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Abstract

A least square technique of tackling optimization problems with nonlinear separable quadratic objective functions
with linear constraints was developed by the study. Two problem sets were computed to confirm the efficiency of
the developed approach. To confirm the authenticity of the solution, the Wolfram Mathematica programming
software was employed to solve the examples illustrated in this study and the results obtained were in agreement as
achieved using the least squares method. It was concluded that the algorithms of solving optimization problems with
nonlinear separable quadratic objective function with linear constraints stated in this study were quite explicit,
efficient and very easy to employ

Keywords: Constrained Programming Problem, Separable Quadratic, Symmetric Matrix, Maximum Likelihood

Introduction

Classical optimization theory develops the use of differential calculus to obtain the pen of maxima and minima
known as points of extremes, for unconstrained and constrained functions (Wang et al., 2020). The study's objective
is to employ the least squares technique for solving a Separable Quadratic Constrained Programming Problem with
linear constraints. Hence, in a constrained nonlinear optimization problem, there is the presence of constraints,
comprising the objective function and constraints (Al-Mumtazah & Surono, 2020). To Minimize/Maximize f(X) for
all the values of X = (x4, x5, ..., x,) is what the problem seems to address, subject to the constraints. The condition

that must be met in order for a solution to be optimal is % =0forj=123,..,natx = X"
J

Where df is differentiable (Mahajan & Gupta, 2019). The condition is also a sufficient condition for maximization
if the function f(X) is concave and for minimization if the function f(X) is a convex. As a result, the solution is
determined by evaluating n equations and setting n derivatives partially to zero.

Mathematical programming is used when the objective and constraints of an optimization issue are expressed as
mathematical functions and functional relations (Mirmohseni & Nasseri, 2017). A mathematical model whose
requirements are expressed by linear relationships can be optimized using a technique called linear programming
(LP, also known as linear optimization).

Ding et al. (2023) developed a novel approach to the problem of full fuzzy quadratic programming. The authors
indicated that the issue with programming with fuzzy variables and coefficients was increasingly widespread. The
A-PSO algorithm-based quadratic programming problem, with all of its parameters being fuzzy integers, was the
subject of the study. In particular, the four triangle fuzzy number operations were expanded, and a better triangular
fuzzy number sorting algorithm was suggested that took into account the different membership of each point.
Furthermore, the innovative approach suggested in the paper provided the precise solution steps for the fully fuzzy
quadratic programming problem. To evaluate and analyse the algorithm and outcomes, numerical examples were
provided, which showed the efficiency and effectiveness of the suggested approach.

Forrester and Hunt-Isaak (2020) revisited two of the most popular linearization techniques for dealing with binary
quadratic programmes in their study on the computational comparison of exact solution techniques for 0—1 quadratic
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programmes. They also looked at the potential for improving the formulations that had been proposed in the
literature. They carried out a thorough computational analysis for five classes of binary quadratic programmes and
contrasted the two approaches using a more recent linear reformulation of nonlinear programming to solver
optimisation.

Gu and Chen (2020) developed the fundamental algorithm for the k-diagonal matrix-based zero-one unconstrained
quadratic programming problem. They referred to it as the k-diagonal matrix zero-one unconstrained quadratic
programming issue in their research. They suggested a Q matrix as a solution to such kind of issue. A derivation was
performed to demonstrate the technique's viability. The new method was evaluated on a large number of numerical
instances, and it was found that the procedure was simple to comprehend. By altering the value of k, the method's
computation speed was examined, and it was found that the power of computation made the suggested method
effective for issues with high dimensions.

Separable Quadratic Constrained Programming Problem being a problem with constraints has existing methods of
solving it, such as the Wolf's Modified Simplex, Piecewise Linear Function, Beale's and Kuhn-Tucker Conditions.
However, this problem can be handled by the introduction of the ordinary least square technique. It is in this regard,
the study tends to demonstrate explicit algorithms to tackle such problems.

