what can be achieved through bivariate 

analysis. In this context, tools like the standardized distance method, Mardia skewness, and Mardia kurtosis play a 

crucial role. Statisticians and researchers utilize these methods to gain insights into why specific outcomes occur. 

This understanding, in turn, empowers researchers to make well-informed predictions and decisions for the future. 

For this analysis, data comprising variables X, Y, and Z were generated using the Monte Carlo simulation method. 

In this dataset, X serves as the dependent variable, while Y and Z act as independent variables. 

 

Multivariate analysis can be categorized into two main methods: dependence and independence methods. 

Dependence methods come into play when some variables are dependent on others. These methods are concerned 

with cause-and-effect relationships—specifically, whether the values of one or more independent variables can be 

employed to explain, describe, or forecast the values of a dependent variable. To illustrate, consider the example 

of predicting someone's "weight." In this case, independent variables like "height" and "age" might be used to 

make that prediction. In the realm of machine learning, dependency techniques are employed to construct 

predictive models. In these models, analysts input data and specify which variables are independent (those used 

for prediction) and which are dependent (the ones to be predicted). This allows the model to leverage the 

independent variables to make predictions about the dependent ones. 

 

Interdependence methods in multivariate analysis serve a different purpose compared to dependence methods. In 

interdependence methods, there's no hierarchy where one variable depends on another; instead, the focus is on 

unravelling the structural composition and inherent patterns within a dataset. These methods aren't concerned with 

establishing causal relationships; rather, they aim to provide meaning to a group of variables or organize them in a 

meaningful manner. While dependence methods explore how certain variables influence others, independent 

multivariate analysis is more about comprehending the overall structure of the dataset. As an example, Kankainen 

et al. (2007) introduced an invariant test for multivariate normality. This test is based on the Mahalanobis 

distance, which measures skewness, and the matrix estimate, which gauges kurtosis, between two or more 

multivariate location vector estimates. It is a way to assess the distribution characteristics of the data without 

getting into causal relationships between variables.  

 

Kurtosis is a statistical measure that tells us whether a distribution is more peaked (positive kurtosis) or flatter 

(negative kurtosis) compared to a normal distribution. When a distribution has low variance, it tends to be more 

peaked with lighter tails, while high kurtosis indicates a distribution with a very peaked centre and heavier tails. 

However, it is crucial to note that peakedness alone doesn't provide a full picture of kurtosis, as emphasized by 

Westfall (2014). Scheffe (1959), as cited in Cain et al. (2017), pointed out that kurtosis and skewness are vital 

indicators of how non-normality affects the typical inferences made in the analysis of variance. To better 

understand normality, researchers have devised intuitive methods like kurtosis, the standardized distance method, 

and skewness. Enomoto et al. (2020) proposed a transformation statistic that normalizes Mardia's multivariate 

kurtosis. They used Monte Carlo simulations to assess the accuracy of approximating this statistic, considering its 

various statistical properties such as expectation, variance, skewness, kurtosis, sample error, Type I error rate, and 

statistical power under different alternative distributions. Additionally, Elbami and Mukerjee (2009) explored the 

concept of peakedness, which does not require strict normality assumptions. They investigated the comparison of 

dispersions in two symmetric continuous random variables around their respective medians and also provided 

theoretical findings, estimators for distribution functions under symmetry and peakedness constraints, and 

demonstrated their consistency and weak convergence. These findings were then compared with empirical 

estimators, offering formulas for statistical inferences. 
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In a pivotal research paper authored by Mardia in 1970, significant advancements were put forth in the field of 

multivariate statistics. Mardia introduced novel metrics for quantifying multivariate skewness and kurtosis, and he 

subsequently devised a test for assessing multivariate normality using these metrics. This test relied on establishing 

the correlation between these newly introduced measures. As a result, this approach became known as the 

"standardized distance method." Thus, the standardized distance method is denoted as  

 

  𝑫𝟐𝒊 = (𝒚𝒊 − �̅�)𝟏𝑺−𝟏(𝒚𝒊 − �̅�)                                (1) 
is a useful statistic as it provides a single summary measure of feature distribution around their centres. The 

standardized distance method finds wide application in the field of multivariate statistics; it takes the correlation 

between variables. It is also one of the most suitable methods used in multivariate normality tests which are 

calculated with a P-degree of freedom. The paper also introduced multivariate measures of Skewness and kurtosis. 