Description of the Proposed Approach for Separable Quadratic Programming Problem Mathematical

programming
An optimization problem is said to be a Separable Quadratic Programming Problem (SQPP) if the objective function
is quadratic, separable and concave whereas the constraints are linear (Opara & Isobeye, 2021). Since Max[f (x)] =
Min[—f(x)], the study concentrated on minimization problems. Hence, a separable quadratic programming problem
is defined mathematically as

Min f(x) = "X + X"DX

Subjectto: AX = b (@D)]
X=0

Where c¢” = (¢, ¢y, 3, ..\ Cy)

X = (xq1,%,%3, 0, )7
b = (by, by, bs, ..., by)"
aqq ajo A1n d11 0o - 0
A= ?22 o Gon and D= 0 d:22 0
Ap1 9m2 " Qpp 0 0 - duy

The function X7 DX defines a quadratic form, where D is a symmetric and positive definite matrix (Taha, 2007).

Linear Regression Model
The multiple linear regression has its basic model as:

Yi =X0+Xlzi1+Xzzi2 +"'+XpZip+€i (2)
For each observation, i =1,2,3,---,n
Equation (2) considered n observations of one dependent (response) variable Y and p independent (explanatory)
|
variables Zij. Hence, Y jththe observation of the dependent variable Zij is the ith observation of the jth
|

independent variable. The value X j (J=L123,---, p) represents the parameters to be estimated, together with

X0 (intercept), and & is the ith independent identically distributed normal error (Opara & Isobeye, 2021).
|
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From Equation (2) for i =1,2,3,---,n, we have:

N\

Y1=XO+X1211+X2212 +--4+ X pzlp +81
Y2 =X0+X1221+X2222 +--+ X p22p+82

Y3=XO+X1231+X2232++XpZ3p+83 e (3)
Yo=X0+X1Zm+XoZpp +-+X pznp+‘9n
Equation (3) in matrix form, is written as:
Y, 1 2y 4y, - le Xo &
Y, 1 Zy 2y - ZZp X1 &y
Yo |=|1 2y Zyp o Zgp | Xy |+ &5,
Yn 1 an Zn2 an Xp &n
which when using matrix notation gives
Y =ZX +¢ (4)
Y, Zy Iy Zip Xo &1
Y, Zy Zy ZZp Xy &y
Y, 1 Z2, Z,, Znp X &,

With non-negative parameters, the problem of the multiple linear regression model as in
Equation (4) is stated as;

: (%)
Subject to X >0

Y=ZX+¢ }
where Y is the vector of responses, Z isa nx p matrix, X is the unknown parameters of the model and X >0

implies that all the elements in the column vector are non-negative, & is the random error term of the linear
regression model.

Incorporating inequality constraints and non-negative parameters in Equation (5), the general linear regression
model can be written as;
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Y=2ZX+¢
Subject to: AX >b (6)
X=0

where X is the unknown vector; Z _(n> p)and A, ,(m < p)are constant matrices, Y., X ;4

b qand e, are column vectors, £ ~N(0,0°1), Z"Z >0and rank(A) =m.
From Equation (4),

g=Y —ZX ()
Error sum of squares is;

ele=(-ZX)(Y-ZX)=YTY =2X"ZTY + X 27 ZX ©)

Hence, the general linear model in a regression analysis form with linear constraints can be
written as;

Min.f,(X) = (Y —ZX)T (Y - ZX)
Subject to: AX >b 9)
X>0

Comparing Equations (1) and (9), we have that
D=2"Z,c"=—2y"zand Y'Y =0

Employing the Maximum Likelihood Method, to estimate X in Equation (4), we recall that; if X
~N(u,0?), then;

f(x)= \/21_2 exp— (XZ_G/;) (10)
o

Since ¢ ~N(0,0°1) for linear regression model, then

exp i
20?2

fo(e) =

1
11
oi2n ()

The likelihood function is given by

Ly, &y0mnen X,02) =1 o (&)
i=1
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12

-t exp— g ! exp Egi

= 20% 1 T g2
VAT 5 Gy 2n)

Since =Y —-ZX, igf =g'e=(Y =ZX)" (Y —ZX). Substitution gives
i=1

oxp- (Y ~ZX)T(Y = ZX)

L(gl,gz,...,gn;X,O'z)z 252
O

n

(0%)2(2n)?