The Mardia skewness is a metric used to gauge how a probability distribution of a real-valued random variable 

deviates from being symmetrical around its mean. This measure also comes with an associated p-value, providing 

additional insights into the distribution's asymmetry. It also measures the deviation from a normal distribution. It is 

denoted as  

  Skm=
𝟏

𝑻𝟐 𝚺𝚺𝒅𝟑𝒔𝒕               (2) 

where SKm = Skewness  

dst = the element of matrix D 

𝚺 = Population Covariance matrix 

𝚺𝒊𝒊 = Individual Population Covariance 

Mardia Kurtosis is a statistic that measures the extent to which a distribution contains outliers and for testing 

multivariate normality and its corresponding p-value.  It is denoted as 

 

 Kum =
𝟏

𝑻
𝚺𝚺𝒅𝟑𝒕                                                                                 (3) 

where Kum = Kurtosis 

dtt = Element of matrix D=(dtt) 

 

For the multivariate normal distribution SKm = 0 and Kum = P (P + 2). Ward (1988) highlighted that these 

methods rank as some of the most effective tools for evaluating multivariate normality. He emphasized that it is 

practically unthinkable to conduct a thorough assessment of the performance of tests for multivariate normal ity 

without incorporating Mardia's Skewness and Kurtosis tests. 

 

Various authors, including Balanda and MacGillivary (1988) and Rupert (1987), have provided similar 

explanations for kurtosis. They argue that for a group of variables to adhere to multivariate normality, each 

variable within that group must follow a normal distribution. However, it is important to note that even if all 

variables are individually normally distributed, it doesn't guarantee that the entire set of variables will collectively 

conform to multivariate normality. This implies that simply testing each variable for univariate normality is 

insufficient. To address this, Mardia (1970) introduced a test for multivariate normality, which relies on sample-

based metrics of multivariate skewness and kurtosis. 

 

Both the Mardia skewness and Mardia kurtosis are functions of the squared Mahalanobis distances which are used 

to detect outliers in multivariate. The outliers are the variability in the observation. It may be used to indicate an 

experimental error. This fact makes Mardia skewness and Mardia kurtosis, particularly the kurtosis measures 

useful in multivariate outliers’ detection. 

 

Materials and Methods 

Statistics forms the fundamental foundation for making logical, scientifically sound decisions. Therefore, in any 

informed empirical decision-making process, it is imperative to gather, structure, present, and analyze numerical 

data using suitable methods. In this study, the data collection method employed relied on ge nerating data 

through computer-based processes. 

 

In this study, a sample size of n = 30 was carefully selected using simulation. This sample was then utilized to 
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conduct an analysis and comparison, assessing whether the data conforms to a normal distribution or not. 

Furthermore, the study aimed to ascertain which of the three methods proved most effective for conducting a 

multivariate normality test. 

Effective data collection is crucial in statistical analysis, as errors or biases in the data collection process can have 

a profound impact on the outcomes. In this study, the data utilized is synthetically generated using computer-based 

simulations to ensure its accuracy and reliability. 

 

Method of Analysis 

The generated data are compared using three procedures namely: 

• Standardized distance method (Di) 

• Mardia Skewness test 

• Mardia Kurtosis test 

 

Standardized Distance Method (DI) 

𝑫𝟐𝒊 = (𝒚𝒊 − �̅�)𝟏𝑺−𝟏(𝒚𝒊 − �̅�)                                             (4) 

𝑺−𝟏 [

𝑺𝟏𝟏 𝑺𝟏𝟐 𝑺𝟏𝟑

𝑺𝟐𝟏 𝑺𝟐𝟐 𝑺𝟐𝟑

𝑺𝟑𝟏 𝑺𝟑𝟐 𝑺𝟑𝟑

]