(0%) * (27) 2 exp- =2 = 2%)
20

L(e, €000 80; X,0%) =

Taking the natural logarithm of both sides and simplifying, give

(Y -ZX)" (Y - ZX)
2 2

N L(g,, 8, y0m6.0 X, 02) = —gln(az) —gln(Zﬂ) _

To maximizeln(L), we differentiate with respect to X , set the derivative equal to zero, and solve
for X .

But
(Y —ZX)T(Y —ZX)=(YT —XTZT)(Y —ZX) =YY -YTZX =XTZTY + XTZ"ZX
=YTY =2XTZ"Y + XTZ7TZX
YTY =2XTZTY + XTZ27ZX

- In L(gl,gz,...,gn;X,Gz)=—g|n(0'2)—g|n(27z)_ 252 and
o

olnL  -2Z"Y +2(Z27Z)X
oX 20°

since the derivative of the first two terms of In(L)is zero.

To minimize, the equation
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—2Z'Y +2(Z7Z)X B
20°

—22"Y +2(Z7Z)X =0

0

=2(Z"Z)X =22"Y

]
-2 _@zzyrzTy (12)
(2 2)
if D=2"Z, then
X =DZTY (13)

To estimate X in the objective function of Equation (1), we have

AX) ¢ v2x"D=0
X

c' =—2X"D
s.c=-2D"X
=c=-2DX

Since Dis a symmetric matrix
X == (14)

Theorem 1: The association between the vector Y, and the matrix z __is given by

1
Y =—;Z‘1c_:; where Z = D?
Proof

Equate Equations (12) and (14) to get;

272)'27Y =-=
2D

2D(Z272)*Z7Y =
2272)(272)*Z2"Y =—¢ (15)
Where (Z'Z) =Dand
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Z=D? (16)
From Equation (15), we have

2Z'Y =—
2(zT)—1zTY — _(ZT)—lg

2Y =—(Z7) "¢
1
Y=-2(Z")"c
2( )¢
Y :—%Zlg (17)

Since Z is a symmetric matrix

Theorem 2: The analogy of SQPP and GLM is obtained as
1 1.1
f (X)=f(X)+>c' D
0 4
Proof
f (X)=c"X +X"DX and f(X)=YTY -2XTZTY + X7Z7ZX
f(X)-YTY+2X7ZTY -X"Z7ZX = f (X)-c"X - X" DX
fO(X)—YTY +2XTZTY = X"DX = f (X)—c" X — X" DX
=f (X)-c"X+Y'Y-2X"Z"TY

.
=f (X)-c"X +£—;z—1cJ (—;Z‘lcj—ZXTZT(—;Z‘lc)

.
=f(X)—gTX-+icT(z4) VAR T G AV A

1 1 1 1

=f(X)—gU<+i&I)2D2c+xTD2D2c

=f00—§X+iJD4c+x%
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1 _
2 (X)= f(X)+ZcT D¢

Hence, the algorithm for the proposed technique becomes

Step One

Solve for X = D™*Z"Y and check if the conditions for AX >l or AX < b are satisfied. If they are satisfied,
stop; the present solution is optimal, otherwise go to step two

Step Two
Solve for Minimize f,(X') = (Y —ZX®)T (Y —zX®) subject to any constraint (which contains the whole

unknown variables) and check if the conditions for AX @ >bor AX ® < b are satisfied. If they are satisfied, stop;

the present solution is optimal, otherwise, continue until you exhaust all the single constraint, and go to the next step
if any of them did not provide optimal solution.

Step Three
Solve for Minimize f,(X ("J)) = -2zZX ("J))T (Y -2zX @ J))subjec'[ to every pair of constraints and check

if the conditions for AX (1) >bor AX (i.9) < b are satisfied. If they are satisfied, stop; the present solution is
optimal, otherwise go to the next iteration. The process continues until an optimal solution is achieved.

Demonstration of the OLS Technique with Numerical Problem Sets

Problem Set One

Maximize f(x,,x,)= 4% +6x, —x7 —3x2

Subject to X +2X, <4
X, X, 20
(Source: Gupta; 2011)

Solution

Changing the problem to minimization, we have Minimize f (x,,X,) = —4%, —6X, + X/ +3x’
10 -4
A=(1 2),b=(4),D:(0 j,cz( ]

3 -6

Iteration One
Solve for X =D*z"Y
where
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To check for optimality, we have X; +2X, =2+ 2(1) =4 . Since X, + 2X, <4, we stop the present solution is

optimal at iteration one. Therefore X, =2and X, =1 with the objective value of
f=42)+6()-(2)*-3(1)*=7

Problem Set Two

Two items, P and Q, are produced by a firm. One unit of product P takes 30 minutes to process, while one unit of
product Q takes 15 minutes. 35 hours per week is the maximum machine time that can be used. Compared to
product Q, which needs 3 kg of raw material for every unit, product P only needs 2 kg. Only 180 kg of raw materials
are accessible each week. P and Q, two goods with limitless market potential, are sold for N 200 and N 500 each,

respectively, per unit. If the production costs for goods A and B are 2X12 and 3X22 respectively, find how much of

each product should be produced per week, where X, and X, are respectively the quantities of P and Q to be
produced. (Extracted from Gupta and Hira, 2011)

If the production costs for goods A and B are the same

Solution

The first thing is to formulate the mathematical model; hence X; and X, are the quantities of products P and Q
respectively, which are to be manufactured per week. The selling price of products P and Q is N 200 and N 500 per
unit respectively.

Therefore, the total revenue per week = 200X, 4+ 500X,

The manufacturing cost of P is 2X and that of Q is 3X per unit.
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Thus; total manufacturing costs per week = 2X12 + 3X§

Therefore, profit per week = 200X, +500x%, — 2X? —3X5

The machining of product P requires 30 minutes per unit, while product Q requires 15 minutes per unit. Since a
maximum of 35 hours of machining time are available,

30x, +15x, < 35x 60

or 2%, + X, <140

The constraint on the availability of raw material is expressed as

2%, +3X, <180

X, X, 20
In summary, the problem can be expressed as,
Maximize f(x,,X,)=200x, +500x, —2x —3x?
Subject to 2X, + X, <140

2%, +3X, <180

X, X, 20
Here, the objective function is non-linear, while the constraints are linear.
Changing the problem to minimization, we have Minimize f (X, X,) =—200%, —500x, + 2x> + 3%}

Putting the above NLPP in matrix form, we have

X 2 0\ x
inimize f(X,X,)=(-200 —500) ' |+(x, x '
Minimize f(X;,X,) ( {XJ (1 2{0 3j(x2j

suioctto (2 T ) <[240
WIEEtIoO 15 3l x, )~ 180

X, X, 20
Where
2 1 140 _
A b p_[?2 0} (200
2 3 180 0 3 -500 )°
Step One
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Solve for X =DZ"Y

where
1
Z=D?= V2.0
0 3
and
. 1
yo loa._ 1f¥2 03 (-200)_ 1/7 ~ 200
27 7 2o 3)\-500) 2| 45 1 |-500
V3
1 503
_| 22 ~200 | 50y
o __L \-500) |=——
2.3
1
2 0 -1 \/E 0 50\/5 E 0 100 50
X = 250+/3 | = =| 230
030 V3)=—] |o Ll\20) | =
3 = 3
3
250
XIZSO’XZZT

To check for optimality, we have 2x, + X, = 2(50) + 2—20 = % =183.333 > 140 and

2X, +3x, = 2(50) + 3(%0) =350 >180. Since 2X; + X, <140and 2x, +3X, <180 conditions

did not hold, we go to the next step.