−𝟏

 

𝑺𝒊𝒊 = Individual Sample Covariance 

𝑺𝒊𝒊 =  
𝟏

𝒏 − 𝟏
∑(𝒚𝒊 − 𝒚�̅�)𝟏𝑺−𝟏(𝒚𝒊 − �̅�)𝟏

𝑻

𝑻=𝟏

 

 

where S = Sample Covariance matrix 

 

Mardia Skewness Test 

Skm ˭
    𝟏

𝑻𝟐
∑ 𝒅𝟑𝒔𝒕 

                                                                                  (5) 

𝒅𝒔𝒕 = (𝒚𝒊 − �̅�)𝟏𝚺−𝟏(𝒚𝒊 − �̅�) 

𝚺 =  [

𝚺𝟏𝟏 𝚺𝟏𝟐 𝚺𝟏𝟑

𝚺𝟐𝟏 𝚺𝟐𝟐 𝚺𝟐𝟑

𝚺𝟑𝟏 𝚺𝟑𝟐 𝚺𝟑𝟑

]

−𝟏

 

𝚺𝒊𝒊 =  𝚺𝒊𝒊 =  
𝟏

𝒏
∑(𝒚𝒊 − 𝒚�̅�)𝟏𝑺−𝟏(𝒚𝒊 − �̅�)𝟏

𝑻

𝒕=𝟏

 

 

where SKm = Skewness 

  Dst = the element of matric D = (dst) 

  𝚺 = population Covariance Matrix 

  𝚺𝒊𝒊 = Individual Population Covariance 

  

Mardia Kurtosis Test 

KUm= ∑ 𝒅𝒕𝒕𝒕𝒕=𝟏                                                                                   (6) 

 

where, Kum = Kurtosis 

𝐝𝐭𝐭 = (𝒚𝒊 − �̅�)𝟏𝑺−𝟏(𝒚𝒊 − �̅�) 

 

Ʃ-1   = [

ɛ𝟏𝟏 ɛ𝟏𝟐 ɛ𝟏𝟑

ɛ𝟐𝟏 ɛ𝟐𝟐 ɛ𝟐𝟑

ɛ𝟑𝟏 ɛ𝟑𝟐 ɛ𝟑𝟑

]

 

 

  

t = 

T 

 

𝑡 = 1 
𝑇 
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but,   

       ɛ𝙞𝙞   =  
𝟏

𝒏
∑ (𝒚𝒊 − 𝒚�̅�)𝟏Ʃ−𝟏(𝒚𝒊 − �̅�)𝟏 

  

 
where KUm = Kurtosis  

 

Dtt = Element of matrix D = (dtt) 

 

Hypotheses 

H0A: The data is normally distributed 

H1A: The data is not normally distributed 

H0B: The Standardized Distance Method is the most effective method for the multivariate normality test 

H1B: Standardized Distance method is not the most effective method for the multivariate normality test.  

H0C: Mardia Skewness is the most effective method for multivariate normality tests. 

H1C: Mardia Skewness is not the most effective method for the multivariate normality test. 

H0D: Mardia Kurtosis is the most effective method for the multivariate normality test. 

H1D: Mardia kurtosis is not the most effective method for the multivariate normality test. 

 

Decision Rule 

Standardized distance method (D2i)  

Reject Ho if matrix (D2i) >(n), otherwise accept 

Mardia skewness test 

Reject Ho if SKm (n) otherwise accept 

Mardia Kurtosis Test 

Reject Ho if Kum>Kum(n) otherwise do not reject. 

 

Level of Significance 

The level of significance is 𝜶 = 𝟎. 𝟎𝟓 where p =3 

 

Data Presentation and Analysis 

Descriptive Statistics  

The tables below and the results (outputs) from the data set used for this study. 

 

Table 1: Summary of Descriptive Statistics for the Simulated Data 

Variable 

N Mean Std. Deviation Variance 

Statistic Statistic Std. Error Statistic Statistic 

X 
30 53.6667 5.45332 29.86906 892.161 

Y 
30 65.9000 4.84575 26.54125 704.438 

Z 
30 52.1333 5.24935 28.75189 826.671 

Valid N (listwise) 
30     

A sample size of n = 30 is involved with the three variables – X, Y and Z. 