Step Two

We solve with the first constraint given as:
Minimize f,(X®)=(Y —=ZX®)" (Y —zX®)
Subjectto:  2x® +x{? =140

xP, x>0

Making x{ the subject of the formula in the first constraint, we have
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x3) =140 — 2x{
Substituting x{”, Y and Z in the objective function to obtain

]
50/2 J2 ) 50+/2 )
2 0 X J2 0 X
fo(X @) =|| 250/3 |- oo |l ] 25043 |- o
3 0 /3140 - 2x! 2 0 /3140 -2x!

r ST

50/2 J2x® 50/2 J2x®

=|| 25043 |- o ||| 25043 |- I
2 140~/3 — 24/3x 3 140+/3 — 24/3x

;
50+/2 —~+/2x® 50+/2 —+/2x®
= 17(:)3\/_ 2\/5 1) 170\/_ 2\/5 @

@
_[ 5047 — J2x® 17of N 5072 - J2x]
- - Xl X 170\/_ 2\/5 ®

(X ©) = (B0v2 - V2xO  + ( 1710V3 _ 5 fax <l>]

()]
—afoa(x)é) ) _ 2(6042 —\2x® \2) + 2( 17103 , 5 fax <l>](2\/§) 0
1
—200 +4x" —680 +24x" =0

28x" =880 = x = 220

o -tao-of E2) 50

To check for optimality, we have 2x; + X, = 2( 230} @ =140 =140 and

2%, +3X, = 2( 230) 3[5;10j = 20760 = 294.286 > 180 . Since the result does not satisfy

2X, +3X, <180 the condition, we go to the next step.

Step Three
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We solve with the second constraint given as:
Minimize f,(X®)=(Y =ZX®)T(Y —zX?)
Subjectto:  2x® +3x{? =180
x2 x>0
Making x? the subject of the formula in the second constraint, we have
x{? =90 -1.5x?

Substituting x{? , Y and Z in the objective function to obtain

]
X @) 255?0‘/\/_2- (V2 0 )90-15x? 25500‘/\/—2_ (V2 0 Y90-15x?

0 \/§ Xéz) \/§ X§2)

3 3
B T
50+/2 3v2x{ 502 3v2x{
=|| 2504/3 |- 902 - 2 2504/3 |- 90v2 - 2
: N 3 N

25043 3 25043 3
3 3
3v2x?
3V2x? 25043 ~40V2+
=| 402 = 3V 250/3 i
3 —/3x®?
5 2
(2)
s f (X @) = [— 4042 + 3‘/52)‘2 j + (—25?5 - \/§x§Z>J

—af%(x)f;)) - 2{_ 402 + 3‘/§2X§2) ] 3*2/5 - 2{ 25%\/5 3@ J( )=0

— 240 +9x? —500 + 6x{? =0

(@ _ 140 148
2

15x{? =740 = - 3
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- x? =90 —1.5(%] =16
3

To check for optimality, we have 2x, + X, = 2(16) + % = 2%4 =81.333 <140 and

2X, + 3%, = 2(16) + 3(%) =180 =180. Since 2X, + X, <140and 2x, +3X, <180 conditions are

met, we stop. The present solution is optimal. Therefore x, =16and x, = % with the objective

2
value of f = 200(16) + 500[%} —2(16) - 3[%) = 20053.3333

Conclusion

A new approach of solving a Separable Quadratic Constrained Programming Problem is developed. Two examples
have been tackled to confirm the efficiency of the developed technique. The results obtained from Wolfram
Mathematica software agreed with the result obtained via the proposed technique. It can be concluded that the
algorithms of solving a separable quadratic constrained programming problem stated in this study are quite explicit,
efficient and very easy to employ.
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