 

Multivariate Normality Test Statistics 

Standardized Distance Method 

















=

826.671-103.055230.195-

-103.055704.438178.966

-230.195178.966892.161

S  
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















=−

0.0013120.0001120.000316

0.0001120.0015050.00027-

0.000316-0.000270.001257
1S  

















=

















=

52.1333

65.9

53.6667

z

y

x

Y ,  ( )
















=

















=−

0.001

13-1.7E-

2.001-

)z-(z

)y-(y

)x-(x

i

i

i

YYi
 

( ) ( )0.00113--1.7E2.001-=


−YYi
 

( ) ( ) 005.01 =−−= − YYSYYD i

T

ii
 

Table 2: Standardized distance method test 
Model B Z p-value Decision (Alpha = 5%) 

Standardized Distance 0.005 5.991 0.9634 Accept H0 

Table 2 shows that the Mahalanobis distance b calculated for the variables is 0.05 with a Z-value of 5.991 at P < 

0.05, there was no statistically significant relationship in the normality of the data for X, Y and Z. 

 

Mardia Multivariate Normality Method 

Table 3: Univariate skewness and kurtosis by Mardia Method 

Variable Skewness SE_skew Z_skew Kurtosis SE_kurt Z_kurt 

X 0.052    0.427   0.121    -1.392    0.833 -1.671 

Y -0.744    0.427    -1.742 -0.912    0.833 -1.095 

Z 0.018    0.427   0.043    -1.495    0.833 -1.795 

Table 3 shows that for the X data set, the skewness is 0.052 (SE = 0.427), and the kurtosis of – 1.392, for the Y data 

set, the skewness is -0.744 (SE = 0.427) and kurtosis of -0.912, and for Z data set, the skewness is 0.018 (SE = 

0.427) and kurtosis of -1.495. 

 

Table 4: Mardia's multivariate skewness and kurtosis 

Model B Z p-value Decision(Alpha = 5%) 

Skewness 1.13327 5.66635 0.84247298 Accept H0 

Kurtosis 11.44378 -1.77811 0.03538583 Reject H0 

From the Mardia multivariate analysis of the dataset, the Mahalanobis distance for skewness is 1.13327 with a Z-

score of 5.66635, P = 0.8424 while the Kurtosis showed that the Mahalanobis distance of 11.44378 with a Z-score 

of -1.77811, P = 0.035. 

 

 Comparison 

Table 5: Comparison between the three methods 

Model B Z p-value Decision(Alpha = 5%) 

Standardized Distance 0.005 5.991 0.9634 Not Significant 

Mardia Skewness 1.13327 5.66635 0.84247298 Not Significant 
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Mardia Kurtosis 11.44378 -1.77811 0.03538583 Significant 

 

From Table 5 above, the b for the three methods of testing normality showed 0.005, 1.13327, and 11.44378 for the 

standardized distance method, Mardia skewness, and Mardia kurtosis respectively. At a 95% confidence interval, the 

P = values for the data set using the three methods are 0.9634, 0.0842 and 0.035 for standardized distance, Mardia 

skewness, and Mardia kurtosis respectively. The Mardia kurtosis is statistically significant for the data set while the 

other two are not statistically significant. 

 
Figure 1: Histogram Plot of X Figure 2: Normal Probability Plot of X 

 

 
Figure 3: Histogram Plot of Y Figure 4: Normal Probability plot of Y 
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Figure 5: Histogram Plot of Z Figure 6: Normal Probability plot of Z 

 

Discussions 

 Test for Normality 

The result from this study revealed that the data set is relatively normal based on the fact that the skewness and 

kurtosis are within ± 1.95 as the standard for test for normality (Shapiro and Wilks (1965) in Górecki et al. (2018)). 

Furthermore, the virtual inspection of the histograms and line graphs shows some degree of normality. This finding 

is similar to studies cited in the literature. 

 

Best Method for Normality Testing 

From the result obtained, the Mardia kurtosis can be inferred as the best method of normality test which showed a 

statistically significant relationship unlike the other two tests - the standardized distance test and the Mardia 

Skewness which do not show a statistically significant relationship. The next effective method in the normality test 

is the Mardia Skewness and this is shown by a higher level of skewness expressed using the Mahalanobis distance 

that is greater than the value for the standardized distance approach although this value is lesser than that of the 

Mardia kurtosis. 

 

It was suggested by Andrew et al (1973) in Mecklin and Mundform (2004) that there are countless possible 

deviations from normality as such multiple approaches for testing the multivariate normality of a data set can be 

reached by different procedures. Thus, from the analysis of the simulated data, multivariate normality was not 

rejected at the ά = 0.05 level using the standardized distance method (Di) and Mardia skewness, on the other hand, 

Mardia Kurtosis rejected MVN at ά = 0.5 for the simulated data. Since the Mardia Kurtosis is significant, it is 

therefore concluded that the Mardia kurtosis method is the most effective method among the three methods 

investigated in this work. 

 

The result from this study revealed that the Mardia kurtosis is the best method for testing for normality and this is 

followed by the Mardia skewness and lastly the standardized distance method. A combination of Mardia kurtosis 

and skewness is therefore recommended in conducting a normality test before the statistician or researcher decides 

on which method of analysis can be done for a given data set. Normality test is an important first-line test before 

carrying out any multivariate analysis and in statistics; three methods which are; the standardized distance approach, 

the Mardia skewness and Mardia kurtosis are commonly used.   Hence, using more of the Mardia kurtosis followed 

by Mardia Skewness or possibly a combination of both in testing for normality as opposed to the standardized 

distance approach which though effective but not as effective as these two other methods. 

 

Conclusion 

The purpose of this study was to examine the multivariate normality of the generated data, comparing them and 

knowing the most effective ones among them using the three promising tests of multivariate normality. The test 

statistic for each procedure was calculated and compared with the appropriate critical value. This study analysis 

gave a choice on using kurtosis and Mardia skewness that they are the most useful ways in which to envision and 

demonstrate a departure from MVN. Indeed, Mardia skewness and kurtosis measures seem to have two serious 
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liabilities in this regard. Kurtosis and skewness do not jointly provide a sufficient definition of MVN; that is, 

distribution can have MVN skewness (not skewed) and MVN kurtosis, but still be non-MVN. It is questionable 

whether skewness and kurtosis, at least as traditionally defined, are distinct concepts. The relevance of multivariate 

normality can be seen in its contribution in (i) enabling a researcher to choose the appropriate method of analysis. 

(ii) stating appropriate hypotheses (iii) selecting the right statistical tools and (iv) taking the right decision. 

 

This study, therefore, proposes a prioritization of Mardia Kurtosis as the initial method for assessing multivariate 

data normality. Additionally, it suggests considering the use of alternative approaches like the Mardia skewness test 

to confirm multivariate normality, even if subsequent analyses may not strictly adhere to this assumption. To bolster 

the credibility of these methods, it is advisable to conduct further investigations using real-world data instead of 

relying solely on simulated data. Lastly, it is recommended to explore sample sizes larger than 30 to ascertain 

whether Mardia Kurtosis remains the most effective choice among the three methods. 
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Appendix A 

Table A: Stimulated Random Data 

ID. Number X Y Z 

1 71 83 79 

2 41 93 40 

3 13 96 41 

4 78 32 92 

5 75 45 13 

6 97 81 15 

7 16 43 64 

8 67 21 15 

9 52 62 50 

10 57 90 86 

11 95 88 59 

12 20 13 82 

13 98 75 12 

14 61 78 53 

15 60 93 92 

16 60 87 46 

17 23 83 23 

18 79 93 34 

19 100 55 91 

20 95 76 14 

21 12 76 93 

22 30 89 72 

23 60 65 79 

24 22 24 86 

25 21 44 50 

26 88 73 23 

27 19 24 76 

28 55 90 19 

29 15 84 44 

30 30 21 21 

 

 

 


